Theorem. Let G be a reductive affine algebraic group.
Let B be a Borel subgroup of G and let K be a maximal
compact subgroup of G. Then G = K B.

Proof. We may assume that G C GL(n,C) is a sym-
metric subgroup. We take K = U(n) N G as usual.
First consider B constucted from H as above such that
H N K is a maximal compact torus, T, of K. We can
assume that G C GL(n,C) and the elements of B are
upper trangular. We note

KNnB="T.

The elements of

n= D ga

acd,a(h)>0

are nilpotent thus
U=expn

Is unipotent. Thus



et
a=1iLie(T), A = expa.
Then we assert that the map

KxAxU —d(d

k,a,u+— kau
is bijective. If
kau = kiaju
then
kytk € AU.

But this implies that kl_lk has real posoitive eigenvalues.
Hence £ = kj. similarly a = aj. Thus the map is
injective. Note if X € Lie(K),h € Lie(A) and u €
Lie(U) then

dtd ketX gethuet’ = kX au + kahu + kauY.
t=0

If this expression is O then

X = —aha"! — auY (aw)™!



which is upper triangular with real eigenvalues. Thus
X =0. So

h=—uYu 1
since Y is nilpotent and h is semisimple h = 0. Note
dim AN =dim K,dimp G = 2dim K
Indeed, if X € go then X™ € g_. Also
Lie(K) = Lie(T) ® {X — X™|X € Lie(N)}.
Thus dim K = dim T + dimp Lie(IN) = dim AN.

But AN is closed in G so K AN is closed. Hence the
image is open and closed. Since K intersects every con-
nected component of G. G = KAN.

Suppose Bj is another Borel subgroup. Then there exists
g € G with gBg—1 = B;. Thus writing

g=kbkeK
and b € B then
kBk~! = Bj.



Hence
k~1KBik = KB = G.

Exercises.1. Show that the theorem is true without the
condition the (G is reductive.

2. Let G be a reductive algebraic group and let K be a
maximal compact subgroup. If B is a Borel subgroup of
G then K N B maximal compact torus in K.

Let G C GL(n,C) be a reductive affine algebraic group.
We set V = C™ and let H be a Cartan subgroup of GG
which we can assume is contained in the diagonal sub-
group. We have seen that if N (V) is the nullcone for
the H—action then the null cone for the G action is

Na(V) = GNg(V).
Also if A € My, m(Z) defines the isomorphism between
m
((CX) and H

(21,5 2m) — dia,g(zAl, ey ZA”)



with A; the i—th column of A. We saw that if b € Z™
and V, = {v = (vq, ...,vn)|v; = 0 if A;b < 0} then if
M = {V}|V}, of maximal dimension}

the irreducible components of N (V') are the elements
of M.

Theorem. The subsets GV}, are Z—closed in C™.

Proof. We may assume that GG is a symmetric subgroup
of GL(n,C) and that H is the Z—closure of a maximal
torus of K = GNU(n). Let h € Lie(H) be such that

ezh _ (€A1b27 s eAnbz)‘

That is if

S%(Z) _ (eAle, ) eAan)

Then

h = dey([1]).



We note that h € a = iLie(T). Let hy = h, ho, ..., hm
be a basis of a and order the a* lexicographically realative
to

(A(h1), .- A(hm)).

Then then the elements of the root system, ®, such that
a > 0 form a system , ® T, of positive roots. Decompose
V into eigenspaces for h so

v=@pv
with

V=Y v
A>0

If « € d+ and X € go and v € VA
hXv = (a(h) + A) Xv

since a(h) > 0 we see that Xv € Vj. This implies that
if B is the Borel subgroup corresponding to ® then

L’ie(B)Vb C V})



Thus
GV, = KV,
Which is closed in the metric topology. We define
V:GxVy—=V
by

V(g,v) = gv.

Then W is a morphism of varieties. Hence the Z—closure

of the image of W is the same as the metric closure.
Hence GV} is Z—closed. m



Let G be an affine algebraic group. Let (p, V') be a
regular representation of G.Then

p:G— GL(V)

Is a homomorpism of algebraic groups. We consider X &
Lie(G). Then

B(t) = p(e'*)
is a real analytic map of R to GL(V'). We note that

¢(s +t) = ¢(s)o(t).

Let
d
—_— t).
i, 0
Then
Loty = Yol
dt N
Then
d 4ty
7 o(t) = 0.

We set dp(X) =Y.



Let G be a connected, reductive, affine algebraic group
and let H be a Cartan subgroup. Let B be a Borel
subgroup of G containig H and let U be the unipotent
radical of B. Let h = Lie(H). Then there is a system
of positive roots T such that

Lie(B) = h P ( b g&)

acdt

If we chose —® ™ we would have an opposite Borel sub-
group. We set

act+ot

One checks that if UT = exp(n®) then U~ B is open in
G.

Let (p, V') be an irreducible regular representation of G.

If v € V and v # 0 then the span of p(Q)v is V for
any non-empty open subset, (), of G. Let BVUT —
VU thus there exists a regular homomorphism

x : B — C*



and v # 0 in VU such that

p(b)v = x(b)v.
This implies that

Spancp(U )v = V.

Let A be the correponding weight of the action of b on
V. If we expand

edp(zagcb—F X—Oé),v

then the only weights that appear are A — ) with @) a
sum of positive roots. We therefore see that the A weight
space is [v] and all the other roots are of the form A — Q
with ) a sum of positive roots.

We note that since x defines a character of 1" we must
have A is real values on a = iLie(T).Suppose that VU
contains another weight space, u # A. Let h € a be such
that a(h) > 0 for all & € ®T. Then since p = A — Q
with @ a sum of positive roots A(h) > u(h) but A has
a similar expression in terms of u.



At this point we have proved

Theorem. Let (p, V') be an irreducible regular represen-
tation of G.

1. dimvU" =1.

2. Let A be the weight of h on VU™ then every weight
of V' is of the form A — Q@ with () a sum of postive roots.

3.V =VU" @dp(n)V.

The last assertion follows from
— +
spance®M VU — v

and 1. and 2.
We call A the highest weight of (p, V).

Corollary. Let (p, V) be a regular repesentation of G
then V is irreducible if and only if dim VU = 1.



Proof. f V =V & Vo P ... B Vi, with Vj irreducible.
Then 1. implies m = dimVU". =

If x is a regular character of H we extend x to B~ =
HU™ by x(U™) = 1. Let FX the the space of all

regular functions
f:G—C

such that

f(b7g) =x(7)f(9),b € B~ ,9g€G.

We define an action of G on FX by gf(x) = f(zg).
We note that F'X has a filtration by finite dimensional
GG—invariant subspaces. Consider (FX)U+. We note that
U~HUT is open in G (at least in the metric topology).
Since GG is connected this implies that if f € F'X then
f is determined by its restriction to U HU ™. But if
f e (FX)U" then

f(u™hu™) = x(h)f(e).



Hence

dim (F)U" < 1.

Thus

Lemma. F'X defines an regular representation of G that
is either O or irreducible.

Let (p, V) be an irreducible representaion with highest
weight A and let x be the corresponding character of H.
We define

T:V — FX

as follows. Let p : V. — V/dp(n™)V be the natural
surjection. Set

T'(v)(g) = r(p(g)v).
Then

T(p(x)v)(g) = p(p(g)p(z)v) =

plp(gz)v) = T(v)(gz) = («T'(v)) (9).



Theorem. If (p, V) is an irreducible regular represen-
tation with highest weight A relative to B™ and if x is

the corresponing character of H then (p, V') is equivalent
with F'X.

Using TDS theory one can show that id A is a highest
weight of an irreducible regular representation of G then

/\(é) c ZZO
for all & € ®T. Such a x will be called dominant.

Theorem. F'X # 0 if x is dominant.

Example. G = GL(n,C). We take B = By, the up-
per triangular elements of G and H to be the diagonal
elements. Let €; the 22 component of an element of H.
Then a regular character of H is a product

mi_my m
81 €2 “ e 67’1, n
with m; € Z. The character is dominant if and only if

mp 2> mp 2 ... 2 Mn.



This implies that

n—1

N = Zmiez- — Z (mi—mi+1)(€1—|—...—|—€7;)—|—mn(€1—|—...—|—€n).
1=1

Consider (0, 72) =
(®m1—mzcn)®<®m2—m3 /\2 (Cn)@. . .®(®mn_1—mn /\n—l ©
If we set

p(g) = det(g)""o(g)

and V = Z then VU has the weight x with multiplicty
1.This proves the theorem for GL(n, C).



