
On Model Theory
for Intuitionistic Bounded Arithmetic

with Applications to Independence Results

Samuel R. Buss∗

Abstract

IPV+ is IPV (which is essentially IS1
2 ) with polynomial-induction

on Σb+
1 -formulas disjoined with arbitrary formulas in which the

induction variable does not occur. This paper proves that IPV+ is
sound and complete with respect to Kripke structures in which every
world is a model of CPV (essentially S1

2 ). Thus IPV is sound with
respect to such structures. In this setting, this is a strengthening
of the usual completeness and soundness theorems for first-order
intuitionistic theories. Using Kripke structures a conservation result
is proved for PV1 over IPV .

Cook-Urquhart and Kraj́ıček-Pudlák have proved independence
results stating that it is consistent with IPV and PV that extended
Frege systems are super. As an application of Kripke models for IPV ,
we give a proof of a strengthening of Cook and Urquhart’s theorem
using the model-theoretic construction of Kraj́ıček and Pudlák.

1 Introduction

An equational theory PV of polynomial time functions was introduced by
Cook [4]; a classical first-order theory S1

2 for polynomial time computation
was developed in Buss [1]; and intuitionistic theories IS1

2 and IPV for
polynomial time computation have been discussed by Buss [2] and by Cook
and Urquhart [5]. This paper discusses (a) model theory for the intuitionistic
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fragments IPV and IPV+ of Bounded Arithmetic (IPV is essentially IS1
2

enlarged to the language of PV) and (b) the relationship between two recent
independence results for IPV and CPV . The theories IPV and CPV have
the same axioms but are intuitionistic and classical, respectively. Our model
theory for IPV and IPV+ is a strengthening of the usual Kripke semantics
for intuitionistic first-order logic: we consider Kripke structures in which each
“world” is a classical model of CPV . The use of these so-called CPV-normal
Kripke structures is in contrast to the usual Kripke semantics which instead
require each world to intuitionistically satisfy (or “force”) the axioms; the
worlds of a CPV-normal Kripke structure must classically satisfy the axioms.
The main new results of this paper establish the completeness and soundness
of IPV+ with respect to CPV-normal Kripke structures.

The outline of this paper is as follows: in section 2, the definitions of PV1 ,
IPV and CPV are reviewed and the theory IPV+ is introduced; in section 3,
we develop model theory for IPV and IPV+ and prove the soundness of these
theories with respect to CPV-normal Kripke structures; in section 4 we apply
the usual intuitionistic completeness theorem to prove a conservation result of
PV1 over IPV . Section 5 contains the completeness theorem for IPV+ with
respect to CPV-normal Kripke models. In section 6, we apply the soundness
theorem to prove a strengthening of Cook and Urquhart’s independence result
for IPV and show that this strengthened result implies Kraj́ıček and Pudlák’s
independence result.

2 The Feasible Theories

Cook [4] defined an equational theory PV for polynomial time computation.
Buss [1] introduced a first-order theory S1

2 with proof-theoretic strength
corresponding to polynomial time computation and in which precisely the
polynomial time functions could be Σb

1 -defined. There is a very close
connection between S1

2 and PV : let S1
2(PV) (also called CPV) be the theory

defined conservatively over S1
2 by adding function symbols for polynomial

time functions and adding defining equations (universal axioms) for the new
function symbols; then S1

2(PV) is conservative over PV [1].
Buss [2] defined an intuitionistic theory IS1

2 for polynomial time compu-
tation and Cook and Urquhart [5] gave similarly feasible, intuitionistic proof
systems PVω and IPVω for feasible, higher-type functionals.

This paper will deal exclusively with the following theories, which are
defined in more detail in the next paragraphs: (1) PV1 is PV conservatively
extended to first-order classical logic—PV1 is defined by Kraj́ıček-Pudlák-
Takeuti [12] and should not be confused Cook’s propositional expansion PV 1
of PV [4], (2) IPV is an intuitionistic theory in the language of PV and is
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essentially equivalent to IS1
2 , (3) CPV is S1

2(PV), and (4) the intuitionistic
theory IPV+ is an extension of IPV and is defined below. We now review the
definitions of these four theories—it should be noted that our definitions are
based on Bounded Arithmetic and not all of them are the historical definitions.

Recall that S1
2 is a classical theory of arithmetic with language 0, S , +,

· , b1
2
xc , |x| , # and ≤ where |x| = dlog2(x + 1)e is the length of the binary

representation of x and x#y = 2|x|·|y| . A bounded quantifier is of the form
(Qx ≤ t) where t is a term not involving x ; a sharply bounded quantifier is
one of the form (Qx ≤ |t|). A bounded formula is a first-order formula in
which every quantifier is bounded. The bounded formulas are classified in a
syntactic hierarchy Σb

i , Πb
i by counting alternations of bounded quantifiers,

ignoring sharply bounded quantifiers. There is a close connection between this
hierarchy of bounded formulas and the polynomial time hierarchy; namely, a
set of integers is in the class Σp

i of the polynomial time hierarchy if and only if
it is definable by a Σb

i -formula. The theory S1
2 is axiomatized by some purely

universal formulas defining basic properties of the non-logical symbols and by
PIND (polynomial induction) on Σb

1 -formulas:

A(0) ∧ (∀x)(A(b1
2
xc) ⊃ A(x)) ⊃ (∀x)A(x)

for A any Σb
1 -formula. A function f is Σb

1 -definable in S1
2 if and only if it is

provably total in S1
2 with a Σb

1 -formula defining the graph of f . In [1] it is
shown that a function is Σb

1 -definable in S1
2 if and only if it is polynomial time

computable. Let S1
2(PV) denote the conservative extension of S1

2 obtained
by adjoining a new function symbol for each polynomial time (Σb

1 -defined)
function. These new function symbols may be used freely in terms in induction
axioms. Another name for the theory S1

2(PV) is CPV and we shall use the
latter name for most of this paper. We use Σb

1(PV) and Πb
1(PV) to denote

hierarchy of classes of bounded formulas in the language of CPV .
PV is the equational theory consisting of all (intuitionistic) sequents of

atomic formulas provable in S1
2(PV ), i.e., PV is the theory containing exactly

those formulas of the form

(r1 = s1 ∧ · · · ∧ rk = sk) ⊃ t1 = t2

which are consequences of S1
2(PV ). PV1 is the classical, first-order thoery ax-

iomatized by formulas in PV and is conservative over PV . Equivalently, PV1

is the theory axiomatized by the ∆b
1(PV)-consequences of S1

2(PV ) (where
∆b

1(PV ) means provably equivalent to a Σb
1(PV)- and to a Πb

1(PV)-formula).
Since S1

2(PV) has a function symbol for each polynomial time function
symbol, the use of sharply bounded quantifiers is not necessary; in particular,
every Σb

1(PV)-formula is equivalent to a formula of the form

(∃x ≤ t)(r = s).
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Hence CPV = S1
2(PV) may be axiomatized by PIND on formulas in this

latter form.

IS1
2 is an intuitionistic theory of arithmetic. A hereditarily Σb

1 -formula,
or HΣb

1 -formula, is defined to be a formula in which every subformula is
a Σb

1 -formula. IS1
2 is axiomatized like S1

2 except with PIND restricted to
HΣb

1 -formulas. Any function definable in IS1
2 is polynomial time computable

and, conversely, every polynomial time computable function is HΣb
1 -definable

in IS1
2 . Let IPV = IS1

2(PV) be the conservative extension of IS1
2 obtained

by adjoining every polynomial time function with a HΣb
1 -defining equation.

Note IPV and CPV have the same language.
An alternative definition of IPV is that it is the intuitionistic theory

axiomatized by PV plus PIND for formulas of the form (∃x ≤ t)(r = s). In
this way, IPV and CPV can be taken to have precisely the same axioms; the
former is intuitionistic and the latter is classical. The theories IPV and IS1

2

have the law of the excluded middle for atomic formulas, that is to say, the
law of the excluded middle holds for polynomial time computable predicates.
This restricted law of excluded middle also applies to the theory IPV+ defined
next.

Definition IPV+ is the intuitionistic theory which includes PV and has the
PIND axioms for formulas ψ(b,~c) of the form

ϕ(~c) ∨ (∃x ≤ t(b,~c))[r(x, b,~c) = s(x, b,~c)]

where r , s and t are terms and ϕ(~c) is an arbitrary formula in which the
variable b does not occur. The induction axiom is with respect to the variable
b and is:

ψ(0,~c) ∧ (∀z)(ψ(b1
2
zc,~c) ⊃ ψ(z,~c)) ⊃ (∀z)ψ(z,~c).

Note that IPV+ ⊇ IPV since ϕ can be taken to be 0 = 1, for instance.

In [3] a theory IS1+
2 was defined by allowing PIND on HΣb∗

1 -formulas
where HΣb∗

1 -formulas are HΣb
1 -formulas disjoined with an arbitrary formula

in which the induction variable does not occur. It is readily checked that
IPV+ is equivalent to the theory IS1+

2 extended to the language of PV1 by
introducing symbols for all polynomial functions via HΣb

1 -definitions.
We use `c and `i for classical and intuitionistic provability, respectively;

thus we shall (redundantly) write CPV `c ϕ and IPV `i ϕ and IPV+ `i ϕ .
Whenever we write Γ `i ϕ or Γ `c ϕ , we require that Γ be a set of sentences;†

however, ϕ may be a formula and may also involve constant symbols not
occuring in any formula in Γ.

†By convention, a first-order theory is identified with the set of sentences provable in
that theory.
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Definition A positive formula is one in which no negation signs (¬) and
no implication symbols (⊃) appear. If θ is a positive formula and ϕ is an
arbitrary formula, then θϕ is the formula obtained from θ by replacing every
atomic subformula χ of θ by (χ ∨ ϕ). We do not allow free variables in ϕ
to become bound in θϕ : this can be done either by using the conventions of
the sequent calculus which has distinct sets of free and bound variables or by
renaming bound variables in θ to be distinct from the free variables in ϕ .

Theorem 1 Let θ be a positive formula. If CPV `c ¬θ then IPV `i ¬θ .

Theorem 2 Let θ be a positive formula and ϕ be an arbitrary formula. If
CPV `c ¬θ then IPV+ `i θϕ ⊃ ϕ.

These theorems follow readily from the corresponding facts for S1
2 and

IS1+
2 which are proved in Buss [3]. Theorem 2 can be obtained as a corollary

to Theorem 1 via Lemma 3.5.3(a) of [15].

3 Kripke structures for intuitionistic logic

A classical model for PV1 or CPV is defined as usual for classical first-
order logic using Tarskian semantics. The corresponding semantic notion
for intuitionistic first-order logic is that of a Kripke model. We briefly define
Kripke models for IPV and IPV+ , a slightly more general definition of Kripke
models can be found in the textbook by Troelstra and van Dalen [15]. (Kripke
models for IPV are slightly simpler than in the general case since IPV has
the law of the excluded middle for atomic formulas.)

A Kripke model K for the language of IPV is an ordered pair ({Mi}i∈I ,4)
where {Mi}i∈I is a set of (not necessarily distinct) classical structures for
the language of IPV indexed by elements of the set I and where 4 is a
reflexive and transitive binary relation on {Mi}i∈I .‡ Furthermore, whenever
Mi 4 Mj then Mi is a substructure of Mj in that Mi is obtainable from
Mj by restricting functions and predicates to the domain |Mi| of Mi . The
Mi ’s are called worlds.

If ϕ is a formula and if ~c ∈ |Mi| then we define Mi |= ϕ(~c), Mi classically
satisfies ϕ(~c), as usual, ignoring the rest of the worlds in the Kripke structure.
To define the intuitionistic semantics, Mi ° ϕ(~c), Mi forces ϕ(~c), is defined
inductively on the complexity of ϕ as follows:§

‡Strictly speaking,4 should be a relation on I since the Mi ’s may not be distinct.
However, we follow standard usage and write 4 as a relation on worlds.

§A more proper notation would be (K,Mi) ° ϕ(~c) or even (K, i) ° ϕ(~c) but we use
the simpler notation Mi ° ϕ(~c) when K is specified by the context.
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(1) If ϕ is atomic, Mi ° ϕ if and only if Mi |= ϕ .

(2) If ϕ is ψ ∧ χ then Mi ° ϕ if and only if Mi ° ψ and Mi ° χ .

(3) If ϕ is ψ ∨ χ then Mi ° ϕ if and only if Mi ° ψ or Mi ° χ .

(4) If ϕ is ψ ⊃ χ then Mi ° ϕ if and only if for all Mj < Mi , if Mj ° ψ
then Mj ° χ .

(5) If ϕ is ¬ψ then Mi ° ϕ if and only if for all Mj < Mi , Mj 1 ψ .
Alternatively one may define ¬ψ to mean ψ ⊃ ⊥ where ⊥ is always
false (not forced).

(6) If ϕ is (∃x)ψ(x) then Mi ° ϕ if and only if there is some b ∈ |Mi| such
that Mi ° ψ(b).

(7) If ϕ is (∀x)ψ(x) then Mi ° ϕ if and only if for all Mj < Mi and all
b ∈ |Mj| , Mj ° ϕ(b).

An immediate consequence of the definition of forcing is that if Mi ° ϕ and
Mi 4 Mj then Mj ° ϕ ; this is proved by induction on the complexity of ϕ .
Also, the law of the excluded middle for atomic formulas will be forced at every
world Mi because we required Mi to be a substructure of Mj whenever
Mi 4 Mj

¶. In other words, both truth and falsity of atomic formulas
are preserved in “reachable” worlds. Consequently, the law of the excluded
middle for quantifier-free formulas is also forced at each world. Hence, if ϕ is
quantifier-free, then Mi ° ϕ if and only if Mi ² ϕ .

A formula ϕ(~x) is valid in K , denoted K ° ϕ(~x), if and only if for all
worlds Mi and all ~c ∈ |Mi| , Mi ° ϕ(~c). A set of formulas Γ is valid in K ,
K ° Γ, if and only if every formula in Γ is valid in K . Γ ° ϕ , ϕ is a Kripke
consequence of Γ, if and only if for every Kripke structure K , if K ° Γ then
K ° ϕ . A Kripke model for IPV is one in which the axioms of IPV are valid.
Likewise, a Kripke model for IPV+ is one in which the axioms of IPV+ are
valid.

The usual strong soundness and completeness theorems for intuitionistic
logic state that for any set of sentences Γ and any sentence ϕ , Γ ° ϕ if and
only if Γ `i ϕ (see Troelstra and van Dalen [15] for a proof). Hence validity in
Kripke models corresponds precisely to intuitionistic provability. A countable
Kripke model is one in which there are countably many worlds each with
a countable domain. The usual strong completeness theorem further states
that if Γ is a countable set of formulas and Γ 0i ψ then there is a countable
Kripke structure in which Γ is valid but ψ is not.

¶This differs from the usual definition of Kripke models for intuitionistic logic.
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The usual strong soundness and completeness theorems give a semantics
for the theory IPV in that for any formula ϕ , IPV `i ϕ if and only if for
all K , if K ° IPV then K ° ϕ . It is, however, a little difficult to interpret
directly what it means for K ° IPV to hold; and we feel that it is more
natural to consider CPV-normal Kripke structures instead:

Definition A Kripke model K = ({Mi}i∈I ,4) is CPV-normal if and only
if for all i ∈ I , the world Mi is a classical model of CPV .

Theorem 3 (Soundness of IPV and IPV+ for CPV-normal Kripke models.)

(a) If K is a CPV-normal Kripke structure then K ° IPV. Hence for all ϕ,
if IPV `i ϕ then K ° ϕ.

(b) If K is a CPV-normal Kripke structure then K ° IPV+ . Hence for all ϕ,
if IPV+ `i ϕ then K ° ϕ.

The converse to Theorem 3(b) is proved in section 5 below.

Proof It will clearly suffice to prove only (b) since IPV+ ⊇ IPV . Suppose
K is a CPV-normal Kripke structure. Since every world Mi is a classical
model of CPV and hence of PV1 , it follows immediately from the definition
for forcing and from the fact that PV1 is axiomatized by universal formulas
that K ° PV1 . So it will suffice to show that the PIND axioms of IPV+ are
valid in K . Let Mi be a world and consider a formula ϕ(b,~c) of the form
ψ(~c) ∨ χ(b,~c) where χ(b,~c) is a formula of the form

(∃x ≤ t(b,~c))(r(x, b,~c) = s(x, b,~c))

and where b is a variable, ~c ∈ |Mi| and ψ(~c) is an arbitrary formula not
involving b . We must show that

Mi ° ϕ(0,~c) ∧ (∀z)(ϕ(b1
2
zc,~c) ⊃ ϕ(z,~c)) ⊃ (∀x)ϕ(x,~c).

To prove this, suppose that Mi 4 Mj and that

Mj ° ϕ(0,~c) ∧ (∀z)(ϕ(b1
2
zc,~c) ⊃ ϕ(z,~c));

we must show Mj ° (∀x)ϕ(x,~c). If Mj ° ψ(~c) then this is clear, so suppose
Mj 1 ψ(~c). Note that for any b ∈ |Mj| , Mj ° χ(b,~c) if and only if
Mj ² χ(b,~c). Hence, since Mj ° ϕ(0,~c) and Mj 1 ψ(~c), Mj ² χ(0,~c).
And similarly, by reflexivity of 4 , for each b ∈ |Mj| , if Mj ² χ(b1

2
bc,~c) then

Mj ² χ(b,~c). In other words, Mj ² (∀z)(χ(b1
2
zc,~c) ⊃ χ(z,~c)). But now

since Mj ² CPV and CPV has PIND for χ(b,~c), Mj ² (∀z)χ(z,~c).
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We have established that either Mj ° χ(b,~c) for every b ∈ |Mj| or
Mj ° ψ(~c). The same reasoning applies to any world Mk < Mi and in
particular, for any Mk < Mj , either Mk ° χ(b,~c) for every b ∈ |Mk| or
Mk ° ψ(~c). Hence by the definition of forcing, Mj ° (∀z)ϕ(z,~c).

We have shown that if K is a CPV-normal Kripke model then every axiom
of IPV+ is valid in K . It now follows by the usual soundness theorem for
intuitionistic logic that every intuitionistic consequence of IPV+ is valid in K .
Q.E.D. Theorem 3

4 A conservation theorem

The usual Gödel-Kolmogorov “negative translations” don’t seem to apply
to IPV since we don’t know whether the negative translations of the PIND
axioms of IPV are consequences of IPV . However, the usual completeness
theorem for Kripke models of IPV does allow us to prove the following
substitute:

Theorem 4 Let ϕ be a quantifier-free formula.

(a) If ψ is a sentence of the form ¬(∃x)(∀y)¬(∀z)ϕ and PV1 `c ψ then
IPV `i ψ .

(b) If ψ is a sentence of the form

¬(∃x1)(∀y1)¬¬(∃x2)(∀y2)¬¬ · · · ¬¬(∃xr)(∀yr)ϕ

and PV1 `c ψ then IPV `i ψ .

This theorem is a statement about how strong IPV is; although IPV has
stronger axioms than PV1 , it uses intuitionistic logic instead of classical logic
so it makes sense to establish a conservation result for PV1 over IPV . Of
course, at least some of the negation signs in ψ are required for Theorem 4
to be true; for example, PV1 proves (∀x)(∃y)(∀z)(|z| = x ⊃ |y| = x) but
IPV cannot prove this since otherwise, by the polynomial time realizability
of IPV-provable formulas, y would be polynomial time computable in terms
of x , which is false since y must be greater than or equal to 2x−1 .

Proof Let’s prove (1) first. Suppose IPV 0i ¬(∃x)(∀y)¬(∀z)ϕ ; we must
show PV1 0c (∀x)(∃y)(∀z)ϕ . By the usual completeness theorem for Kripke
models for IPV , there is a Kripke model K = ({Mi}i∈I ,4) of IPV such that
K 1 ¬(∃x)(∀y)¬(∀z)ϕ and such that each Mi is countable. Hence there is
a world, say M0 such that M0 ° (∃x)(∀y)¬(∀z)ϕ . Our stategy is to find
a chain of worlds M0 4 M1 4 M2 4 · · · such that their union is a model
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of PV1 and of (∃x)(∀y)(∃z)¬ϕ . First of all note that each Mi ² PV1 since
IPV includes the (purely universal) axioms of PV1 . Hence

⋃
i=0,1,2,··· Mi is a

model of PV1 , again because PV1 has universal axioms. Let x0 ∈ |M0| be
such that M0 ° (∀y)¬(∀z)ϕ(x0, y, z). It will suffice to find the Mi ’s so that(⋃

i∈N Mi

)
² (∀y)(∃z)¬ϕ(x0, y, z). Suppose we have already picked worlds

M0, . . . ,Mk−1 and that yk ∈ |Mk−1| ; we pick Mk < Mk−1 so that for
some zk ∈ |Mk| , Mk ° ¬ϕ(x0, yk, zk), or equivalently, Mk ² ¬ϕ(x0, yk, zk).
Such an Mk and zk must exist since M0 ° (∀y)¬(∀z)ϕ(x0, yk, zk) and
M0 4 Mk−1 and thus Mk−1 1 (∀z)ϕ(x0, yk, z). Since each Mi is countable,
we may choose the yk ’s in the right order so that y1, y2, . . . enumerates every
element in the union of the Mi ’s. Thus for every y in the union

⋃
i∈N Mi

there is a z such that ¬ϕ(x0, y, z) holds. That gives a model of PV1 in which
ψ is false, proving (1).

The proof of (2) is similar but with more complicated bookkeeping. Let K
be a Kripke model of IPV such that ψ is not valid in K . Here if M0, . . .Mk−1

have already been chosen and if xk,1, . . . , xk,i−1 and yk,1, . . . , yk,i−1 are in
Mk−1 so that

Mk−1 ° ¬¬(∃xi)(∀yi) · · · ¬¬(∃xr)(∀yr)

ϕ(xk,1, . . . , xk,i−1, xi, . . . , xr, yk,1, . . . , yk,i−1, yi, . . . , yr)

then we may pick Mk < Mk−1 and xk,i ∈ |Mk| so that

Mk ° (∀yi) · · · ¬¬(∃xr)(∀yr)

ϕ(xk,1, . . . , xk,i, xi+1, . . . , xr, yk,1, . . . , yk,i−1, yi, . . . , yr)

By appropriately diagonalizing through the countably many choices for i and
~x and ~y we may ensure that

⋃
k∈N Mk is a model of PV1 ∪ {¬ψ} . We omit

the details. 2

5 A completeness theorem for IPV
+

We next establish the main theorem of this paper.

Theorem 5 (Completeness Theorem for IPV+ with respect to CPV-normal
Kripke models)

Let ϕ be any sentence. If IPV+ 0i ϕ then there is a CPV-normal Kripke
model K such that K ° IPV+ and K 1 ϕ.

Note that the conclusion “K ° IPV+” is superfluous as this is already a
consequence of Theorem 3. The proof of this theorem will proceed along the
lines of the proof of the usual strong completeness theorem for intuitionistic
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logic as exposited in section 2.6 of Troelstra and van Dalen [15]. The new
ingredient and the most difficult part in our proof is Lemma 7 below which is
needed to ensure that the Kripke model is CPV-normal.

Although we shall not prove it here, Theorem 5 can be strengthened to
require K to be countable.

Definition Let C be a set of constant symbols. A C -formula or C -sentence
is a formula or sentence in the language of PV1 plus constant symbols in C .
All sets of constants are presumed to be countable.

Definition A set of C -sentences Γ is C -saturated provided the following
hold:

(1) Γ is intuitionistically consistent,

(2) For all C -sentences ϕ and ψ , if Γ `i ϕ ∨ ψ then Γ `i ϕ or Γ `i ψ .

(3) For all C -sentences (∃x)ϕ(x), if Γ `i (∃x)ϕ(x) then for some c ∈ C ,
Γ `i ϕ(c).

The next, well-known lemma shows that C -saturated sets can be readily
constructed.

Lemma 6 Let Γ be a set of sentences and ϕ be a sentence such that Γ 0i ϕ.
If C is a set of constant symbols containing all constants in Γ plus countably
infinitely many new constant symbols, then there is a C -saturated set Γ∗

containing Γ such that Γ∗ 0i ϕ.

The proof of Lemma 6 is quite simple, merely enumerate with repetitions
all C -sentences which either begin with an existential quantifier or are a
disjunction and then form Γ∗ by adding new sentences to Γ so that (2) and (3)
of the definition of C -saturated are satisfied. This can be done so that ϕ is
still not an intuitionistic consequence. (For a full proof, refer to lemma 2.6.3
of [15].) In the proof of the usual completeness theorem for Kripke models
and intuitionistic logic, the C -saturated sets of sentences constructed with
Lemma 6 specify worlds in a canonical Kripke model. However, Lemma 6
is not adequate for the proof of Theorem 5 and Lemma 7 below is needed
instead.

A C -saturated set Γ defines a world with domain C in which an atomic
formula ϕ is forced if and only Γ `i ϕ . For the proof of Theorem 5, we shall
only consider sets Γ which contain IPV+ and hence imply the law of the
excluded middle for atomic formulas; the C -saturation of Γ thus implies that
for any atomic C -sentence ϕ , either Γ `i ϕ or Γ `i ¬ϕ . Thus Γ specifies a
classical structure MΓ defined as follows:
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Definition Suppose Γ ⊃ IPV , Γ is a C -saturated set, and for all distinct
c, c′ ∈ C , Γ `i c 6= c′ . Then MΓ is the classical structure in the language of
PV plus constant symbols in C such that the domain of MΓ is C itself (so
cMΓ = c) and such that for every atomic C -sentence ϕ , MΓ ² ϕ if and only
if Γ `i ϕ .

It is straightforward to check that MΓ is a classical structure: the only thing
to check is that the equality axioms hold (it suffices to do this for atomic
formulas). Note the equality relation =MΓ in MΓ is true equality in that
M ° c = c′ if and only if c = c′ because of the restriction that Γ `i c 6= c′ if
c and c′ are distinct. This restriction is not very onerous as we will be able to
make it hold by eliminating duplicate constant symbols.‖

In order to prove Theorem 5 we must construct sets Γ so that the
structures MΓ are classical models of CPV ; Lemma 7 is the crucial tool
for this:

Lemma 7 Suppose Γ is a set of C -sentences, ϕ is a C -sentence and
Γ ⊇ IPV+ . Further suppose Γ 0i ϕ and Γ `i c 6= c′ for distinct c, c′ ∈ C .
Then there is a set Γ∗ of sentences and a set C∗ of constants such that

(a) Γ∗ ⊃ Γ

(b) Γ∗ is C∗ -saturated

(c) Γ∗ 0i ϕ

(d) Γ∗ `i c 6= c′ for all distinct c, c′ ∈ C∗

(e) MΓ∗ ² CPV.

Proof Γ∗ and MΓ∗ are constructed by a technique similar to Henkin’s
proof of Gödel’s completeness theorem. We pick C+ to be C plus countably
infinitely many new constant symbols and enumerate the C+ formulas as
α1, α2, α3, . . . with each C+ -formula appearing infinitely many times in
the enumeration. We shall form classically consistent sets of sentences
Π0, Π1, Π2, . . . so that Π0 ⊇ CPV and so that, for all k , Πk ⊇ Πk−1 and
either αk ∈ Πk or ¬αk ∈ Πk . Furthermore, if αk = (∃x)β(x) and αk ∈ Πk−1

then for some constant symbol c , Πk `c β(c). Thus, as usual in a Henkin-style
model construction, the union of the Πk ’s will specify a classical model M of
CPV with domain formed of equivalence classes of constants in C+ . This M
will become MΓ∗ after elimination of duplicate constant names.

‖If we did not adopt this restiction, then the domain of MΓ would have to be
equivalence classes of constants in C instead of just the set C . But this would cause some
inconveniences later on in the definition of the canonical CPV -normal Kripke structure.
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While defining the sets Πk we also define sets Π′
k , Γk , Ck and C ′

k so that
Πk−1 ⊆ Π′

k ⊆ Πk and
Γ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · ·

and such that C0 is C , Ck ⊇ C ′
k ⊇ Ck−1 , and C+ =

⋃
k Ck . Γ∗ will be the

union of the Γi ’s after elimination of duplicate constant names.

Definition Let D be a set of constants and Λ be a set of D -sentences. Then
Th+ϕ[Λ, D] is the set

{θ : θ is a positive D -sentence and Λ `i θϕ}
For us, the formula ϕ is fixed, so we also denote this set by Th+[Λ, D] . If
∆ is a classical theory then the [Λ, D]-closure of ∆ is the classical theory
axiomatized by ∆ ∪ Th+[Λ, D] .

Definition We define Γ0 to be Γ, C0 to be C and Π0 to be the [Γ, C]-closure
of CPV . For k > 0, Πk , Π′

k , Γk , Ck and C ′
k are inductively defined by:

(1) Suppose αk ∈ Πk and αk is of the form (∃x)βk(x). Then C ′
k is Ck−1

plus an additional new constant symbol c ∈ C+ \ Ck−1 . And Π′
k is the

[Γk−1, C
′
k]-closure of Πk−1 ∪ {βk(c)} .

(2) If Case (1) does not apply then C ′
k is Ck−1 plus the constant symbols

in αk and:

(a) Let Π′
k be Πk−1 ∪ {αk} ∪ Th+[Γk−1, C

′
k] if this theory is classically

consistent,

(b) Otherwise, let Π′
k be Πk−1 ∪ {¬αk} ∪ Th+[Γk−1, C

′
k]

(3) If αk is of the form (∃x)βk(x) and Γk−1 `i αk then Ck is C ′
k ∪ {d} where

d is a new constant symbol from C+ \C ′
k , Γk is Γk−1 ∪ {βk(d)} and Πk

is the [Γk, Ck]-closure of Π′
k .

(4) If αk is of the form βk ∨ γk and Γk−1 `i αk then Ck is C ′
k and:

(a) If the [Γk−1 ∪ {βk}, Ck]-closure of Π′
k is classically consistent then

Πk defined to be equal to this theory and Γk is Γk−1 ∪ {βk} .

(b) Otherwise, Γk is Γk−1 ∪ {γk} and Πk is the [Γk, Ck]-closure of Π′
k .

Define Πω =
⋃

k Πk and Γk =
⋃

k Γk . Note C+ =
⋃

k Ck .

The point of cases (1) and (2) above is to make Πω a complete theory with
witnesses for existential consequences. The point of cases (3) and (4) is to
force Γω to be C+ -saturated. The requirement that Πk contain Th+[Γk, Ck]
and Π′

k contain Th+[Γk−1, C
′
k] serves to maintain the condition that Γk 0i ϕ .

12



Claim: For k = 0, 1, 2,

(1) Πk is classically consistent for all k .

(2) Γk 0i ϕ (so Γk is intuitionistically consistent).

Note that if Γk `i ϕ , then Γk `i (0 = 1)ϕ and hence Πk `c 0 = 1 and
Πk is inconsistent. So to prove the claim, it suffices to show Πk is consistent
which we do by induction on k . The base case is k = 0. Suppose for a
contradiction that Π0 is inconsistent. Then CPV `c ¬θ1 ∨ ¬θ2 ∨ · · · ∨ ¬θs

for positive C -sentences θj such that Γ `i θϕ
j . By taking the conjunction of

the θj ’s there is a single positive C -sentence θ such that CPV `c ¬θ and
Γ `i θϕ . But, by Theorem 2, IPV+ `i θϕ ⊃ ϕ and thus, since Γ ⊇ IPV+ ,
Γ `i ϕ ; which is a contradiction.

For the induction step, we first assume Πk−1 is consistent and show that
Π′

k is consistent. Referring to Case (1) of the definition of Π′
k , suppose

αk = (∃x)βk(x) and that Π′
k is inconsistent. This means that there is a

positive C ′
k -sentence θ(c) such that Πk−1 `c βk(c) ⊃ ¬θ(c) and Γk−1 `i θ(c)ϕ .

Then, since c was a new constant symbol, Πk−1 `c (∃x)βk(x) ⊃ (∃x)¬θ(x)
and so Πk−1 `c ¬(∀x)θ(x); also, Γk−1 `i [(∀x)θ(x)]ϕ . But (∀x)θ(x)
is a positive Ck−1 -sentence and Πk−1 contains Th+[Γk−1, Ck−1] , so Πk−1

contains (∀x)θ(x) which contradicts our assumption that Πk−1 is consis-
tent. Now suppose Case (2) of the definition applies. Let αk = αk(~e)
where ~e denotes all the constant symbols in αk that are not in Ck−1 (so
C ′

k = Ck−1 ∪ {~e}). Let Πa
k and Πb

k be the [Γk−1, C
′
k]-closures of Πk−1 ∪ {αk}

and Πk−1 ∪ {¬αk} , respectively. We need to show that at least one of these
theories is classically consistent, so suppose that both are inconsistent. Then
there are positive C ′

k -sentences θa(~e) and θb(~e) such that Γk−1 `i θa(~e)
ϕ ,

Γk−1 `i θb(~e)
ϕ , Πk−1 `c αk(~e) ⊃ ¬θa(~e) and Πk−1 `c ¬αk(~e) ⊃ ¬θb(~e) Then

Πk−1 `c ¬(∃~x)(θa(~x) ∧ θb(~x)) and Γk−1 `i [(∀~x)(θa(~x) ∧ θb(~x))]ϕ . Since Πk−1

contains Th+[Γk−1, Ck−1] , (∀~x)(θa(~x) ∧ θb(~x)) is in Πk−1 , contradicting the
consistency of Πk−1 .

To finish the induction step and prove the claim, we assume Π′
k is consis-

tent and show that Πk is consistent. First suppose Case (3) of the definition
of Γk and Πk applies and that Πk is inconsistent. Then there is a positive
Ck -sentence θ(d) such that Π′

k `c ¬θ(d) and Γk−1 `i βk(d) ⊃ (θ(d))ϕ .
Since d is a new constant symbol, Πk−1 `c (∀x)¬θ(x) and likewise, since
Γk−1 `i (∃x)βk(x), Γk−1 `i (∃x)θ(x)ϕ . Hence (∃x)θ(x) is in Π′

k which
contradicts the consistency of Π′

k . Second, suppose Case (4) of the definition
applies. Let Πc

k and Πd
k be the [Γk−1∪{βk}, Ck]-closure and [Γk−1∪{γk}, Ck]-

closure of Π′
k , respectively. Suppose, for sake of a contradiction, that both

Πc
k and Πd

k are inconsistent. Then there are positive Ck -sentences θc and θd

such that Γk−1 `i βk ⊃ (θc)
ϕ and Γk−1 `i γk ⊃ (θd)

ϕ and such that Π′
k `c ¬θc
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and Π′
k `c ¬θd . Since Γk−1 `i αk , Γk−1 `i (θc ∨ θd)

ϕ and hence θa ∨ θb is in
Π′

k . But this contradicts the consistency of Π′
k and completes the proof of

the claim.

We are now ready to complete the proof of Lemma 7. Recall Γω =
⋃

k Γk

and Πω =
⋃

k Πk . By choice of constant symbols, C+ =
⋃

k Ck . First note
that if χ is an atomic C+ -formula then Πω `c χ if and only if Γω `i χ . This
is readily by proved by noting that Γω `i χ∨¬χ since χ is atomic and hence
Γω `i χ or Γω `i ¬χ . Now if Γω `i χ then Γω `i χϕ and hence Πω `c χ since
Πω contains Th+[Γω, C+] . Likewise, if Γω `i ¬χ then Πω `c ¬χ since ¬χ is
equivalent to an atomic formula.

Clearly Πω is a consistent, complete theory and since the αk ’s enumerate
all C+ -formulas, whenever Πω `c (∃x)β(x) then Πω `c β(c) for some c ∈ C+ .
Hence, the Henkin construction gives us a model M with domain a set of
equivalence classes of C+ and M ² CPV since M ² Πω and Πω ⊃ CPV .
The equivalence classes of C+ which form the domain of M are defined
by [c] = {c′ : Πω `c c = c′} . The equivalence class [c] is also equal to
{c′ : Γω `i c = c′} since c = c′ is an atomic formula. In order to eliminate
duplicate constant symbols we let C∗ be a set of set of constant symbols so
that C ⊂ C∗ ⊂ C+ and C∗ contains exactly one constant symbol from each
equivalence class. Such a C∗ exists since no equivalence class can contain
more than one constant symbol from C because Γω ⊃ Γ and Γ `i c 6= c′

for distinct c, c′ ∈ C . Now let Γ∗ be the set of C∗ -sentences which are
intuitionistic consequences of Γω . Let MC∗ be M restricted to the language
of PV plus the constant symbols in C∗ ; obviously MΓ∗ is isomorphic to MC∗

by the mapping c 7→ [c] . It remains to check that Γ∗ satisfies conditions (a)-(e)
of Lemma 7. (a) Γ∗ ⊃ Γ is immediate from our construction since Γω ⊃ Γ
and C∗ ⊇ C . (b) To show Γ∗ is C∗ -saturated, suppose Γ∗ `i (∃x)ψ(x) for
ψ a C∗ -formula. Then Γ` `i (∃x)ψ(x) for some ` ; and because the αk ’s
enumerate at C+ -sentences with infinitely many repetitions, (∃x)ψ(x) is αk

for some k ≥ ` . Hence Γk `i ψ(d) for some d ∈ C+ . Also, Γω `i c = d
for some c ∈ C∗ so Γω `i ψ(c) and thus Γ∗ `i ψ(c) by the definition of Γ∗ .
Similar reasoning shows that if Γ∗ `i ψ ∨ χ then Γ∗ `i ψ or Γ∗ `i χ where
ψ and χ are arbitrary C∗ -sentences. (c) Γ∗ 0i ϕ by (2) of the Claim.
(d) Γ∗ `i c 6= c′ for all distinct c, c′ ∈ C∗ since Πω `c c 6= c′ (by definition
of C∗ ). (e) MΓ∗ ² CPV since MΓ∗ is isomorphic to MC∗ and M is a model
of Πω ⊃ Π0 = CPV .
Q.E.D. Lemma 7

We are now ready to define the CPV-normal Kripke model K for the
proof of the completeness theorem. Recall that a CPV-normal Kripke model
is an ordered pair ({Mi}i∈I ,4) where I is an index set, each Mi ² CPV
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and 4 is the reachability relation. The index set I will be the set of sets Γ
of sentences such that

(a) Γ is C -saturated (where C is the set of constant symbols appearing in
sentences in Γ,

(b) Γ ⊇ IPV+ ,

(c) Γ `i c 6= c′ for distinct c, c′ ∈ C and

(d) MΓ ² CPV .

As an additional technical condition we require the set C of constant symbols
be a coinfinite subset of some fixed countable set of constant symbols: this
makes I a set rather than a proper class. Note that I is non-empty by
Lemma 7. The worlds of K are the structures MΓ such that Γ ∈ I . By the
Soundness Theorem proved above, K ° IPV+ . The reachability relation 4
is defined by MΓ1 4 MΓ2 if and only if Γ1 ⊆ Γ2 . It is easy to check from the
definitions that, if Γ1 ⊆ Γ2 then MΓ1 is a substructure of MΓ2 . Hence K is
a CPV-normal Kripke model.

We are now ready to finish the proof of Theorem 3. Suppose IPV+ 0i ϕ
for ϕ an arbitrary sentence. By Lemma 7 there is a Γ ∈ I such that Γ 0i ϕ .
It will suffice to prove that MΓ 1 ϕ since then K 1 ϕ . This follows from
the next lemma which also implies that for any sentence θ , IPV+ `i θ if and
only if K ° θ ; in other words, K is a CPV-normal, canonical Kripke model
for IPV+ .

Lemma 8 For any C -saturated Γ ∈ I and C -sentence ψ ,

MΓ ° ψ ⇔ Γ `i ψ.

Proof (This is exactly like lemma 2.6.5 of Troelstra and van Dalen [15].) The
lemma is proved by induction on the complexity of ψ :

Case (1): ψ is atomic. By definition of ° and K .

Case (2): ψ is χ ∧ γ .

MΓ ° χ ∧ γ⇔MΓ ° χ and MΓ ° γ

⇔Γ `i χ and Γ `i γ by ind. hyp.

⇔Γ `i χ ∧ γ

Case (3): ψ is χ ∨ γ . Then

MΓ ° χ ∨ γ⇔MΓ ° χ or MΓ ° γ

⇔Γ `i χ or Γ `i γ by ind. hyp.

⇔Γ `i χ ∨ γ by C-saturation of Γ
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Case (4): ψ is (∃x)χ(x). Then

MΓ ° (∃x)χ(x)⇔∃c ∈ C, MΓ ° χ(c)

⇔∃c ∈ C, Γ `i χ(c) by ind. hyp.

⇔Γ `i (∃x)χ(x) by C-saturation of Γ

Case (5): ψ is χ ⊃ γ . (⇐) First suppose Γ `i χ ⊃ γ . We must show that
if MΓ 4 MΓ2 and MΓ2 ° χ then MΓ2 ° γ . Since Γ2 ⊇ Γ, Γ2 `i χ ⊃ γ .
Hence, if MΓ2 ° χ then, by the induction hypothesis Γ2 `i χ , so Γ2 `i γ
and, again by the induction hypothesis, MΓ2 ° γ . (⇒) Second suppose
Γ 0i χ ⊃ γ . By Lemma 7, since Γ ∪ {χ} 0i γ , there is a MΓ2 < MΓ such
that χ ∈ Γ2 and Γ2 0i γ . Now, by the induction hypothesis twice, MΓ2 ° χ
and MΓ2 1 γ ; so MΓ 1 χ ⊃ γ .

Case (6): ψ is (∀x)χ(x). (⇐) First suppose Γ `i (∀x)χ(x). Further suppose
MΓ2 < MΓ , Γ2 is C2 -saturated and c ∈ C2 . Then Γ2 `i χ(c) since Γ2 ⊇ Γ
and by the induction hypothesis, MΓ2 ° χ(c). Hence MΓ ° (∀x)χ(x).
(⇒) Second suppose Γ 0i (∀x)χ(x). If c is a new constant symbol not in
C , then Γ 0i χ(c). By Lemma 7 there is a world MΓ2 < MΓ such that
Γ2 0i χ(c) with c a constant symbol in the language of Γ2 . Now by the
induction hypothesis, MΓ2 1 χ(c) so MΓ 1 (∀x)χ(x).

Q.E.D. Lemma 8 and the Completeness Theorem.

It is interesting to ask whether there are analogues of our completeness and
soundness theorems for IPV+ w.r.t. CPV-normal Kripke models that apply
to Peano arithmetic (PA) and Heyting arithmetic (HA). Let PA and HA
be formulated in the first-order language of PRA so there is a function symbol
for every primitive recursive function symbol: as usual, PA and HA have
induction axioms for all arithmetic (first-order) formulas. PA is a classical
theory and HA is an intutionistic theory and has the law of excluded middle
for quantifier-free formulas. If we define a PA-normal Kripke model to be one
in which each world is a classical model of Peano arithmetic, then it is natural
to inquire whether Heyting arithmetic is complete and sound with respect to
PA-normal Kripke models. It turns out that with some minor modifications
the proof above shows that Heyting arithmetic is complete with respect to
PA-normal Kripke models:

Theorem 9 (Completeness Theorem for HA with respect to PA-normal
Kripke models)

Let ϕ be any sentence. If HA 0i ϕ then there is a PA-normal Kripke
model K such that K ° HA and K 1 ϕ.
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We shall give the proof of Theorem 9 is a future paper; we also shall show
that the converse fails: that is to say, there is a PA-normal Kripke model
which is not a model of Heyting arithmetic.

6 On Independence Results

6.1 Independence Results in Computational Complex-
ity from Feasible Theories

The main motivation for the independence results discussed below comes
from the question of whether P = NP. Hartmanis and Hopcroft [8] suggested
that P =?NP might be independent of set theory. Although this question
is still open (and the natural conjecture is that it is not independent of set
theory) there have been a number of results on independence of P =?NP
and NP =?coNP from theories related to Bounded Arithmetic. DeMillo and
Lipton [6, 7] proved that P = NP is consistent with the fragment of arithmetic
ET which has function symbols for addition, subtraction, multiplication,
exponentiation, maximization and minimization and has a predicate symbol
for each polynomial time function. Sazanov [13] proved that there is a model of
the true universal sentences of PV in which exponentiation is not total and yet
there is a deterministic Turing machine which can find satisfying assignments
to satisfiable propositional formulas. Recently, Cook and Urquhart [5] and
Kraj́ıček and Pudlák [11] have independently proved that it is consistent
with IPV and PV1 that extended Frege proof systems are almost super.
By “almost super” is meant that for sufficiently large tautologies there are
extended Frege proofs with size bounded by any provably super-polynomial
growth rate function.

The point of these independence results is not to provide exidence that
perhaps P = NP or the polynomial time hierarchy collapses; instead, the
goal is to show why it seems so difficult to prove that P 6= NP. However,
it is difficult to know how much significance to attach to these independence
results. DeMillo and Lipton’s construction was criticized extensively by
Joseph [10]; in particular, the standard integers are definable in DeMillo and
Lipton’s model by an atomic formula with a nonstandard parameter and
hence induction fails for such formulas. Sazanov’s model does have induction
for all atomic (polynomial time) formulas with parameters, but his model
only indirectly satisfies P = NP in that there is no polynomial time predicate
that defines the set of satisfiable formulas. Furthermore, in Sazanov’s model
there is a polynomial time function mapping the set unary integers onto the
integers in binary notation in spite of the fact that exponentiation is not total.
The constructions of Cook and Urquhart and of Kraj́ıček and Pudlák avoid
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such overtly pathological features but they only indirectly make NP = coNP.
They show that there is a Π3 -formula NPB which is not a consequence of
either PV1 or IPV ; NPB states that an extended Frege proof system is not
super. It is open whether the theory CPV = S1

2(PV ) can prove NPB . It
seems that PV1 and IPV are too weak for these latter independence results
to be very meaningful.

There are a number of other independence results in computer science
which we have not discussed because they are not related to Bounded
Arithmetic; Joseph [9] contains a survey of this area.

6.2 Independence Results for PV1 and IPV via Kripke
models

Let f(x) be a unary integer function such that the predicates y = f(x) and
y ≤ f(x) are polynomial time computable and hence definable by atomic
formulas in PV1 . Also suppose f is provably an increasing function and
provably dominates any polynomial growth rate function; i.e., for each n ∈ N ,
there is an m ∈ N such that

PV1 `c (∀y ≥ m)(∀z)(f(y) = z ⊃ |z| ≥ |y|n).

Since this is a universal statement, IPV also proves this. Note that this
growth rate implies that f is not provably total in PV1 or IPV . An example
of such a function is f(x) = x|x| .

The independence results of Kraj́ıček-Pudlák and Cook-Urquhart state
that it is not the case that f(x) is provably not an upper bound to the
size of extended Frege proofs of tautologies: more precisely, let NPB (“Not
Polynomially Bounded”) be the formula

(∀x)(∃y ≥ x)[Taut(y) ∧ (∀z)(z ≤ f(y) ⊃ ¬z `eF y)]

where Taut(y) states that y is the Gödel number of a propositional tautology
and “z `eF y” states that z is the Gödel number of an extended Frege
proof of the formula coded by y . So NPB states that there are arbitrarily
large tautologies y whose shortest (if any) extended Frege proofs have Gödel
number greater than f(y).

Theorem 10

(a) (Cook-Urquhart [5]) IPV 0i NPB.

(b) (Kraj́ıček-Pudlák [11]) PV1 0c NPB.
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In other words, IPV and PV1 do not prove that extended Frege systems
are not super. (Cook and Urquhart state their result for IPVω but this is
equivalent since they also show that IPVω is conservative over IPV .)

Both parts of Theorem 10 were proved with the aid of Cook’s theorem
that PV-provable polynomial time identities give rise to tautologies with
polynomial size extended Frege proofs. Kraj́ıček and Pudlák proved part (b)
by constructing a chain of models M0,M1, . . . of CPV such that for i ≤ j ,
Mi is a substructure of Mj and such that for any d ∈ Mi there is a j ≥ i
such that Mj ² (∃z)(z `eF d) or Mj ² ¬Taut(d). Furthermore, there is a
nonstandard element a ∈ |M0| such that a , a#a , a#a#a ,... is cofinal in
every Mi . By taking the union of the Mi ’s a model of PV1 is obtained in
which NPB is false; thus proving Theorem 10(b).

The natural question then arises of what is true in the Kripke model
({Mi}i∈N,4) where Mi 4 Mj if and only if i ≤ j . Since it is CPV-normal,
IPV+ is valid in this Kripke model; it turns out that NPB is not valid. By
pulling out the universal quantifiers and combining like quantifiers we rewrite
NPB as

(∀x)(∃y)(∀z)NPBM

where NPBM(x, y, z) is an atomic formula formalizing “y ≥ x and z is not a
satisfying assignment of y and if z ≤ f(y) then z is not an extended Frege
proof of y”.

Theorem 11

(a) IPV+ 0i ¬¬NPB

(b) IPV+ 0i ¬(∃x)(∀y)¬(∀z)NPBM(x, y, z)

(c) IPV+ 0i ¬(∃x)(∀y)¬¬(∃z)¬NPBM(x, y, z).

Of course, Theorem 11 represents a slight strengthening of Theorem 10(a);
firstly, because IPV has been replaced by IPV+ and, secondly, since negation
signs have been introduced.

Proof Let K be the Kripke model ({Mi}i∈N,4) as above. Since K is CPV-
normal and hence IPV+ is valid in K it will suffice to show that the formulas
(a), (b) and (c) are not valid in K . For (a), suppose for a contradiction
that K ° ¬¬NPB . Then by the definition of forcing, Mi ° NPB for
sufficiently large i . But taking x = a where a, a#a, . . . is cofinal in Mi ,
Mi ° (∃y)(∀z)NPBM(a, y, z) and so for some y0 ∈ |Mi| such that y0 ≥ a
and Mi ° (∀z)NPBM(a, y0, z). But, by contruction of the Mi ’s, there is
some j ≥ i and some z0 ∈ Mj such that z0 is either an extended Frege
proof of y0 or z0 is not an satisfying assignment for y0 . Also, z0 ≤ f(y0)
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as y0 ≥ a , f is increasing, and |z| ≤ |a|n < |f(a)| for some standard n .
Thus Mj 1 NPBM(a, y0, z0), contradicting Mi ° (∀z)NPBM(a, y0, z). That
proves that (a) is not valid in K . The proofs for (b) and (c) are similar. 2 .

Note that Theorems 4(a) and 11(b) imply Theorem 10(b). What we
have done is adapted Kraj̀ıček and Pudlàk’s proof technique to to prove a
strengthening of Cook and Urquhart’s independence result and then used
Theorem 4 to rederive Kraj́ıček and Pudlák’s theorem. This shows that there
is a very close link between their two independence results.

It is open whether ¬(∃x)(∀y)(∃z)¬NPBM is independent of IPV ; if so,
then it is also independent of CPV and S1

2 . This is immediate from Theorem 1
since (∃z)(∀y)(∃z)¬NPBm is equivalent to a positive formula.
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