
Theorem. Let G be a reductive affi ne algebraic group.
Let B be a Borel subgroup of G and let K be a maximal
compact subgroup of G. Then G = KB.

Proof. We may assume that G ⊂ GL(n,C) is a sym-
metric subgroup. We take K = U(n) ∩ G as usual.
First consider B constucted from H as above such that
H ∩K is a maximal compact torus, T , of K. We can
assume that G ⊂ GL(n,C) and the elements of B are
upper trangular. We note

K ∩B = T.

The elements of

n =
⊕

α∈Φ,α(h)>0

gα

are nilpotent thus

U = exp n

is unipotent. Thus

B = HU.



Let

a = iLie(T ), A = exp a.

Then we assert that the map

K ×A× U → G

k, a, u 7−→ kau

is bijective. If

kau = k1a1u1

then

k−1
1 k ∈ AU.

But this implies that k−1
1 k has real posoitive eigenvalues.

Hence k = k1. similarly a = a1. Thus the map is
injective. Note if X ∈ Lie(K), h ∈ Lie(A) and u ∈
Lie(U) then

d

dtt=0
ketXaethuetY = kXau+ kahu+ kauY.

If this expression is 0 then

X = −aha−1 − auY (au)−1



which is upper triangular with real eigenvalues. Thus
X = 0. So

h = −uY u−1

since Y is nilpotent and h is semisimple h = 0. Note

dimAN = dimK, dimRG = 2 dimK

Indeed, if X ∈ gα then X∗ ∈ g−α. Also

Lie(K) = Lie(T )⊕ {X −X∗|X ∈ Lie(N)}.

Thus dimK = dimT + dimRLie(N) = dimAN .

But AN is closed in G so KAN is closed. Hence the
image is open and closed. Since K intersects every con-
nected component of G. G = KAN.

Suppose B1 is another Borel subgroup. Then there exists
g ∈ G with gBg−1 = B1. Thus writing

g = kb, k ∈ K

and b ∈ B then

kBk−1 = B1.



Hence

k−1KB1k = KB = G.

Exercises.1. Show that the theorem is true without the
condition the G is reductive.

2. Let G be a reductive algebraic group and let K be a
maximal compact subgroup. If B is a Borel subgroup of
G then K ∩B maximal compact torus in K.

Let G ⊂ GL(n,C) be a reductive affi ne algebraic group.
We set V = Cn and let H be a Cartan subgroup of G
which we can assume is contained in the diagonal sub-
group. We have seen that if NH(V ) is the nullcone for
the H—action then the null cone for the G action is

NG(V ) = GNH(V ).

Also if A ∈ Mn,m(Z) defines the isomorphism between(
C×

)m
and H

(z1, ..., zm) 7−→ diag(zA1, ..., zAn)



with Ai the i—th column of A. We saw that if b ∈ Zm
and Vb = {v = (v1, ..., vn)|vi = 0 if Aib ≤ 0} then if

M = {Vb|Vb of maximal dimension}

the irreducible components of NH(V ) are the elements
ofM.

Theorem. The subsets GVb are Z—closed in Cn.

Proof. We may assume that G is a symmetric subgroup
of GL(n,C) and that H is the Z—closure of a maximal
torus of K = G ∩ U(n). Let h ∈ Lie(H) be such that

ezh = (eA1bz, ..., eAnbz).

That is if

ϕb(z) = (eA1bz, ..., eAnbz)

Then

h = dϕb([1]).



We note that h ∈ a = iLie(T ). Let h1 = h, h2, ..., hm

be a basis of a and order the a∗ lexicographically realative
to

(λ(h1), ..., λ(hm)).

Then then the elements of the root system, Φ, such that
α > 0 form a system , Φ+, of positive roots. Decompose
V into eigenspaces for h so

V =
⊕

V λ

with

h|V λ = λI.

Vb =
∑
λ>0

V λ.

If α ∈ Φ+ and X ∈ gα and v ∈ V λ

hXv = (α(h) + λ)Xv

since a(h) ≥ 0 we see that Xv ∈ Vb. This implies that
if B is the Borel subgroup corresponding to Φ+ then

Lie(B)Vb ⊂ Vb.



Thus

GVb = KVb.

Which is closed in the metric topology. We define

Ψ : G× Vb → V

by

Ψ(g, v) = gv.

Then Ψ is a morphism of varieties. Hence the Z—closure
of the image of Ψ is the same as the metric closure.
Hence GVb is Z—closed.



Let G be an affi ne algebraic group. Let (ρ, V ) be a
regular representation of G.Then

ρ : G→ GL(V )

is a homomorpism of algebraic groups. We consider X ∈
Lie(G). Then

φ(t) = ρ(etX)

is a real analytic map of R to GL(V ). We note that

φ(s+ t) = φ(s)φ(t).

Let

Y =
d

dt|t=0
φ(t).

Then
d

dt
φ(t) = Y φ(t)

Then
d

dt
e−tY φ(t) = 0.

We set dρ(X) = Y .



Let G be a connected, reductive, affi ne algebraic group
and let H be a Cartan subgroup. Let B be a Borel
subgroup of G containig H and let U be the unipotent
radical of B. Let h = Lie(H). Then there is a system
of positive roots Φ+ such that

Lie(B) = h
⊕ ⊕

α∈Φ+

gα



If we chose −Φ+ we would have an opposite Borel sub-
group. We set

n± =
⊕

α∈±Φ+

gα.

One checks that if U± = exp(n±) then U−B is open in
G.

Let (ρ, V ) be an irreducible regular representation of G.
If v ∈ V and v 6= 0 then the span of ρ(Q)v is V for
any non-empty open subset, Q, of G. Let BV U

+
=

V U
+
thus there exists a regular homomorphism

χ : B → C×



and v 6= 0 in V U
+
such that

ρ(b)v = χ(b)v.

This implies that

SpanCρ(U−)v = V.

Let Λ be the correponding weight of the action of h on
V . If we expand

edρ(
∑
a∈Φ+ X−α)v

then the only weights that appear are Λ − Q with Q a
sum of positive roots. We therefore see that the Λ weight
space is [v] and all the other roots are of the form Λ−Q
with Q a sum of positive roots.

We note that since χ defines a character of T we must
have Λ is real values on a = iLie(T ).Suppose that V U

contains another weight space, µ 6= Λ. Let h ∈ a be such
that α(h) > 0 for all α ∈ Φ+. Then since µ = Λ − Q
with Q a sum of positive roots Λ(h) > µ(h) but Λ has
a similar expression in terms of µ.



At this point we have proved

Theorem. Let (ρ, V ) be an irreducible regular represen-
tation of G.

1. dimV U
+

= 1.

2. Let Λ be the weight of h on V U
+
then every weight

of V is of the form Λ−Q with Q a sum of postive roots.

3. V = V U
+ ⊕ dρ(n−)V .

The last assertion follows from

spanCe
dρ(n−)V U

+
= V

and 1. and 2.

We call Λ the highest weight of (ρ, V ).

Corollary. Let (ρ, V ) be a regular repesentation of G
then V is irreducible if and only if dimV U

+
= 1.



Proof. If V = V1 ⊕ V2 ⊕ ... ⊕ Vm with Vi irreducible.
Then 1. implies m = dimV U

+
.

If χ is a regular character of H we extend χ to B− =

HU− by χ(U−) = 1. Let Fχ the the space of all
regular functions

f : G→ C

such that

f(b−g) = χ(b−)f(g), b− ∈ B−, g ∈ G.

We define an action of G on Fχ by gf(x) = f(xg).
We note that Fχ has a filtration by finite dimensional
G—invariant subspaces. Consider (Fχ)U

+
. We note that

U−HU+ is open in G (at least in the metric topology).
Since G is connected this implies that if f ∈ Fχ then
f is determined by its restriction to U−HU+. But if
f ∈ (Fχ)U

+
then

f(u−hu+) = χ(h)f(e).



Hence

dim (Fχ)U
+
≤ 1.

Thus

Lemma. Fχ defines an regular representation of G that
is either 0 or irreducible.

Let (ρ, V ) be an irreducible representaion with highest
weight Λ and let χ be the corresponding character of H.
We define

T : V → Fχ

as follows. Let p : V → V/dρ(n−)V be the natural
surjection. Set

T (v)(g) = p(ρ(g)v).

Then

T (ρ(x)v)(g) = p(ρ(g)ρ(x)v) =

p(ρ(gx)v) = T (v)(gx) = (xT (v)) (g).



Theorem. If (ρ, V ) is an irreducible regular represen-
tation with highest weight Λ relative to B+ and if χ is
the corresponing character ofH then (ρ, V ) is equivalent
with Fχ.

Using TDS theory one can show that id Λ is a highest
weight of an irreducible regular representation of G then

Λ(α̌) ∈ Z≥0

for all α ∈ Φ+. Such a χ will be called dominant.

Theorem. Fχ 6= 0 if χ is dominant.

Example. G = GL(n,C). We take B = Bn the up-
per triangular elements of G and H to be the diagonal
elements. Let εi the ii component of an element of H.
Then a regular character of H is a product

ε
m1
1 ε

m2
2 · · · ε

mn
n

with mi ∈ Z. The character is dominant if and only if

m1 ≥ m2 ≥ ... ≥ mn.



This implies that

Λ =
∑

miεi =
n−1∑
i=1

(mi−mi+1)(ε1+...+εi)+mn(ε1+...+εn).

Consider (σ, Z) =(
⊗m1−m2Cn

)
⊗
(
⊗m2−m3 ∧2 Cn

)
⊗· · ·⊗

(
⊗mn−1−mn ∧n−1 Cn

)
If we set

ρ(g) = det(g)mnσ(g)

and V = Z then V U
+
has the weight χ with multiplicty

1.This proves the theorem for GL(n,C).


