Name:
YID:

1. True or false? If true, give an algorithm. If false, what is the difficulty in constructing an algorithm? Let R, S, R_{i}, \ldots be subsets of Σ^{*} where $\Sigma^{*}=\{0,1\}$ (or subsets of \mathbb{N}). Let $f: \Sigma^{*} \rightarrow \Sigma^{*}($ or $f: \mathbb{N} \rightarrow \mathbb{N})$.
(It is OK use either semidecidability or computable enumerability. Typically it easier to use computable enumerability for hypotheses, and to use semidecidability for conclusions.)
(a) If R and S are c.e. (computably enumerable), then $R \cup S$ is c.e.

$$
\mathbb{K}^{R_{n}-\begin{array}{c}
R \\
\text { prockilel. }
\end{array} .}
$$

(b) If R and S are c.e. (computably enumerable), then $R \cap S$ is c.e. \leftarrow Some
(c) If R and S are ce. (computable enumerable), then $R \backslash S$ is ce.
(d) If f is computable and R is decidable, is $\{w: R(f(w)\}$ decidable?
$S:=$

