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Abstract
Advances in next-generation sequencing technologies have liberated our
dependency on model laboratory species for answering genomic and
transcriptomic level questions. These new techniques have dramatically
expanded our breadth of study organisms and have allowed the analysis
of species from diverse ecological environments. One such species is the
cactophilic Drosophila mojavensis that inhabits the deserts of western
North America. These insects feed and develop in the necrotic cacti,
feeding largely on the microflora of the necrotic plant tissues. Drosophila
mojavensis is composed of four geographically and ecologically separated
populations. Each population (Baja California peninsula, mainland Sono-
ran Desert, Mojave Desert and Santa Catalina Island) utilizes the necrotic
tissues of distinct cactus species. The differences in the nutritional and
chemical composition of the necroses include a set of toxic compounds to
which resident population must adapt. These ecological differences have
facilitated many of the life history, behavior, physiological and genetic
differences between the cactus host populations. Genomic resources have
allowed investigators to examine the genomic and transcriptional level
changes associated with the local adaptation of the four D. mojavensis
populations, thereby providing further understanding of the genetic mech-
anism of adaptation and its role in the divergence of ecologically distinct
populations.
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12.1 Introduction

One of the great advantages in studying
model laboratory species (e.g. Drosophila
melanogaster, Caenorhabditis elegans,
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Saccharomyces cerevisiae, Arabidopsis thaliana
and Escherichia coli) is the presence of a
completely sequenced and annotated genome
(Adams et al. 2000; C. elegans Sequencing
Consortium 1998; Blattner et al. 1997; Goffeau
et al. 1996; Arabidopsis Genome Initiative 2000).
These model systems offer the availability of
many mutant and transgenic stocks, which allows
for the manipulation and genetic dissection of the
traits of interest. The lack of much ecological
information about these species prevents in
many instances the correlation of patterns of
genomic variation to the ecological factors
influencing its variance. The recent feasibility of
large-scale sequencing, due to the development
of next-generation platforms, has allowed the
genomic and transcriptomic investigation of a
greater number of ecologically diverse species.
The placing of genomic data in an ecological
context has been an instrumental approach in our
understanding of the adaptation and evolution
of species (Feder and Mitchell-Olds 2003). This
ecological genomic approach has been embraced
in many fascinating and ecologically well-studied
systems such as the water flea (Daphnia pulex)
and stickleback fish (Gasterosteus aculeatus)
(Colbourne et al. 2011; Jones et al. 2012).

The ecological characteristic of certain species
facilitates the change or shift in resource use.
This is no more evident that in the many species
of phytophagous insects (Agrawal et al. 2009;
Janz 2011; Berenbaum 2002). Genetic and
genomic analysis of host shifts in phytophagous
insects has allowed investigators to peer into
the mechanism of the adaptation process. In
general, such as observed in the apple maggot
fly (Rhagoletis pomonella) and the pea aphid
(Acyrthosiphon pisum), host shifts involve not
only changes associated with the use of an
alternative host, but as well in several correlated
life history, physiological and behavioral traits
(Caillaud and Via 2012; Dambroski and Feder
2007; Linn et al. 2003; Via 1999). Genome
level studies have begun to identify the loci
and genomic regions associated many of these
host shift related adaptations (Michel et al.

2010; Richards et al. 2010; Schwarz et al.
2009; Smadja et al. 2012) and in the case
of Drosophila pachea investigators have been
able to identify the genetic loci responsible for
obligate host use (Lang et al. 2012). Furthermore,
when correlated with reproductive isolation
between host populations, the changes associated
with host shifts could eventually lead to
ecological speciation (reviewed in Nosil 2012).
Among the many insect groups, the ecologically
diverse and specious genus Drosophila offers
a vast number of study systems to assist in
the understanding of the genetic basis of host
adaptation and its relationship to speciation.

The genus Drosophila is comprised of over
2,000 described species inhabiting a wide variety
of ecological habitats from tropical rainforests to
deserts (Markow and O’Grady 2006). The vast
majority of these species are saprophytic, mainly
feeding as larvae and adults on yeasts and bacte-
ria growing in a variety of tissues, such as fruits,
tree sap fluxes, leaves, cactus and mushrooms
(Throckmorton 1975; Sturtevant 1921; Jaenike
1978; Kaneshiro et al. 1973; Heed 1978). A few
species are known to utilize live flowers, nutrient-
soaked soils and even land crabs for feeding
(Brncic 1983; Carson 1974; Kaneshiro et al.
1973). Although yeasts are a major source of the
Drosophila’s nutrition, they are also exposed to
chemical compounds found in the host. In certain
systems these compounds are toxic and resident
Drosophila species must adapt to their presence,
such as in the case of ’-amanitin tolerance in the
mycophagous species D. putrida, D. recens and
D. tripunctata (Jaenike et al. 1983) or octanoic
acid in the Morinda citrifolia fruit, the host of
D. sechellia (Legal et al. 1994).

Another example of Drosophila exposed to
the toxic chemical profile of its host, are those
species inhabiting cactus necroses. Cactophilic
Drosophila species feed as adults, oviposit and
develop in necrotic stems and/or fruits of cacti,
with some fascinating exceptions such as D. met-
tleri which feeds as an adult in the necrotic
tissues of cardón (Pachycereus pringlei), saguaro
(Carnegiea gigantean) and occasionally senita
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(Lophocereus schottii) cactus, but oviposits, de-
velops and pupates in the necrotic exudate soaked
soil (Heed 1977). These Drosophilids, including
specialists and generalists, are found throughout
the Americas utilizing a wide variety of plants
within the family Cactaceae (Hasson et al. 1992;
Heed 1978; Oliveira et al. 2012; Ruiz et al. 1990;
Carson and Wasserman 1965; Heed and Kircher
1965; Markow and O’Grady 2008; Fontdevila
et al. 1988). One exception to the New World dis-
tribution of cactophilic Drosophila is D. buzzatti,
which has been introduced to the Mediterranean
region and Australia (Carson and Wasserman
1965).

With the exception of the D. nannoptera
species group, cactophilic Drosophila are
members of the D. repleta species group, which
is comprised of approximately 100 described
species (Throckmorton 1975; Oliveira et al.
2012). Both of these groups are part of a larger
species radiation (virilis-repleta) that occurred
within the genus approximately 36 MYA
(Throckmorton 1975). Among the species within
the D. repleta species group is D. mojavensis,
which has proven to be a powerful system
for understanding the ecological genomics of
adaptation.

12.2 The Drosophila mojavensis
Study System

12.2.1 Evolutionary History

Drosophila mojavensis is one of four cactophilic
species endemic to the Sonoran Desert of western
North America (Heed 1978). Its distribution in-
cludes four geographically separated populations,
or host races, each utilizing a distinct necrotic
cactus host for both oviposition and adult feed-
ing. Drosophila mojavensis utilizes the agria cac-
tus (Stenocereus gummosus) in the Baja Califor-
nia peninsula, organ pipe cactus (S. thurberi) in
the mainland Sonoran Desert, Red Barrel cactus
(Ferocactus cylindraceus) in the Mojave Desert
and Coastal Prickly Pear (Opuntia littoralis) in
Santa Catalina Island(hereafter Catalina Island)
(Fig. 12.1) (Heed 1978; Ruiz et al. 1990). In the
mainland Sonoran Desert and in Baja California
D. mojavensis is sympatric with its sister species,
D. arizonae, a generalist cactophile known to
utilize the same hosts as D. mojavensis in addi-
tion to the cina cactus (S. alamosensis) (Fellows
and Heed 1972). In fact, the presence of D. ari-
zonae across Baja California appears to be a rel-
ative recent observation. Field collections in the

Santa Catalina Island
Opuntia littoralis

Mojave Desert
Ferocactus cylindraceus

Mainland Sonora Desert
Stenocereus thurberi

Baja California
Stenocereus gummosus

Fig. 12.1 Distribution and cactus host use of the four D. mojavensis host races
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Fig. 12.2 Phylogenetic
relationship of the four
D. mojavensis host races.
Population and species
relationship and divergence
times estimates based on
previous molecular studies
(Smith et al. 2012; Matzkin
2008; Machado et al. 2007;
Reed et al. 2007)

1970s and 1980s rarely observed D. arizonae in
Baja California, and when collected, all localities
where in the Cape region of the peninsula (Heed
1982). Currently, D. arizonae can be collected
across the peninsula and into Southern California,
USA (Reed et al. 2007; Matzkin pers. obs.).

Drosophila mojavensis was originally
collected by Warren Spencer from necrotic
barrel cactus in the Mojave Desert of California
(Patterson and Crow 1940; Spencer 1941).
Drosophila mojavensis, D. arizonae and their
sibling species D. navojoa, also a cactophile,
are all members of the mulleri complex, which
spans South and North America (Wasserman
1962, 1982). Cytologically, D. mojavensis and D.
arizonae differ by inversions in the X, second and
third chromosomes (Muller elements A, E and
B, respectively) (Wasserman 1962). Polymorphic
inversions in the second and third chromosome
exist both within and between populations of
D. mojavensis, with the greatest karyotypic
diversity found within the Baja California
population (Johnson 1980; Mettler 1963). On
the basis of the cytological data it was originally
proposed that the Baja California peninsula was
likely the location of origin of D. mojavensis
(Ruiz et al. 1990; Johnson 1980). Following
its divergence from D. arizonae, D. mojavensis
colonized and subsequently shifted cactus hosts
in mainland Sonora, Mojave and Catalina Island.
The levels and pattern of sequence variation
in D. mojavensis largely support this model of
evolution (Machado et al. 2007; Matzkin 2008;
Reed et al. 2007).

The first molecular phylogenetic analysis
was based on the alcohol dehydrogenase
(Adh) paralogs and estimated the divergence

time of D. mojavensis and D. arizonae to be
approximately 4 MYA (Russo et al. 1995),
subsequent population genetics analysis of the
same loci demonstrated a more recent divergence
time of approximately 1 MYA (Matzkin 2004;
Matzkin and Eanes 2003). Further population
genetic analysis of nuclear and mitochondrial
genes suggest an even more recent divergence
time of less than 0.5 MYA (Matzkin 2008;
Reed et al. 2007). The relationship of the four
host populations has been examined using
both cytological and molecular data. Recently,
given the level of morphological and molecular
differences, the host races of D. mojavensis
have been described as subspecies (Pfeiler et al.
2009). Evidence from multiple nuclear markers
spanning all chromosomes suggests that soon
after the establishment of D. mojavensis, the
species diverged into two clades, the southern
populations (Baja California and Sonora) and
the northern populations (Catalina Island and
Mojave Desert) (see Fig. 12.2) (Machado et al.
2007; Matzkin 2008). The relationship between
the host populations is slightly altered when
utilizing either only X-linked (Smith et al.
2012) or mitochondrial genes (Reed et al. 2007),
although all analyses of genetic diversity support
the placement of the Baja California population
as the center of diversity of the species. One
possibility for the slight discrepancy is the
fact that the different modes of inheritance
(e.g. uniparental vs. diparental) between
genes can strongly influence their effective
population size and therefore the pattern of
evolution (Chesser and Baker 1996). Sex-biased
dispersal would also affect levels of variation
between uniparental and diparental inherited
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loci (Chesser and Baker 1996), although, in
the population studied (Sonora) no difference
in dispersal was observed to occur between
the sexes (Markow and Castrezana 2000). The
ongoing sequencing of the genomes from all
D. mojavensis host populations will provide
a better understanding of the history and
relationship among them (Matzkin unpub.)

12.2.2 Ecology

The different cacti utilized by each of the host
races offers distinct biotic and abiotic environ-
ments to the resident D. mojavensis. Much of
the chemical composition of the necrotic cactus
is a function of both the host plant as well as
the resident microflora (Fogleman and Starmer
1985; Starmer 1982a, b; Starmer et al. 1990).
It is the bacterial and yeast communities found
in the cactus necrosis that are instrumental in
setting up the chemical environment for the flies
(Starmer et al. 1986). The greatest microflora
and chemical similarities are between organ pipe
and agria, both columnar cactus species (Kircher
1982; Starmer and Phaff 1983). Cactus hosts can
differ in a variety of compounds such as triterpene
glycosides, unhydrolyzed glycosides, sterol diols,
free fatty acids, sugars, many volatiles and in
the case of Opuntia sp., alkaloids (Fogleman and
Abril 1990; Kircher 1982; Starmer and Phaff
1983; Meyer et al. 1980). The compounds associ-
ated with cactus necroses have been shown to be
detrimental, even lethal to other non-cactophilic
species and in certain cases deleterious to non-
native cactophilic Drosophila (Fellows and Heed
1972; Kircher et al. 1967).

In addition to the chemical composition, there
are distinct differences in the physical proper-
ties of the cacti and their necroses (Etges 1989;
Mangan 1982). The total size of the plant is posi-
tively correlated with the persistence and biomass
of the necrosis, but negatively correlated with the
density of the necroses in the desert landscape
(Breitmeyer and Markow 1998). This would sug-
gest that individuals that utilize necroses from
small plants would have an easier task in dis-
covering oviposition sites, but such sites would

be available to adults and developing larvae for
a shorter period of time. In contrast, individ-
uals utilizing larger host would need to travel
longer distances to locate a potential oviposi-
tion site. With respect to D. mojavensis, Opuntia
cladodes (cactus pads) are significantly smaller
than the arms of an organ pipe or agria cactus,
which would influence the evolution of life his-
tory characters such as developmental time, dis-
persal rate, starvation and desiccation resistance
and chemosensory behavior. Furthermore, abiotic
factors such as the thermal environment differ
across the populations, and data suggests that
the genetic mechanisms underlying resistance to
thermal stress might be distinct in each of the
populations (Krebs and Thompson 2005). The
many biotic and abiotic differences in the ecology
of the four D. mojavensis host populations have
influenced their evolutionary trajectory.

12.3 Genetic Variation
and Population Genetics

The environmental conditions experienced by the
D. mojavensis host races have shaped many as-
pects of their biology. Genetic variation in life
history, morphological, physiological and behav-
ioral characteristics exist across the populations.
Furthermore, for several of these characters, there
exists a significant interaction with environmental
variables.

Many life history comparisons have involved
the Baja California and Sonora populations,
showing differences in developmental time
and adult size (thorax length) between the
two populations (Etges 1990, 1998; Etges
et al. 2010). Thorax length is a significant life
history trait, given its correlation with other
characteristics such as flight performance, stress
resistance, ovariole number (which is correlated
with lifetime fecundity) and mating success
(Markow and Ricker 1992; Azevedo et al. 1998;
Hoffmann et al. 2001; Mangan 1978). Several
morphological and pigmentation differences
have been identified across all four host races,
most notably divergence in features of the male
genitalia such as the shape of the aedeagus
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(Richmond et al. 2012; Pfeiler et al. 2009).
Overall, D. mojavensis is highly resistant to
water stress relative to other Drosophila (Gibbs
et al. 2003; Gibbs and Matzkin 2001; Matzkin
et al. 2009), but yet significant differences in
desiccation resistance exist between Catalina,
Baja California and Sonora populations
(Rajpurohit et al. 2013; Matzkin et al. 2007).
Furthermore, interpopulation differences extend
to the composition of the hydrocarbons in the fly
cuticle. The composition of these hydrocarbons
is distinct between Baja California and Sonora
populations and, although composition could be
influenced by host utilization and temperature,
it also affects courtship behavior both within
and between populations (Havens and Etges
2013; Markow and Toolson 1990; Etges and
Jackson 2001). Courtship behavior differences
exist between several of the host races, which
contributes to a reduction in gene flow (Markow
et al. 1983; Etges et al. 2006).

Utilization of alternative cactus hosts can elicit
negative fitness effects. Development of flies
from Baja California and Sonora populations on
non-native hosts (necrotic agria or organ pipe,
respectively) results in significant life history
consequences, affecting such characters as thorax
length and developmental time (Etges 1990,
1993, 1998). Larval viability can be drastically
reduced when Sonora flies develop in necrotic
agria or cina (Matzkin and Markow 2013; Bono
and Markow 2009). These viability differences
are amplified when D. mojavensis utilize more
chemically distinct cactus hosts (Fellows and
Heed 1972). For example, relative to organ pipe
or agria, the larval viability of D. mojavensis is
2 % in the senita cactus (L. schottii), a Sonoran
and Baja California plant with high levels of
alkaloids (Fellows and Heed 1972).

12.3.1 Candidate Gene Studies

Fermentation by the resident yeast communities
largely contributes to the volatile concentration
variation across cactus hosts (Fogleman 1982;
Heed 1982; Kircher 1982; Vacek 1979).
The cactus-specific substrates used in the

fermentation process affect the concentration
and composition of many of the volatiles such
as alcohols. Relative to the organ pipe cactus
(Sonora), necroses of agria (Baja California)
contain relatively greater levels of 2-propanol
than 1-propanol (Heed 1978; Kircher 1982;
Starmer et al. 1986; Vacek 1979). In Drosophila,
Alcohol Dehydrogenase (ADH) is a major
pathway for the metabolism of small alcohol
molecules (e.g. ethanol) (Chambers 1988). In
D. mojavensis the Adh locus is duplicated,
having a larval and adult ovarian tissue expressed
locus (Adh-1) and a late larval stage and adult
(non-ovarian tissue) expressed locus (Adh-2)
(Batterham et al. 1983; Atkinson et al. 1988).
Population genetic analyses date the duplication
event to approximately 4 MYA (Matzkin 2004).
Earlier studies have shown the presence of two
major allozyme alleles (Fast and Slow) at the
Adh-2 locus. While in the Sonora population the
Slow allele is at high frequency (>90 %), in
Baja California the Fast allele is most frequent
(>90 %) (Heed 1978). Resistance to specific
alcohols is associated with Adh-2 genotype, with
Adh-2 Fast homozygotes having increased resis-
tance to 2-propanol relative to Adh-2 Slow flies
(Heed 1978; Starmer et al. 1977). Subsequent
studies have shown that the mutation responsible
for the Fast/Slow allozyme class (serine to
arginine change at residue 28) is associated with
as many as four other amino acid substitutions
(Matzkin 2004; Matzkin and Eanes 2003). These
amino acid differences between allozyme class
alleles confer significant substrate specificity
differences, with the ADH-2 Fast allele having
greater activity on 2-propanol relative to 1-
propanol, matching the alcohol concentration
of the cactus necrosis in which the Adh-2 Fast
allele is commonly found (Matzkin 2005).

The different metabolic environment experi-
enced by a larval and adult expressed ADH par-
alogs has distinctly shaped their evolution. Stud-
ies using D. melanogaster have shown that the
control of metabolic flux of ADH in larvae is
significantly greater relative to when expressed
in adult tissues (Freriksen et al. 1991, 1994;
Middleton and Kacser 1983). In any given path-
way, the effect of activity changes of a single
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enzymatic step on the overall metabolic rate or
flux through that pathway is known as the flux
control coefficient (Kacser and Burns 1973). Ac-
tivity perturbations of an enzyme with a high flux
control coefficient will produce greater changes
on the overall metabolic flux of that pathway
relative to an enzyme with little control.

Interestingly, D. melanogaster lacks a similar
Adh duplication, although it produces two
distinct transcripts (larval and adult), which
resemble the expression pattern of D. mojavensis
paralogs (Adh-1 and Adh-2, respectively)
(Benyajati et al. 1983; Savakis et al. 1986).
In the lineage leading to D. mojavensis, the
larval/ovarian expressed paralog (Adh-1) is under
positive selection, unlike what is observed for
Adh-2 (Matzkin 2004; Matzkin and Eanes 2003).
Furthermore, several amino acid substitutions
have occurred between the Adh paralogs and are
responsible for the observed substrate specificity
and kinetic differences between the genes
(Matzkin 2005). The non-overlapping expression
pattern and functional differences of the Adh
paralogs in D. mojavensis, coupled with the
expression pattern of Adh in species with a single
copy, strongly supports a subfunctionalization
model of evolution for the D. mojavensis paralogs
(Force et al. 1999; Hughes 1994; Lynch and Force
2000).

12.4 Drosophila mojavensis
in the Genomic Era

The sequencing, assembly and annotation of
the D. melanogaster genome was a major
leap in the understanding of the genetics and
evolution of a species in which a tremendous
amount of information was already known
(Adams et al. 2000). This was later followed
by the genome sequencing of a relatively
distant species, D. pseudoobscura (Richards
et al. 2005). These accomplishments lead to the
subsequent genome sequencing and comparative
analysis of ten additional Drosophila species
(Drosophila 12 Genomes Consortium 2007).
Together these 12 species encompassed a wide
breadth of the genus, with nine members of

the Sophophora subgenus, and three from the
Drosophila subgenus, including D. mojavensis.

Although a cDNA microarray was developed
for D. mojavensis prior to the genome sequencing
(Matzkin et al. 2006), knowledge of the genome
allowed the construction of complete transcrip-
tome oligonucleotide microarrays (Bono et al.
2011; Matzkin 2012; Matzkin and Markow 2009,
2013; Rajpurohit et al. 2013; Smith et al. 2013).
Additional tools for D. mojavensis include a
BAC library and the availability of transgenic
stocks (Song et al. 2011; Holtzman et al. 2010).
Although not as extensive as those available for
D. melanogaster, the D. mojavensis transgenic
stocks could be used to create null alleles via
RNA interference to begin to identify the role
of candidate loci in host adaptation. The expanse
of ecological information of D. mojavensis and
the addition of genomic and transcriptomics tools
vastly increased the power of this system to help
answer many fundamental questions in biology
such as the genomic basis of adaptation, the role
of local ecological adaptation in speciation and
the genomic basis of the evolution of reproductive
incompatibilities.

12.4.1 Host Adaptation

The four chemically distinct hosts of D. mojaven-
sis have influenced the evolution of the popula-
tions at many levels. The genome level changes
include structural (e.g. chromosomal inversions),
coding sequence, and transcriptional changes.
One clear advantage of the D. mojavensis system
is the vast ecological information that has been
previously gathered, which allows for genomic
analyses in the ecological context of the species.
In the case of D. mojavensis the necrotic cactus
is a major component of its ecology. The creation
of ecologically realistic breeding substrates using
lab-generated cactus necroses incorporating the
natural microflora has been extensively used
in many prior life history studies (Etges 1989,
1990, 1993; Etges and Heed 1987). Similarly,
recent microarray studies in D. mojavensis allow
flies to develop in lab-generated necrotic cactus
also including the natural yeast and bacteria
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Fig. 12.3
Overrepresented
(FDR < 0.05) molecular
function and biological
process gene ontology
categories of differentially
expressed genes (Data
from Matzkin (2012)
examining gene expression
of third instar larva from
nine isofemale lines from
Sonora when reared in
either necrotic organ pipe
(native host) or agria)

microflora (Matzkin 2012; Matzkin et al. 2006;
Rajpurohit et al. 2013; Smith et al. 2013).

In Matzkin et al. (2006) and Matzkin
(2012) D. mojavensis larvae from either Baja
California or Sonora were exposed to necrotic
agria or organ pipe cactus. Development and
exposure to necrotic cactus elicited a complex
transcriptional response, with a variety of loci
being differentially expressed (Matzkin 2012;
Matzkin et al. 2006). The differentially expressed
genes correspond to several gene ontology
groups, including xenobiotic metabolism and
detoxification (Fig. 12.3). Among the xenobiotic
metabolism genes, Glutathione S-transferases,
Cytochrome P450, and UDP-glycosyltransferase
were modulated in response to cactus use
(Table 12.1). In other insect systems, members
of these three gene families have been known to
play a central role in detoxification (Luque and
O’Reilly 2002; Ranson and Hemingway 2005;
Ranson et al. 2001; Feyereisen 2005; Li et al.
2007).

Although the ability to modulate gene
expression in response to environmental change
would be advantageous, over evolutionary time
constant exposure to an environment, such as
a host shift, may produce fixed expression
differences (Waddington 1953; West-Eberhard
2003). There are a number of genes whose

expression difference appear to be fixed when
comparing across the D. mojavensis host races
(Matzkin and Markow 2013). Recently, Matzkin
and Markow (2013) examined the expression
profile of third instar larvae reared in media
lacking cactus compounds (i.e. standard banana
media). In addition to detoxification genes, genes
associated with metabolism were differentially
expressed across the cactus host races. In fact,
these metabolic genes included a large proportion
of central metabolism enzymes located both at
and outside branch points (Fig. 12.4). Branch
enzymes are important control points of flux
through pathways (LaPorte et al. 1984). For
example, the activity of the enzyme Glucose-
6-dehydrogenase (G6PD, see Fig. 12.4) not only
influences flux through the pentose shunt, but
given that its substrate (glucose-6-phosphate) is
used by other enzymes (PGM, HEX and PGI),
it also could modulate flux through those other
pathways. Given the greater control of flux of
branch point enzymes, it would be expected
that these enzymes be involved in adaptation
(Eanes 1999; Flowers et al. 2007; Rausher 2013).
This suggests that the nutritional differences
between hosts could have influenced flux through
this pathway. Further analysis is needed to
examine the functional consequence of these
gene expression differences.
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Table 12.1 Summary of known detoxification genes that are differentially expressed in response to cactus utilization

D. mojavensis annotation D. melanogaster ortholog Gene name Gene family
GI16623 CG17523 GstE2 GST
GI16624 – GstE2b GST
GI19388 CG17522 GstE10 GST
GI20124 CG17534 GstE9 GST
GI24379 CG10045 GstD1 GST
GI23193 – GstD1b GST
GI23196 CG17639 CG17639 GST
GI10234 CG9716 Cyp313b1 P450
GI13002 CG33503 Cyp12d1-d P450
GI16117 CG3656 Cyp4d1 P450
GI16990 CG9964 Cyp309a1 P450
GI18674 CG3540 Cyp4d14 P450
GI18951 CG8859 Cyp6g2 P450
GI20221 – Cyp9h1b P450
GI20230 CG13977 Cyp6a18 P450
GI20590 CG8453 Cyp6g1 P450
GI24047 CG14680 Cyp12e1 P450
GI10119 CG4739 Ugt86Dc UGT
GI10120 CG18578 Ugt86Da UGT
GI10122 CG4772 Ugt86Dh UGT
GI14390 CG11289 CG11289 UGT
GI17058 CG13271 Ugt36Bb UGT
GI17522 CG11012 Ugt37a1 UGT
GI22627 CG6644 Ugt35a UGT
GI22628 CG6649 Ugt35b UGT
GI22630 CG6633 Ugt86Dd UGT

Glucose

HEX

F6P F1,6P GA3P PEP PyruvateGlycogen Acetyl-
CoA

G6PD
PGI PFK

TAL

ALD GAPDH PDCPGM
G6P

FBP

TCA
cycle

Pentose
shunt

Glycerol

G3P3PG 2PG

L-Lactate

LDH

PC

PGLYM78PGK ENO PK

Fig. 12.4 Fixed expression differences in central
metabolism genes across the four host races. The enzymes
with fixed expression differences: Hexokinase (HEX),
Transaldolase (TAL), Phosphofructose Kinase (PFK),
Aldolase (ALD), Glyceraldehyde 3-phosphate Dehydro-
genase (GAPDH), Phosphoglyceromutase (PGLYM78),
Pyruvate Kinase (PK), Lactate Dehydrogenase (LDH)

and Pyruvate Carboxylase (PC) are highlighted with
a shaded box. The enzyme without fixed expression
differences are: Phophoglucose Mutase (PGM), Glucose-
6-phosphate Dehydrogenase (G6PD), Phosphoglucose
Isomerase (PGI), Phophoglycerate Kinase (PGK) and
Enolase (ENO) (Data from Matzkin and Markow (2013))

In conjunction with transcriptional differ-
ences, host adaptation has also been facilitated
by changes in the coding region of detoxification
genes. Interestingly, there appears to be an
association between transcriptional modulations
and coding sequence evolution. Drosophila

mojavensis genes that lack an orthologous call
to D. melanogaster were found disproportionally
among the genes whose expression was
significantly affected by cactus host use (Matzkin
2012). A specific example of a gene that fits
this pattern is Glutathione S-transferase D1
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(GstD1), a gene whose expression was observed
to be affected by alternative host use (organ
pipe cactus) in a population from Baja California
(Matzkin et al. 2006). Population genetic analysis
of GstD1 suggests that this gene has been
under positive selection in the lineage leading
to the Baja California and Sonora populations
(Matzkin 2008). Among the eight amino acid
substitutions occurring in this lineage, two
(Leu-7-Gln and His-39-Gln) occur in the active
site pocket of the enzyme. Biochemical analysis
suggests that these amino acid substitutions
result in functional differences between the
GSTD1 isoforms from Baja California/Sonora
and Catalina Island/Mojave (Matzkin unpub.)

12.4.2 Genomics of Desiccation
Resistance

Across the four D. mojavensis host races, the
chemical composition of the host (including
nutritional and toxic compounds) has shaped
the pattern of variation at the genomic,
transcriptional and functional levels. A major
abiotic stress for D. mojavensis and other desert
endemics is the adaptation to a desiccating
environment. Desiccation resistance is signif-
icantly greater in D. mojavensis compared to
other mesic adapted Drosophilids (Matzkin et al.
2009; Gibbs and Matzkin 2001). The increase in
resistance is largely due to an overall decrease
in the rate of water loss (Gibbs and Matzkin
2001), which is achieved via a decrease in
respiratory rate (i.e. metabolic rate) (Gibbs et al.
2003). Analysis of gene expression differences
during the desiccating process suggests that key
points in central metabolism are modulated in
a manner that would suggest a decrease in
metabolic flux (Matzkin and Markow 2009).
In a recent study, Rajpurohit et al. (2013)
observed that in both Baja California and
Sonora populations desiccating conditions were
associated with the up-regulation of genes
associated with the structure of the cuticle and
sensory pathways.

12.4.3 Chemosensory Adaptation

Given the deleterious fitness consequences
associated with developing in a non-native host,
it is predicted that there would be strong selective
pressure in D. mojavensis to correctly identify
a cactus before oviposition. The chemosensory
system in Drosophila is composed of a number of
sensory neurons with transmembrane receptors
distributed across the insect’s body (Vosshall and
Stocker 2007). In adults, odorant receptors are
expressed in sensory neurons (ORN) housed in
sensilla in the antenna and maxillary palps, while
gustatory receptors are expressed in neurons
(GRN) not only in the proboscis, but also the legs,
wings and ovipositor (Stocker 1994; Vosshall and
Stocker 2007). These transmembrane proteins
initiate a signal cascade that leads to the percep-
tion of taste and smell. Unlike GRN, in ORN,
a universal co-receptor (Or83b) is expressed
which interacts with the neuron-specific odorant
receptor (Benton et al. 2006). Overall, both
odorant and gustatory receptors can specialize
to interact with only a subset of ligands (Laissue
and Vosshall 2008; Hallem and Carlson 2006).

Drosophila mojavensis females have the
ability to assess host type prior to oviposition.
Although there is some variation across studies,
overall there is a large amount of genetic variation
for oviposition preference. In several populations
there still appears to be a preference for the
ancestral agria cactus, even though agria is not
present in all locations (Lofdahl 1985, 1986;
Newby and Etges 1998). In contrast, there
are also examples of adult preference to its
native host, such as in the Mojave population
(Newby and Etges 1998). Prior expression
studies examining interpopulation and host-
induced changes in D. mojavensis focused on
the larval stage, and, interestingly, both odorant
and gustatory receptors were significantly
differentially expressed (Matzkin 2012; Matzkin
and Markow 2013). Drosophila mojavensis
larvae have been shown to selectively feed on
certain cactophilic yeast species while ignoring
others (Fogleman et al. 1981). Therefore,
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it is quite possible that larvae, using their
chemosensory system (including odorant and
gustatory receptors), are selecting microhabitats
within individual cactus necroses. Preliminary
evidence shows that some D. mojavensis odorant
receptors have been under positive selection
(Matzkin unpub.), and thus might be candidates
for involvement in the location of host-specific
microhabitats. Further functional and behavioral
studies are needed to fully understand the
consequence and role of these receptors in cactus
host adaptation.

12.5 Conclusion

The technological and computational advances
of recent years have not only revolutionized the
study of model laboratory organisms but have
dramatically expanded our choice of organisms.
These new methods have allowed for the in-
vestigation of ecologically defined species, those
species in which ecological information is known
and genomic information could be analyzed in an
explicit ecological context.

In D. mojavensis genomic and transcriptomic
tools have allowed us to peer into the genomic
mechanisms of the adaptive process. We have
seen how the transcriptome has been shaped
by the various host shifts that have occurred in
the history of D. mojavensis. These changes
include the modulation and fixed expression
pattern of a wide variety of genes, some of which
we would have expected to be involved in the
host adaptation process, such as detoxification,
chemosensory and metabolic genes. The few
analyses of candidate genes have shown how
selection has shaped the pattern of genetic
and functional variation, and its possible link
to performance in the field. More studies are
necessary to make the connection between the
genetic, functional and life history variation in
the ecological context of this fly. Furthermore,
genome-wide surveys of sequence and structural
variation will help us elucidate large-scale
changes in the D. mojavensis populations and
determine for example the presence of genomic

islands of divergence between them (Turner et al.
2005, 2008). Several of these questions will begin
to be answered using the previously sequenced
Catalina Island genome (Drosophila 12 Genomes
Consortium 2007) and the recently sequenced
Baja California, Mojave and Sonora D. mojaven-
sis genomes (Matzkin unpub.). Furthermore,
meta-genomic analysis of the microflora of both
the cactus necroses and the D. mojavensis gut,
could shed light into the role of these interspecific
interactions and host adaptation. Finally, a future
aim is to examine links between local adaptation
occurring in the four cactus host races, with their
behavioral and genetic divergence and the
ongoing pattern of incipient speciation (Nosil
2012).
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