Theorem. Let G be a reductive affine algebraic group. Let B be a Borel subgroup of G and let K be a maximal compact subgroup of G. Then $G=K B$.

Proof. We may assume that $G \subset G L(n, \mathbb{C})$ is a symmetric subgroup. We take $K=U(n) \cap G$ as usual. First consider B constucted from H as above such that $H \cap K$ is a maximal compact torus, T, of K. We can assume that $G \subset G L(n, \mathbb{C})$ and the elements of B are upper trangular. We note

$$
K \cap B=T .
$$

The elements of

$$
\mathfrak{n}=\bigoplus_{\alpha \in \Phi, \alpha(h)>0} \mathfrak{g}_{\alpha}
$$

are nilpotent thus

$$
U=\exp \mathfrak{n}
$$

is unipotent. Thus

$$
B=H U .
$$

Let

$$
\mathfrak{a}=i \operatorname{Lie}(T), A=\exp \mathfrak{a}
$$

Then we assert that the map

$$
\begin{gathered}
K \times A \times U \rightarrow G \\
k, a, u \longmapsto k a u
\end{gathered}
$$

is bijective. If

$$
k a u=k_{1} a_{1} u_{1}
$$

then

$$
k_{1}^{-1} k \in A U
$$

But this implies that $k_{1}^{-1} k$ has real posoitive eigenvalues. Hence $k=k_{1}$. similarly $a=a_{1}$. Thus the map is injective. Note if $X \in \operatorname{Lie}(K), h \in \operatorname{Lie}(A)$ and $u \in$ $\operatorname{Lie}(U)$ then

$$
\frac{d}{d t_{t=0}} k e^{t X} a e^{t h} u e^{t Y}=k X a u+k a h u+k a u Y
$$

If this expression is 0 then

$$
X=-a h a^{-1}-a u Y(a u)^{-1}
$$

which is upper triangular with real eigenvalues. Thus $X=0$. So

$$
h=-u Y u^{-1}
$$

since Y is nilpotent and h is semisimple $h=0$. Note

$$
\operatorname{dim} A N=\operatorname{dim} K, \operatorname{dim}_{\mathbb{R}} G=2 \operatorname{dim} K
$$

Indeed, if $X \in \mathfrak{g}_{\alpha}$ then $X^{*} \in \mathfrak{g}_{-\alpha}$. Also

$$
\operatorname{Lie}(K)=\operatorname{Lie}(T) \oplus\left\{X-X^{*} \mid X \in \operatorname{Lie}(N)\right\}
$$

Thus $\operatorname{dim} K=\operatorname{dim} T+\operatorname{dim}_{\mathbb{R}} \operatorname{Lie}(N)=\operatorname{dim} A N$.

But $A N$ is closed in G so $K A N$ is closed. Hence the image is open and closed. Since K intersects every connected component of $G . G=K A N$.

Suppose B_{1} is another Borel subgroup. Then there exists $g \in G$ with $g B g^{-1}=B_{1}$. Thus writing

$$
g=k b, k \in K
$$

and $b \in B$ then

$$
k B k^{-1}=B_{1}
$$

Hence

$$
k^{-1} K B_{1} k=K B=G
$$

Exercises.1. Show that the theorem is true without the condition the G is reductive.
2. Let G be a reductive algebraic group and let K be a maximal compact subgroup. If B is a Borel subgroup of G then $K \cap B$ maximal compact torus in K.

Let $G \subset G L(n, \mathbb{C})$ be a reductive affine algebraic group. We set $V=\mathbb{C}^{n}$ and let H be a Cartan subgroup of G which we can assume is contained in the diagonal subgroup. We have seen that if $\mathcal{N}_{H}(V)$ is the nullcone for the H-action then the null cone for the G action is

$$
\mathcal{N}_{G}(V)=G \mathcal{N}_{H}(V)
$$

Also if $A \in M_{n, m}(\mathbb{Z})$ defines the isomorphism between $\left(\mathbb{C}^{\times}\right)^{m}$ and H

$$
\left(z_{1}, \ldots, z_{m}\right) \longmapsto \operatorname{diag}\left(z^{A_{1}}, \ldots, z^{A_{n}}\right)
$$

with A_{i} the i-th column of A. We saw that if $b \in \mathbb{Z}^{m}$ and $V_{b}=\left\{v=\left(v_{1}, \ldots, v_{n}\right) \mid v_{i}=0\right.$ if $\left.A_{i} b \leq 0\right\}$ then if

$$
\mathcal{M}=\left\{V_{b} \mid V_{b} \text { of maximal dimension }\right\}
$$

the irreducible components of $\mathcal{N}_{H}(V)$ are the elements of \mathcal{M}.

Theorem. The subsets $G V_{b}$ are Z-closed in \mathbb{C}^{n}.

Proof. We may assume that G is a symmetric subgroup of $G L(n, \mathbb{C})$ and that H is the Z-closure of a maximal torus of $K=G \cap U(n)$. Let $h \in \operatorname{Lie}(H)$ be such that

$$
e^{z h}=\left(e^{A_{1} b z}, \ldots, e^{A_{n} b z}\right)
$$

That is if

$$
\varphi_{b}(z)=\left(e^{A_{1} b z}, \ldots, e^{A_{n} b z}\right)
$$

Then

$$
h=d \varphi_{b}([1]) .
$$

We note that $h \in \mathfrak{a}=i \operatorname{Lie}(T)$. Let $h_{1}=h, h_{2}, \ldots, h_{m}$ be a basis of \mathfrak{a} and order the \mathfrak{a}^{*} lexicographically realative to

$$
\left(\lambda\left(h_{1}\right), \ldots, \lambda\left(h_{m}\right)\right)
$$

Then then the elements of the root system, Φ, such that $\alpha>0$ form a system , Φ^{+}, of positive roots. Decompose V into eigenspaces for h so

$$
V=\bigoplus V^{\lambda}
$$

with

$$
\begin{gathered}
h_{\mid V^{\lambda}}=\lambda I . \\
V_{b}=\sum_{\lambda>0} V^{\lambda}
\end{gathered}
$$

If $\alpha \in \Phi^{+}$and $X \in \mathfrak{g}_{\alpha}$ and $v \in V^{\lambda}$

$$
h X v=(\alpha(h)+\lambda) X v
$$

since $a(h) \geq 0$ we see that $X v \in V_{b}$. This implies that if B is the Borel subgroup corresponding to Φ^{+}then

$$
\operatorname{Lie}(B) V_{b} \subset V_{b}
$$

Thus

$$
G V_{b}=K V_{b} .
$$

Which is closed in the metric topology. We define

$$
\Psi: G \times V_{b} \rightarrow V
$$

by

$$
\Psi(g, v)=g v .
$$

Then Ψ is a morphism of varieties. Hence the Z-closure of the image of Ψ is the same as the metric closure. Hence $G V_{b}$ is Z-closed.

Let G be an affine algebraic group. Let (ρ, V) be a regular representation of G.Then

$$
\rho: G \rightarrow G L(V)
$$

is a homomorpism of algebraic groups. We consider $X \in$ $\operatorname{Lie}(G)$. Then

$$
\phi(t)=\rho\left(e^{t X}\right)
$$

is a real analytic map of \mathbb{R} to $G L(V)$. We note that

$$
\phi(s+t)=\phi(s) \phi(t)
$$

Let

$$
Y=\frac{d}{d t_{\mid t=0}} \phi(t)
$$

Then

$$
\frac{d}{d t} \phi(t)=Y \phi(t)
$$

Then

$$
\frac{d}{d t} e^{-t Y} \phi(t)=0
$$

We set $d \rho(X)=Y$.

Let G be a connected, reductive, affine algebraic group and let H be a Cartan subgroup. Let B be a Borel subgroup of G containig H and let U be the unipotent radical of B. Let $\mathfrak{h}=\operatorname{Lie}(H)$. Then there is a system of positive roots Φ^{+}such that

$$
\operatorname{Lie}(B)=\mathfrak{h} \bigoplus\left(\bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}\right)
$$

If we chose $-\Phi^{+}$we would have an opposite Borel subgroup. We set

$$
\mathfrak{n}^{ \pm}=\bigoplus_{\alpha \in \pm \Phi^{+}} \mathfrak{g}_{\alpha}
$$

One checks that if $U^{ \pm}=\exp \left(\mathfrak{n}^{ \pm}\right)$then $U^{-} B$ is open in G.

Let (ρ, V) be an irreducible regular representation of G. If $v \in V$ and $v \neq 0$ then the span of $\rho(Q) v$ is V for any non-empty open subset, Q, of G. Let $B V^{U^{+}}=$ $V^{U^{+}}$thus there exists a regular homomorphism

$$
\chi: B \rightarrow \mathbb{C}^{\times}
$$

and $v \neq 0$ in $V^{U^{+}}$such that

$$
\rho(b) v=\chi(b) v
$$

This implies that

$$
\operatorname{Span}_{\mathbb{C}} \rho\left(U^{-}\right) v=V
$$

Let Λ be the correponding weight of the action of \mathfrak{h} on V. If we expand

$$
e^{d \rho\left(\sum_{a \in \Phi^{+}} X_{-\alpha}\right)} v
$$

then the only weights that appear are $\Lambda-Q$ with Q a sum of positive roots. We therefore see that the Λ weight space is $[v]$ and all the other roots are of the form $\Lambda-Q$ with Q a sum of positive roots.

We note that since χ defines a character of T we must have Λ is real values on $\mathfrak{a}=i \operatorname{Lie}(T)$. Suppose that V^{U} contains another weight space, $\mu \neq \Lambda$. Let $h \in \mathfrak{a}$ be such that $\alpha(h)>0$ for all $\alpha \in \Phi^{+}$. Then since $\mu=\Lambda-Q$ with Q a sum of positive roots $\Lambda(h)>\mu(h)$ but Λ has a similar expression in terms of μ.

At this point we have proved

Theorem. Let (ρ, V) be an irreducible regular representation of G.

1. $\operatorname{dim} V^{U^{+}}=1$.
2. Let \wedge be the weight of \mathfrak{h} on $V^{U^{+}}$then every weight of V is of the form $\Lambda-Q$ with Q a sum of postive roots.
3. $V=V^{U^{+}} \oplus d \rho\left(\mathfrak{n}^{-}\right) V$.

The last assertion follows from

$$
\operatorname{span}_{\mathbb{C}} e^{d \rho\left(\mathfrak{n}^{-}\right)} V^{U^{+}}=V
$$

and 1 . and 2 .

We call Λ the highest weight of (ρ, V).

Corollary. Let (ρ, V) be a regular repesentation of G then V is irreducible if and only if $\operatorname{dim} V^{U^{+}}=1$.

Proof. If $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m}$ with V_{i} irreducible. Then 1. implies $m=\operatorname{dim} V^{U^{+}}$.

If χ is a regular character of H we extend χ to $B^{-}=$ $H U^{-}$by $\chi\left(U^{-}\right)=1$. Let F^{χ} the the space of all regular functions

$$
f: G \rightarrow \mathbb{C}
$$

such that

$$
f\left(b^{-} g\right)=\chi\left(b^{-}\right) f(g), b^{-} \in B^{-}, g \in G .
$$

We define an action of G on F^{χ} by $g f(x)=f(x g)$. We note that F^{χ} has a filtration by finite dimensional G-invariant subspaces. Consider $\left(F^{\chi}\right)^{U^{+}}$. We note that $U^{-} H U^{+}$is open in G (at least in the metric topology). Since G is connected this implies that if $f \in F^{\chi}$ then f is determined by its restriction to $U^{-} H U^{+}$. But if $f \in\left(F^{\chi}\right)^{U^{+}}$then

$$
f\left(u^{-} h u^{+}\right)=\chi(h) f(e) .
$$

Hence

$$
\operatorname{dim}\left(F^{\chi}\right)^{U^{+}} \leq 1
$$

Thus

Lemma. F^{χ} defines an regular representation of G that is either 0 or irreducible.

Let (ρ, V) be an irreducible representaion with highest weight Λ and let χ be the corresponding character of H. We define

$$
T: V \rightarrow F^{\chi}
$$

as follows. Let $p: V \rightarrow V / d \rho\left(\mathfrak{n}^{-}\right) V$ be the natural surjection. Set

$$
T(v)(g)=p(\rho(g) v) .
$$

Then

$$
\begin{gathered}
T(\rho(x) v)(g)=p(\rho(g) \rho(x) v)= \\
p(\rho(g x) v)=T(v)(g x)=(x T(v))(g) .
\end{gathered}
$$

Theorem. If (ρ, V) is an irreducible regular representation with highest weight Λ relative to B^{+}and if χ is the corresponing character of H then (ρ, V) is equivalent with F^{χ}.

Using TDS theory one can show that id Λ is a highest weight of an irreducible regular representation of G then

$$
\Lambda(\check{\alpha}) \in \mathbb{Z}_{\geq 0}
$$

for all $\alpha \in \Phi^{+}$. Such a χ will be called dominant.

Theorem. $F^{\chi} \neq 0$ if χ is dominant.

Example. $G=G L(n, \mathbb{C})$. We take $B=B_{n}$ the upper triangular elements of G and H to be the diagonal elements. Let ε_{i} the $i i$ component of an element of H. Then a regular character of H is a product

$$
\varepsilon_{1}^{m_{1}} \varepsilon_{2}^{m_{2}} \cdots \varepsilon_{n}^{m_{n}}
$$

with $m_{i} \in \mathbb{Z}$. The character is dominant if and only if

$$
m_{1} \geq m_{2} \geq \ldots \geq m_{n}
$$

This implies that
$\Lambda=\sum m_{i} \varepsilon_{i}=\sum_{i=1}^{n-1}\left(m_{i}-m_{i+1}\right)\left(\varepsilon_{1}+\ldots+\varepsilon_{i}\right)+m_{n}\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)$.
Consider $(\sigma, Z)=$
$\left(\otimes^{m_{1}-m_{2}} \mathbb{C}^{n}\right) \otimes\left(\otimes^{m_{2}-m_{3}} \wedge^{2} \mathbb{C}^{n}\right) \otimes \cdots \otimes\left(\otimes^{m_{n-1}-m_{n}} \wedge^{n-1} \mathbb{C}\right.$
If we set

$$
\rho(g)=\operatorname{det}(g)^{m_{n}} \sigma(g)
$$

and $V=Z$ then $V^{U^{+}}$has the weight χ with multiplicty
1.This proves the theorem for $G L(n, \mathbb{C})$.

