Name:

PID:

1. True or false? If true, give an algorithm. If false, what is the difficulty in constructing an algorithm? Let R, S, R_i, \ldots be subsets of Σ^* where $\Sigma^* = \{0, 1\}$ (or subsets of \mathbb{N}). Let $f: \Sigma^* \to \Sigma^* \text{ (or } f: \mathbb{N} \to \mathbb{N}).$

(It is OK use either semidecidability or computable enumerability. Typically it easier to (a) If R and S are c.e. (computably enumerable), then $R \cup S$ is c.e. (b) If R and S are c.e. (computably enumerable), then $R \cap S$ is c.e. (c) If R and S are c.e. (computably enumerable), then $R \cap S$ is c.e. (d) If f is computable and R is decideble. $S = \frac{S + R}{C}$ use computable enumerability for hypotheses, and to use semidecidability for conclusions.)

- (d) If f is computable and R is decidable, is $\{w : R(f(w))\}$ decidable?
- (e) If f is computable and R is c.e., is $\{w : R(f(w)\} \text{ c.e.}\}$
- (i+W (f) If each R_i is decidable, then $\bigcup_i \{i\} \times R_i$ is c.e.

("No")

Rn5