Baire classification of \mathscr{I} -density and \mathscr{I} -approximately continuous functions

Krzysztof Ciesielski¹ and Lee Larson² (Communicated by Karl H. Hofmann)

Abstract. Let \mathscr{T}_0 be the ordinary topology, $\mathscr{T}_{\mathfrak{F}}$ be the \mathscr{I} -density topology and $\mathscr{T}_{\mathfrak{P}}$ be the deep \mathscr{I} -density topology on the real numbers, \mathbb{R} . Any continuous function $f:(\mathbb{R},\mathscr{T}_{\mathfrak{F}})\to(\mathbb{R},\mathscr{T}_0)$ is a Darboux function of the first Baire class. Any unilaterally continuous function $f:(\mathbb{R},\mathscr{T}_{\mathfrak{P}})\to(\mathbb{R},\mathscr{T}_{\mathfrak{P}})$ is a Darboux function of the Baire*1 class.

1991 Mathematics Subject Classification: 26A03, 26A21

1. Introduction

The terminology and notation we use is standard. In particular, \mathbb{R} denotes the set of real numbers and $\mathbb{N} = \{1, 2, 3, ...\}$. For $A, B \subset \mathbb{R}$, A^c stands for the complement of A, $A \Delta B$ for the symmetric difference of A and B and dist (A, B) for the Euclidean distance between A and B. The natural topology on \mathbb{R} is denoted by \mathcal{T}_0 . Topological terms in which we do not specifically state the topology concern the natural topology. For example, int (A) and (A) stand for the interior and closure of A with respect to \mathcal{T}_0 , respectively. The oscillation of a function A at the point A will be denoted by A and A a

W. Wilczyński [11] introduced a topology on \mathbb{R} which has many properties in common with the ordinary density topology, except that it is based upon category instead of measure. This topology, called the \mathscr{I} -density topology, is defined as follows

Let \mathscr{I} stand for the ideal of first category subsets of \mathbb{R} . A Boolean function P defined on \mathbb{R} is said to be true \mathscr{I} -almost everywhere (\mathscr{I} -a.e.), if

$$\{x: P(x) \text{ is false}\} \in \mathscr{I}.$$

¹ This author was partially supported by West Virginia University Senate Research Grant.

² This author was partially supported by a University of Louisville Arts and Sciences Research grant.

A sequence of functions $f_n: \mathbb{R} \to \mathbb{R}$ converges (\mathscr{I}) to a function f, if for each increasing sequence $\{n_j\}$ of natural numbers, there is a further subsequence $\{n_{j_k}\}$ such that $f_{n_{j_k}}$ converges pointwise to f, \mathscr{I} -a.e. Notice that this definition mimics the standard definition of convergence in measure, or stochastic convergence [2], with the exception that the ideal \mathscr{N} of Lebesgue null sets is replaced by \mathscr{I} .

If $A \subset \mathbb{R}$, then a point $a \in \mathbb{R}$ is an \mathscr{I} -density point of A if $\chi_{n(A-a) \cap (-1,1)}$ converges (\mathscr{I}) to $\chi_{(-1,1)}$, where χ_S is the characteristic function of the set S. The set of all \mathscr{I} -density points of the set A is written $\Phi_{\mathscr{I}}(A)$. It is obvious from the above definition that

(1)
$$\Phi_{\sigma}(A) = \Phi_{\sigma}(B)$$
 whenever $A \Delta B \in \mathcal{I}$.

A point a is an \mathcal{I} -dispersion point of A, if $a \in \Phi_{\mathfrak{I}}(A^{c})$.

Closely related to the notion of an \mathscr{I} -density point is that of a deep- \mathscr{I} -density point. An \mathscr{I} -density point a of the set A is a deep- \mathscr{I} -density point of A, if there is a closed set $F \subset \operatorname{int}(A) \cup \{a\}$ such that $a \in \Phi_{\mathscr{I}}(F)$. The set of all deep- \mathscr{I} -density points of A is denoted by $\Phi_{\mathscr{I}}(A)$. From the definitions, it is obvious that for any set $A \subset \mathbb{R}$,

(2)
$$\Phi_{\mathfrak{G}}(A) \subset \Phi_{\mathfrak{G}}(A)$$
.

Denote the Baire subsets of \mathbb{R} by \mathcal{B} . A standard definition of the Baire sets is the following [6]:

$$\mathcal{B} = \{G \Delta I : G \in \mathcal{T}_0 \text{ and } I \in \mathcal{I}\}.$$

From this definition, it is not hard to show that associated with every $B \in \mathcal{B}$ is a unique open set \tilde{B} such that $\tilde{B} = \operatorname{int} (\operatorname{cl}(\tilde{B}))$ and $B = \tilde{B} \Delta I$ for some $I \in \mathcal{I}$. Any open set G for which $G = \operatorname{int} (\operatorname{cl}(G))$ is called a *regular* open set. In a sense, \tilde{B} is the largest open set such that B can be written as $B \Delta I$ for some $I \in \mathcal{I}$.

The *I-density topology* [11, 12] is defined as

$$\mathcal{T}_{\mathfrak{g}} = \{ A \in \mathscr{B} : A \subset \Phi_{\mathfrak{g}}(A) \}.$$

Similarly, the deep-I-density topology [7, 12] is defined as

$$\mathscr{T}_{\mathfrak{D}} = \{ A \in \mathscr{B} : A \subset \Phi_{\mathfrak{D}}(A) \}.$$

It is clear from (2) and the definitions of $\mathcal{T}_{\mathfrak{p}}$ and $\mathcal{T}_{\mathfrak{p}}$ that

$$(3) \mathcal{T}_0 \subset \mathcal{T}_9 \subset \mathcal{T}_{\mathfrak{g}}.$$

It is known that these containments are proper. (The first inclusion is proper by Lemma 2.4 [12, Theorem 2]. The second inclusion is proper because $\mathcal{T}_{\mathscr{D}}$ is completely regular [7] while $\mathcal{T}_{\mathscr{F}}$ is not [10, Theorem 5].)

Using the three topologies, \mathcal{T}_0 , $\mathcal{T}_{\mathcal{S}}$ and $\mathcal{T}_{\mathcal{D}}$, there are nine different definitions of continuity possible. For \mathcal{X} , $\mathcal{Y} \in \{\mathcal{I}, \mathcal{D}, \mathcal{O}\}$, let

$$\mathscr{C}_{\mathcal{X}\mathcal{Y}} = \{ f : (\mathbb{R}, \mathscr{T}_{\mathcal{X}}) \to (\mathbb{R}, \mathscr{T}_{\mathcal{Y}}) : f \text{ is continuous} \}.$$

For example, \mathscr{C}_{00} is the set of all functions $f: \mathbb{R} \to \mathbb{R}$ continuous in the ordinary sense. It is not hard to show that $\mathscr{C}_{0,f} = \mathscr{C}_{0,g}$ consists exactly of the constant functions

[4]. It is also known that $\mathscr{C}_{\mathscr{D}^0} = \mathscr{C}_{\mathscr{I}^0}$, and these are called the \mathscr{I} -approximately continuous functions [7]. The remaining classes with which this paper is concerned are the \mathscr{I} -density continuous and deep- \mathscr{I} -density continuous functions, $\mathscr{C}_{\mathscr{I}^0}$ and $\mathscr{C}_{\mathscr{D}^0}$, respectively.

It is known that the following relationships hold

$$(4) \mathscr{C}_{00} \subset \mathscr{C}_{\mathfrak{F}0} \text{and} \mathscr{C}_{\mathfrak{F}\mathfrak{F}} \subset \mathscr{C}_{\mathfrak{D}\mathfrak{D}} \subset \mathscr{C}_{\mathfrak{D}0} = \mathscr{C}_{\mathfrak{F}0}.$$

Moreover, the inclusions in (4) are proper and these are the only inclusions between those classes [4].

All the continuity and density definitions given above can be restated in more-or-less obvious ways in one-sided versions. For technical reasons it is often more convenient to work with one-sided density or continuity. For example, to show that a point a is an \mathcal{I} -density point of a set A, it is often easier to establish that is is both a left and right \mathcal{I} -density point. Such simple technical extensions to the definitions will be used without further comment.

Let \mathscr{D} stand for the functions $f: \mathbb{R} \to \mathbb{R}$ with the Darboux (intermediate value) property, \mathscr{B}_1 the functions of the first Baire class and \mathscr{B}_1^* the functions in the Baire*1 class; i.e., the class of all functions $f: \mathbb{R} \to \mathbb{R}$ with the property that for every perfect set P there is its nonempty portion $Q = P \cap (a, b)$ such that f restricted to Q is continuous [8].

In Section 3 it is shown that the one-sided \mathscr{I} -density continuous functions are in $\mathscr{D} \cap \mathscr{B}_1$. Section 4 has as its main purpose a proof that $\mathscr{C}_{\mathscr{D}\mathscr{D}} \subset \mathscr{D} \cap \mathscr{B}_1^*$. But first, the next section is devoted to presenting some technical lemmas which are needed in the later sections.

2. Some technical lemmas

In this section some technical lemmas are presented which are used in the later sections. The first of these is a restatement of the definition of \mathcal{I} -density points [12].

Lemma 2.1. $x \in \Phi_{\mathfrak{F}}(A)$ if, and only if, for every increasing sequence $\{n_{\mathfrak{m}}\}$ of natural numbers there is a subsequence $\{n_{\mathfrak{m}_p}\}$ such that

$$(-1,1)\cap\left(\bigcup_{q\in\mathbb{N}}\bigcap_{p\geq q}n_{m_p}\left(A-x\right)\right)^c=(-1,1)\cap\left(\liminf_{p\to\infty}\left(n_{m_p}\left(A-x\right)\right)\right)^c\in\mathscr{I}.$$

The next lemma is a dual version of Lemma 2.1.

Lemma 2.2. Let $B \subset \mathbb{R}$ and $x \in \mathbb{R}$. The following are equivalent:

- (i) x is a \mathcal{I} -dispersion point of B;
- (ii) for every increasing sequence $\{n_m\}$ of natural numbers there exists a subsequence $\{n_{m_p}\}$ such that

$$\lim_{n\to\infty}\chi_{(n_{m_p}(B-x))\cap(-1,1)}=0,\quad \mathscr{I}-a.e.;$$

(iii) for every increasing sequence $\{n_m\}$ of natural numbers there exists a subsequence $\{n_{m_n}\}$ such that

$$(-1,1)\cap\bigcap_{q\in\mathbb{N}}\bigcup_{p\geq q}n_{m_p}(B-x)=(-1,1)\cap\limsup_{p\to\infty}(n_{m_p}(B-x))\in\mathscr{I}.$$

In the definition of \mathscr{I} -density given above, the divergent sequence of "multipliers", $\{n_k\}$, is limited to the positive integers, rather than arbitrary sequences of positive numbers diverging to infinity. This restriction is removed by the following theorem.

Theorem 2.3. Let $B \in \mathcal{B}$ and $x \in \mathbb{R}$. The following statements are equivalent to each other.

- (i) x is an \mathcal{I} -dispersion point of B;
- (ii) for every divergent increasing sequence $\{t_n\}$ of positive numbers there exists a subsequence $\{t_{n_n}\}$ such that

$$\limsup_{k\to\infty} (t_{n_k}(\tilde{B}-x)) \cap (-1,1) \in \mathcal{I};$$

(iii) for every divergent increasing sequence $\{t_n\}$ of positive numbers there exists a subsequence $\{t_{n_n}\}$ such that

$$\limsup_{k\to\infty} (t_{n_k}(B-x)) \cap (-1,1) \in \mathscr{I}.$$

Proof. The equivalence of (iii) and (i) is proved by W. Poreda, E. Wagner-Bojakowska and W. Wilczyński [10, Corollary 1]. Thus, (ii) is equivalent to the fact that x is an \mathscr{I} -dispersion point of \widetilde{B} . But the last fact is equivalent to (i) by (1).

The next lemma and its corollary provide a tool for constructing sets which are in \mathcal{T}_g and \mathcal{T}_g . They are similar to theorems originally proved by W. Poreda, E. Wagner-Bojakowska and W. Wilczyński [10, Theorem 1] [12, Theorem 2]. To state them we need first the following definition.

We say that any of the sets $\bigcup_{n \in \mathbb{N}} (a_n, b_n)$ or $\bigcup_{n \in \mathbb{N}} [a_n, b_n]$ is a right interval set of a point $a \in \mathbb{R}$ if $a_{n+1} < b_{n+1} < a_n < b_n$ for $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = a$. In the case when a = 0 we simply say that it is a right interval set.

Lemma 2.4. If $E = \bigcup_{n \in \mathbb{N}} [a_n, b_n]$ is a right interval set such that

- (i) $\lim_{n\to\infty} (b_n a_n)/a_n = 0$; and
- (ii) $\lim_{n\to\infty} b_{n+1}/a_n = 0$,

then 0 is an \mathcal{I} -dispersion point of E. In particular, $E^c \in \mathcal{T}_{\mathfrak{B}}$.

Proof. It follows immediately from the proof of [12, Theorem 2].

From the lemma above we obtain easily the following corollary. (Compare also, [1, Lemma 3].)

Corollary 2.5. If $\bigcup_{n \in \mathbb{N}} [a_n, b_n]$ is a right interval set with

$$\lim_{n\to\infty}\frac{(b_n-a_n)}{b_n}=0,$$

then there exists an increasing sequence $\{n_m\}_{m\in\mathbb{N}}$ of natural numbers such that 0 is an \mathscr{I} -dispersion point of

$$\bigcup_{m\in\mathbb{N}} [a_{n_m}, b_{n_m}].$$

Finally, the following example provides a way to construct functions which are well-behaved in the ordinary sense, but are not well-behaved with regard to density continuity.

Example 2.6. There is a monotone continuous function $f : \mathbb{R} \to \mathbb{R}$ which is not in $\mathscr{C}_{g,g}$ or $\mathscr{C}_{g,g}$.

Proof. To construct such a function, let $E = \bigcup_{n \in \mathbb{N}} [a_n, b_n]$ be as in Lemma 2.4 and let $D = \bigcup_{n \in \mathbb{N}} [c_n, d_n]$, where $[c_n, d_n] = [b_{n+1}, a_n]$ for each $n \in \mathbb{N}$. Then, $D^c \notin \mathcal{T}_{\mathfrak{F}}$. It is also easy to see, that by decreasing the intervals $[a_n, b_n]$, if necessary, that $E^c \in \mathcal{T}_{\mathfrak{D}}$. Define the function f by letting f(x) = 0 whenever $x \le 0$, $f(c_n) = a_n$ and $f(d_n) = f(b_n)$ for all n. Make f piecewise linear between the points on which it has already been defined. Then $f^{-1}(E^c) = D^c$. So, $f \notin \mathscr{C}_{\mathfrak{F},\mathfrak{F}} \cup \mathscr{C}_{\mathfrak{D}\mathfrak{D}}$.

3. I-approximately continuous functions

In this section it is shown that $\mathscr{C}_{\mathfrak{s}_0} \subset \mathscr{D} \cap \mathscr{B}_1$. The following lemma is used in the proof.

Lemma 3.1. If f is right \mathscr{I} -approximately continuous at each of its points, $a \in \mathbb{R}$ and $A = \{x : f(x) > a\}$, then int (A) is dense in A.

Proof. It may be supposed without loss of generality that a=0. Let $A_n=\{x:f(x)\geq 1/n\}\in 1/n\}\in \mathcal{B}$ and let $A=\bigcup_{n\in\mathbb{N}}A_n$. If $x\in \tilde{A}_n$, then, by Lemma 2.1, x is an \mathscr{I} -density point of A_n , as $A_n\Delta \tilde{A}_n\in \mathscr{I}$. The definition of right \mathscr{I} -density continuity shows that $f(x)\geq 1/n$. It follows from this that $\tilde{A}_n\subset A_n$. Therefore, $G=\bigcup_{n\in\mathbb{N}}\tilde{A}_n\subset\bigcup_{n\in\mathbb{N}}A_n=A$. To see that G is dense in A, let $x\in A$ and choose $n\in\mathbb{N}$ such that 1/n< f(x). Then x is a right \mathscr{I} -density point of $\{w:f(w)>1/n\}$ and it is apparent that x must be a limit point of \tilde{A}_n . From this, it follows that G is dense in A.

Theorem 3.2. Every right I-approximately continuous function is of the first Baire class.

Proof. Poreda, Wagner-Bojakowska and Wilczyński [9] proved a slightly weaker version of this theorem for two-sided \mathscr{I} -approximate continuity. The following alternative proof is presented here because it is somewhat shorter and the result is a little sharper.

Let f be right \mathscr{I} -density continuous on \mathbb{R} . It suffices to show that $\{x: f(x) \geq 0\}$ is a G_{δ} set. To do this, for each $p \in \mathbb{N}$, let $U_p = \{x: f(x) > -1/p\}$ and, for $p, q, r, k \in \mathbb{N}$, define

(5)
$$A(p,q,r,k) = \left\{ x \in \mathbb{R} : \left(\frac{k-1}{q}, \frac{k}{q}\right) \cap r(U_p - x) \neq \emptyset \right\}$$

and

(6)
$$A(p,q,r) = \bigcap_{k=1}^{q} A(p,q,r,k).$$

It is easy to see that each A(p, q, r) is an open set. Next, define

(7)
$$U = \bigcap_{p \in \mathbb{N}} \bigcap_{q \in \mathbb{N}} \bigcup_{r \geq q} A(p, q, r).$$

It is clear that U is a G_{δ} set. It will be shown that $U = \{x : f(x) \ge 0\}$. To show that $U \subset \{x : f(x) \ge 0\}$, fix $p \in \mathbb{N}$ and let

$$V_p = \bigcap_{q \in \mathbb{N}} \bigcup_{r \geq q} A(p, q, r).$$

Suppose that $x \in V_p$. For each $q \in \mathbb{N}$ there is an $r_q \in \mathbb{N}$, $r_q \ge q$, such that when $1 \le k \le q$, then

$$\left(\frac{k-1}{q}, \frac{k}{q}\right) \cap r_q\left(U_p - x\right) \neq \emptyset.$$

From this and Lemma 3.1 it is apparent that

(8)
$$\left(\frac{k-1}{q}, \frac{k}{q}\right) \cap r_q \left(\operatorname{int}\left(U_p\right) - x\right) \neq \emptyset \quad \text{for } k = 1, 2, \dots, q.$$

Let $\{r_{q_i}\}_{i\in\mathbb{N}}$ be an increasing subsequence of $\{r_q\}_{p\in\mathbb{N}}$ and put $n_i=r_{q_i}$ for $i\in\mathbb{N}$. From (8) it follows that $\bigcup_{j\in\mathbb{N}}n_{i_j}$ int (U_p) is a dense open subset of (0,1) for every subsequence $\{n_{i_j}\}_{j\in\mathbb{N}}$ of $\{n_i\}_{i\in\mathbb{N}}$. Therefore,

$$\limsup_{j\to\infty} n_{i_j} U_p \cap (0,1)$$

is a residual subset of (0, 1). It follows, by Lemma 2.2, that x is not a right \mathscr{I} -dispersion of U_p and the right \mathscr{I} -density continuity of f shows that $x \in \{x : f(x) \ge -1/p\}$. Thus, $V_p \subset \{x : f(x) \ge -1/p\}$ and

$$U = \bigcap_{p \in \mathbb{N}} V_p \subset \{x : f(x) \ge 0\}.$$

To show that $\{x: f(x) \ge 0\} \subset U$ let us fix x such that $f(x) \ge 0$ and $p, q \in \mathbb{N}$. It must be shown that there is an $r \in \mathbb{N}$, $r \ge q$, such that $x \in A$ (p, q, r). If not, for every $r \ge q$ there must be an integer k_r , with $1 \le k_r \le q$, such that

$$\left(\frac{k_r-1}{q},\frac{k_r}{q}\right)\cap r\left(U_p-x\right)=\emptyset.$$

There must exist an increasing sequence of natural numbers r_i such that $k_{r_i} = k$ for some $1 \le k \le q$. This gives

$$\left(\frac{k-1}{q},\frac{k}{q}\right) \cap r_i\left(U_p - x\right) = \emptyset$$

for all i so that for any subsequence $\{r_{i_i}\}$ of $\{r_i\}$

$$\lim_{j\to\infty}\inf r_{i_j}\left(U_p-x\right)\cap\left(\frac{k-1}{q},\frac{k}{q}\right)=\emptyset.$$

Therefore, x is not a point of right \mathscr{I} -density of U_p . But, this is impossible because $f(x) \ge 0$ and f is right \mathscr{I} -approximately continuous at x.

Therefore $U \supset \{x : f(x) \ge 0\}$ and consequently $U = \{x : f(x) \ge 0\}$, which finishes the proof of the theorem.

The following corollary is immediate.

Corollary 3.3. If $f \in \mathscr{C}_{\mathfrak{so}}$, then f is continuous in the ordinary sense on a dense $\mathbf{G}_{\mathfrak{s}}$ subset of \mathbb{R} .

Corollary 3.4. $\mathscr{C}_{\mathfrak{g}_{\emptyset}} \subset \mathscr{D} \cap \mathscr{B}_{1}$.

Proof. Since sets which are open in the \mathscr{I} -density topology must be bilaterally c-dense in themselves, this is an immediate consequence of the preceding theorem and Young's criterion. (See Bruckner [3].)

4. I-density continuous functions

The goal of this section is to prove that $\mathscr{C}_{\mathscr{DD}} \subset \mathscr{D} \cap \mathscr{B}_1^*$. To do this, the following definition and lemma are needed [5, Lemma 29.1].

A partition of a set E is a pairwise disjoint family $\Pi = \{E_i : i \in \Lambda\}$ such that $\bigcup_{i \in \Lambda} E_i = E$. Note that any partition Π can be associated with a function $F: E \to \Lambda$ such that F(x) = F(y) if, and only if, x and y belong to the same $E_i \in \Pi$. Conversely, any function $F: E \to \Lambda$ determines a partition of E.

For a set A and $n \in \mathbb{N}$ define

$$[A]^n = \{B \subset A : \operatorname{card}(B) = n\}.$$

If $\Pi = \{E_i : i \in \Lambda\}$ is a partition of $[\Lambda]^n$, then a set $H \subset \Lambda$ is homogeneous for the partition Π if, for some $i \in \Lambda$, $[H]^n \subset E_i$. That is, all *n*-element subsets of H are in the same piece of the partition Π .

Lemma 4.1. (Ramsey's Theorem). If $n, k \in \mathbb{N}$, then every finite partition $\Pi = \{E_1, E_2, ..., E_k\}$ of $[\mathbb{N}]^n$ has an infinite homogeneous set. In other words, for every $F: [\mathbb{N}]^n \to \{1, 2, ..., k\}$ there exists an infinite $H \subset \mathbb{N}$ such that F is constant on $[H]^n$.

Theorem 4.2. $\mathscr{C}_{\mathfrak{A}\mathfrak{A}} \subset D \cap \mathscr{B}_1^*$.

Proof. Assume to the contrary that for some perfect set P the set

$$Z = \{x \in P : f|_P \text{ is not continuous at } x\}$$

is dense in P.

We will construct sequences: $\{x_n\}_{n\in\mathbb{N}}$ of points of P, $\{(a_n,b_n)\}_{n\in\mathbb{N}}$ of open intervals, $\{J_n\}_{n\in\mathbb{N}}$ of compact intervals, and $\{I_n\}_{n\in\mathbb{N}}$ of open intervals having the same midpoint as the corresponding J_n , and contained in that corresponding J_n . The construction is inductive, and aimed at having all the objects obtained satisfy the conditions (a) through (f) listed below.

For the reminder of this proof let $\widetilde{f^{-1}}(A)$ stand for \widetilde{B} , where $B = f^{-1}(A)$. Start by choosing $x_0 \in Z$, $(a_0, b_0) = (x_0 - 1, x_0 + 1)$ and $I_0 = J_0 = \emptyset$. Assume that for all $n \in \mathbb{N}$ and all $i \in \mathbb{N}$, $i \le n$, it holds that:

- (a) $f(x_i) \in I_i$;
- **(b)** $J_{i-1} \cap J_i = \emptyset$ and, for i > 2,

$$|J_i| \le \frac{1}{3} \min \{ \text{dist}(J_k, J_{k+1}) : k \in \mathbb{N}, k < i-1 \};$$

- (c) $|J_i| < \omega(f|_P, x_i)$ and $0 < |I_i| < 2^{-i}|J_i|$;
- **(d)** $x_i \in (a_i, b_i) \cap Z \subset [a_i, b_i] \subset (a_{i-1}, b_{i-1}) \text{ and } |b_i a_i| < 2^{-i};$
- (e) for every $k \in \mathbb{N}$, $2^i \le k < 4^i$,

$$\left(\frac{1}{b_{i}-x_{i}}\left(\widetilde{f^{-1}}\left(I_{i}\right)-x_{i}\right)\right)\cap\left(\frac{k}{4^{i}},\frac{k+1}{4^{i}}\right)\neq\emptyset;$$

(f) for every $x \in [a_i, b_i]$ and every $k \in \mathbb{N}$, $2^{i-1} \le k < 4^{i-1}$,

$$\left(\frac{1}{b_{i-1}-x}\left(\widetilde{f^{-1}}\left(I_{i-1}\right)-x\right)\right)\cap\left(\frac{k}{4^{i-1}},\frac{k+1}{4^{i-1}}\right)\neq\emptyset.$$

Let us present the inductive construction. Assume it is done for some $n \ge 0$. We will show the next step. Start with condition (f). If n + 1 = 1, (f) is void and can be ignored by defining $U = \mathbb{R}$. Otherwise, by (e), the set

$$U_k = \left\{ x : \left(\frac{1}{b_n - x} \left((\widetilde{f^{-1}} \left(I_n \right)) - x \right) \cap \left(\frac{k}{4^n}, \frac{k+1}{4^n} \right) \neq \emptyset \right\}$$

contains x_n for every $k \in \mathbb{N}$, $2^n \le k < 4^n$. It is also not difficult to see that the sets U_k are open. Therefore

$$U = \bigcap_{2^n \le k < 4^n} U_k$$

is also open and contains x_n . It is easy to see that condition (f) is satisfied for $x \in U$. Now, find

$$v \in P \cap f^{-1}(J_n^c) \cap ((a_n, b_n) \cap U).$$

The existence of such a y is guaranteed because U is open, $x_n \in U$ and (c). If $y \in Z$, let $x_{n+1} = y$. Otherwise $f|_P$ is continuous at y. In this case, the fact that Z is dense in P and U is open guarantees the existence of

$$x_{n+1} \in P \cap f^{-1}(J_n^c) \cap ((a_n, b_n) \cap U) \cap Z$$
.

Since $f(x_{n+1}) \notin J_n$ and $x_{n+1} \in Z$, there exists a small interval J_{n+1} centered at $f(x_{n+1})$ satisfying conditions (b) and (c). Choosing I_{n+1} centered at $f(x_{n+1})$ of length

$$\frac{|J_{n+1}|}{2^{n+2}}$$

guarantees (a), (b), and (c).

Defining (a'_{n+1}, b'_{n+1}) to be centered at x_{n+1} and such that

$$[a'_{n+1}, b'_{n+1}] \subset (a_n, b_n) \cap U$$
 and $b'_{n+1} - a'_{n+1} < \frac{1}{2^{n+1}}$

guarantees (d) and (f) for the interval $[a'_{n+1}, b'_{n+1}]$. However, it still must be shown that condition (e) is satisfied. This is done by choosing interval $(a_{n+1}, b_{n+1}) \subset (a'_{n+1}, b'_{n+1})$.

Note that x_{n+1} is an \mathscr{I} -density point of $f^{-1}(I_{n+1})$. Therefore, by Lemma 2.1, there exists an increasing sequence $\{n_i\}_{i\in\mathbb{N}}$ of natural numbers such that the set

$$S = \liminf_{i \to \infty} (n_i (f^{-1} (I_{n+1}) - x_{n+1})) \cap (-1, 1)$$

is residual in (-1, 1). Define

$$W_i = n_i (f^{-1} (I_{n+1}) - x_{n+1}).$$

The set

$$\bigcup_{r=1}^{+\infty} \bigcap_{i \geq r} W_i$$

is residual in (-1, 1). In particular, for every $k \in \mathbb{N}$, $2^{n+1} \le k < 4^{n+1}$,

$$\left(\bigcup_{r=1}^{+\infty}\bigcap_{i\geq r}W_i\right)\cap\left(\frac{k}{4^{n+1}},\frac{k+1}{4^{n+1}}\right)\neq\emptyset.$$

The sequence $\{\bigcap_{i\geq r} W_i\}_{r\in\mathbb{N}}$ is increasing. Thus, there is an $r_0\in\mathbb{N}$ such that

$$W_i \cap \left(\frac{k}{4^{n+1}}, \frac{k+1}{4^{n+1}}\right) \neq \emptyset$$

for every $i \ge r_0$ and $k \in \mathbb{N}$, $2^{n+1} \le k < 4^{n+1}$. But

$$W_{i} = n_{i} \left(\widetilde{f^{-1}} \left(I_{n+1} \right) - x_{n+1} \right) = \frac{1}{x_{n+1} + \frac{1}{n_{i}} - x_{n+1}} \left(\widetilde{f^{-1}} \left(I_{n+1} \right) - x_{n+1} \right).$$

Define (a_{n+1}, b_{n+1}) as

$$\left(x_{n+1}-\frac{1}{n_i}, x_{n+1}+\frac{1}{n_i}\right),$$

where $i \ge r_0$ and $[a_{n+1}, b_{n+1}] \subset [a'_{n+1}, b'_{n+1}]$. The desired condition (e) is satisfied. This ends the inductive construction.

It will now be shown how the conclusion of the theorem follows from the construction.

Let

$$\{x\} = \bigcap_{n \in \mathbb{N}} [a_n, b_n] = \bigcap_{n \in \mathbb{N}} ([a_n, b_n] \cap Z).$$

We will show that f is not deep- \mathcal{I} -density continuous at x. To be more specific, we will find a sequence $\{n_i\}_{i\in\mathbb{N}}$ such that

- (1) f(x) is a deep- \mathscr{I} -dispersion point of $\bigcup_{i\in\mathbb{N}}I_{n_i}$, and
- (2) x is not a deep- \mathscr{I} -dispersion point of $f^{-1}(\bigcup_{i\in\mathbb{N}}I_{n_i})$.

We will first show x is not an \mathscr{I} -dispersion point of $f^{-1}(\bigcup_{i\in\mathbb{N}}I_{n_i})$ for every sequence $\{n_i\}_{i\in\mathbb{N}}$.

Let $\{n_i\}_{i\in\mathbb{N}}$ be any increasing sequence of natural numbers. By the definition of x, condition (f) implies

$$(t_n(\widetilde{f^{-1}}(I_n)-x))\cap\left(\frac{k}{4^n},\frac{k+1}{4^n}\right)\neq\emptyset$$

for every $k \in \mathbb{N}$, $2^n \le k < 4^n$, where t_n is defined as $1/(b_n - x)$. Note that sequence $\{t_n\}_{n \in \mathbb{N}}$ is increasing and diverging to ∞ . Thus, the open set $U_n = t_n (\widehat{f}^{-1} (I_n) - x)$ intersects every interval $(\frac{k}{4^n}, \frac{k+1}{4^n}) \subset [\frac{1}{2}, 1]$. This implies that for every increasing sequence $\{n_i\}_{i \in \mathbb{N}}$ of natural numbers and for every $s \in \mathbb{N}$ the set $\bigcup_{i \ge s} U_{n_i}$ is dense in $[\frac{1}{2}, 1]$. Hence,

$$\limsup_{j\to\infty} t_{n_{i,j}} \left(\widetilde{f^{-1}} \left(\bigcup_{i\in\mathbb{N}} I_{n_{i,j}} \right) - x \right) \supset \limsup_{j\to\infty} U_{n_{i,j}} \notin \mathscr{I}$$

for every subsequence $\{n_{i_j}\}_{j\in\mathbb{N}}$ of $\{n_i\}_{i\in\mathbb{N}}$. Thus, by Theorem 2.3 (ii), x is not an \mathscr{I} -dispersion point of $f^{-1}(U_{i\in\mathbb{N}}I_{n_i})$.

Let us now turn to the proof of condition (1). We must find an increasing sequence $\{n_i\}_{i\in\mathbb{N}}$ of natural numbers such that f(x) is a deep- \mathscr{I} -dispersion point of $\bigcup_{i\in\mathbb{N}}I_{n_i}$. The set $\bigcup_{i\in\mathbb{N}}I_{n_i}$ is open. Therefore, it suffices to find a sequence $\{n_i\}_{i\in\mathbb{N}}$ such that f(x) is an \mathscr{I} -dispersion point of $\bigcup_{i\in\mathbb{N}}I_{n_i}$. For the sake of simplicity, let us assume that f(x)=0.

There are two cases to consider.

Case 1°. There exists an increasing sequence $\{n_i\}_{i\in\mathbb{N}}$ of natural numbers such that the J_{n_i} are pairwise disjoint.

By taking a subsequence of $\{n_i\}_{i\in\mathbb{N}}$, if necessary, it may be assumed that

$$\bigcup_{i\in\mathbb{N}}J_{n_i}$$

is either a right or left interval set. For simplicity, assume it is a right interval set. Let $J_{n_i} = [c_i, d_i]$ and $I_{n_i} = (\alpha_i, \beta_i)$. Then

$$f(x) = 0 < d_{i-1} < c_i < \alpha_i < \beta_i < d_i$$

for all i. Condition (c) states that

$$\frac{\beta_i - \alpha_i}{d_i - c_i} = \frac{|I_{n_i}|}{|J_{n_i}|} < \frac{1}{2^{n_i}}.$$

Let z_n be the common center of I_n and J_n , for $n \ge 0$. Then

$$\lim_{i \to \infty} \frac{\beta_i - \alpha_i}{\beta_i} \le \lim_{i \to \infty} \frac{\beta_i - \alpha_i}{z_{n_i}} \le \lim_{i \to \infty} \frac{\beta_i - \alpha_i}{z_{n_i} - c_i} = 2 \lim_{i \to \infty} \frac{\beta_i - \alpha_i}{d_i - c_i} = 0.$$

By Corollary 2.5 choose a subsequence of $\{n_i\}_{i\in\mathbb{N}}$ with the desired properties.

Case 2°. There is no pairwise disjoint subsequence $\{J_{n_i}\}_{i\in\mathbb{N}}$ of the sequence $\{J_n\}_{n\in\mathbb{N}}$. Let us first consider the subsequence $\{J_{2n+1}\}_{n\in\mathbb{N}}$, indexed by the odd numbers, of the sequence $\{J_n\}_{n\in\mathbb{N}}$. Define a partition function $F: [\mathbb{N}]^2 \to \{0,1\}$ by

$$F(\{n, m\}) = 1$$
 if, and only if, $J_{2n+1} \cap J_{2m+1} \neq \emptyset$.

By Lemma 4.1 (Ramsey's Theorem) there exists an infinite homogeneous subset $\{n_i\}_{i\in\mathbb{N}}$ of \mathbb{N} ; i.e., the sequence $\{n_i\}_{i\in\mathbb{N}}$ of natural numbers such that for some $k\in\{0,1\}$, $F(\{n_i,n_j\})=k$ for all positive integers $i\neq j$. But k=0 would contradict the definition of the case 2° , which is currently considered. Thus k=1; i.e.;

$$(9) J_{2n_i+1} \cap J_{2n_i+1} \neq \emptyset$$

for all nonnegative integers $i \neq i$.

Now let us repeat the Ramsey-type argument, which was used above, for the even-numbered counterparts of $\{J_{2n_i+1}\}_{i\in\mathbb{N}}$. Define $G: [\mathbb{N}]^2 \to \{0,1\}$ by

$$G(\{i,j\}) = 1$$
 if, and only if, $J_{2n_i} \cap J_{2n_i} \neq \emptyset$.

By Lemma 4.1 (Ramsey's Theorem) there exists a subsequence $\{n_{i_s}\}_{s\in\mathbb{N}}$ of $\{n_i\}_{i\in\mathbb{N}}$ such that

$$(10) J_{2n_{i}} \cap J_{2n_{i}} \neq \emptyset$$

for all nonnegative integers $s \neq t$, while condition (9) is still preserved, or more precisely

$$(11) J_{2n_{i}+1} \cap J_{2n_{i}+1} \neq \emptyset$$

for $s \neq t$. Define $\varepsilon = \text{dist}(J_{2n_{i_0}}, J_{2n_{i_0}+1})$. By (b), $\varepsilon > 0$. Moreover, by (b), (10) and (11)

$$B_0 = \bigcup_{s \in \mathbb{N}} J_{2n_{i_s}} \subset \left\{ x : \operatorname{dist}(x, J_{2n_{i_0}}) < \frac{\varepsilon}{3} \right\}$$

and

416

$$B_1 = \bigcup_{s \in \mathbb{N}} J_{2n_{i_s}+1} \subset \left\{ x : \operatorname{dist}\left(x, J_{2n_{i_0}+1}\right) < \frac{\varepsilon}{3} \right\}.$$

Hence

$$\operatorname{dist}(B_0, B_1) \geq \frac{\varepsilon}{3} > 0.$$

Note that

$$S_0 = \bigcup_{s \geq 0} I_{2n_{i_s}} \subset B_0$$

and

$$S_1 = \bigcup_{s>0} I_{2n_{i_s}+1} \subset B_1.$$

Thus dist $(S_0, S_1) > 0$, which implies that either

$$\operatorname{dist}\left(f\left(x\right),S_{0}\right)>0$$

or

$$dist(f(x), S_1) > 0.$$

This clearly means that f(x) is an \mathscr{I} -dispersion point of either S_0 or S_1 . This finishes the proof of Theorem 4.2.

Since every function in \mathcal{B}_1^* is continuous in the ordinary sense on a dense open set, the following corollary is obvious.

Corollary 4.3. If f belongs to \mathscr{C}_{gg} or \mathscr{C}_{ff} , then there is a dense \mathscr{T}_{g} -open set G such that $f|_{G}$ is \mathscr{T}_{g} -continuous.

Theorem 4.4. The spaces $\mathscr{C}_{\mathscr{D}\mathscr{D}}$ and $\mathscr{C}_{\mathscr{F}\mathscr{F}}$ equipped with the topology of uniform convergence, are of the first category in themselves.

Proof. This will only be proved for the class $\mathscr{C}_{\mathscr{D}\mathscr{D}}$ as the other case is essentially the same

Let $\{I_n\}_{n\in\mathbb{N}}$ be the sequence of all open intervals with rational endpoints and let C_n be the family of all deep \mathscr{I} -density continuous functions that are continuous on I_n in the ordinary sense. By Theorem 4.2, $\mathscr{D}_{\mathscr{D}\mathscr{D}} = \bigcup_{n\in\mathbb{N}} C_n$. Also, it is evident that the sets C_n are closed in the topology of uniform convergence. Finally, for any function $g \in C_n$ and any of its neighborhoods U it is easy to slightly modify the function f from Example 2.6 in such a way that

$$f \in U \cap (C_n \setminus \mathscr{C}_{\mathscr{D}\mathscr{D}}).$$

Thus, the sets C_n are nowhere dense.

References

- [1] Aversa, V. and W. Wilczyński: Homeomorphisms preserving *I*-density points. Boll. Un. Mat. Ital., B (7) 1: 275-285, 1987
- [2] Bauer, Heinz: Probability Theory and Elements of Measure Theory. Holt, Rinehart and Winston, Inc., 1972
- [3] Bruckner, A. M.: Differentiation of Real Functions. Lecture Notes in Mathematics 659. Springer-Verlag, 1978
- [4] Krzysztof Ciesielski and Lee Larson: Category theorems concerning d-density continuous functions. Fund. Math. 140 (1991), 79-85
- [5] Jech, T.: Set Theory. Academic Press, 1978
- [6] Kuratowski, K.: Topology, volume 1. Academic Press, 1966
- [7] Lazarow, E.: The coarsest topology for *I*-approximately continuous functions. Comment. Math. Univ. Caroli., 27 (4): 695-704, 1986
- [8] O'Malley, R. J.: Baire*1 Darboux functions. Proc. Amer. Math. Soc., 60: 187-192, 1976
- [9] Poreda, W., E. Wagner-Bojakowska, and W. Wilczyński: A category analogue of the density topology. Fund. Math., 75: 167-173, 1985
- [10] Poreda, W., E. Wagner-Bojakowska, and W. Wilczyński: Remarks on *I*-density and *I*-approximately continuous functions. Comm. Math. Univ. Carolinae, 26 (3): 553-563, 1985
- [11] Wilczyński, W.: A generalization of the density topology. Real Anal. Exch., 8 (1): 16–20, 1982–83
- [12] Wilczyński, W.: A category analogue of the density topology, approximate continuity, and the approximate derivative. Real Anal. Exch., 10: 241-265, 1984-85

Received May 24, 1993

Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Lee Larson, Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

