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1. Introduction

The sustainability of inland water resources worldwide is becoming increasingly
endangered as climate change contributes to the human-induced problems of water supply
scarcity and maldistribution. Environmental problems associated with water quality have
been receiving some research attention; however, the litany of natural disasters that have
accompanied changes faced by water-reliant ecosystems has created a current-day crisis.
Multisectoral stressors imposed on water-related ecosystems exacerbate environmental
problems. Environmental challenges associated with agriculture faced by the modern
world include aquifer depletion [1–6], land subsidence [7–9], the seasonal drying of river
flows [10,11], waterlogging [12–14], salinization of river water and aquifers [15,16], and
human health impacts from excessive use of fertilizers and pesticides [17–19] as well as
the use of a wide range of household chemicals. These problems have a water quality
component that requires a radical re-thinking of resource management policy and new tools
to help analysts and regulators craft novel solutions. Likewise, municipal and industrial
sectors that rely on a high-quality drinking water supply are cognizant of the challenges
associated with curtailing pollution, while minimizing the costs of treatment and pollutant
disposal (e.g., References [20–22]). As a consequence, urban areas are increasingly looking
to holistic [23] and nature-based pollution-abatement strategies [24,25].

While there is a general consensus among policy, scientific, practice, regulatory and
management communities that science-based decision support is necessary to manage
and mitigate the deleterious effects of water pollution under climate change (Figure 1),
how these decision support tools (DSTs) are designed and implemented for different
applications remains an open-ended question. Over the past four decades, with the advent
and rapid progress in modeling capacity and computational technology, watershed models
have increasingly become effective tools for tackling a wide range of issues regarding
water resources and environmental management and supporting regulatory compliance.
Statistical and machine learning methods are being used to support and even supplant
more traditional simulation models to improve the estimation of temporal dynamics and
patterns of variability in pollutant concentrations and loads. With the advancements in
data-driven analyses and modeling approaches for water quality, there are also rapid
developments in such model-based DSTs for water quality management.

These DSTs are playing central roles, in the following aspects: (i) driving socio-
economic decision making by helping multi-sectoral participants make better operational
decisions; (ii) informing scientific policy and funding investments and guiding research by
revealing data and knowledge gaps; (iii) allowing regulatory agencies to track progress to-
wards achieving water quality goals and facilitating policy guidance; (iv) aiding managers
and practitioners to make evidence-based water management decisions; and (v) serving
as a conduit to the public, providing a means for leveraging citizen science initiatives
(Figure 1).

Water 2022, 14, 3644. https://doi.org/10.3390/w14223644 https://www.mdpi.com/journal/water
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Figure 1. Central role of decision support systems in water quality management. (All icons used in
this figure are available freely for public use under creative commons licensing).

The objectives of this Special Issue are to demonstrate the usefulness of decision sup-
port tools applied to different types of water quality management issues and to showcase
select examples of these issues where contemporary science and technology are used to
overcome associated challenges. The aim of this Special Issue within the scientific commu-
nity is to drive research on emerging tools in water quality management from large-scale,
programmatic scopes to small-scale, localized applications. At the same time, it is cru-
cial to highlight the critical role played by stakeholders in supporting programmatic and
implementation initiatives, and the need for stakeholder buy-in to ensure the success of
water quality management programs. Thus, this Special Issue also highlights how decision
support tools can aid in stakeholder participation and engagement.

2. Invitation to Submit to This Special Issue

The call for papers for this Special Issue on “decision tools for water quality management”
sought contributions that describe innovative decision support approaches from around
the world and across sectors that can be applied by stakeholders, government entities and
regulators to reduce environmental pollution, and that can be cost-effective and sustainable.

Submissions from agriculture, municipal and industrial sectors, and environmental
ecosystems were encouraged. The selected papers address broad aspects of environmental
DSTs, including:

• An overview of water quality sustainability challenges and opportunities.
• Novel or successful techniques to measure and monitor water quantity and quality to

achieve sustainable management.
• Sensor and remote sensing technologies that can be integrated with other and more

traditional approaches to develop sustainable water quality enhancement strategies.
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• Computer-based simulation modeling and other analytical techniques that enhance
our understanding of the water quality issues and help formulate solution strategies.

• Benefit–cost analyses that demonstrate economic benefits and costs associated with
the development and application of the decision support tool in question.

• Use of various decision support systems for the optimal management of quality
aspects of water resources in a regional context and welfare consequences of water
quality regulations.

https://www.mdpi.com/journal/water/special_issues/decision_support_tools (ac-
cessed on 15 June 2021).

3. Topics Covered by Papers in This Special Issue

This Special Issue consists of eleven papers covering a number of applications and
approaches to the provision of decision support to tackle water quality issues. The first
paper in the collection provides a policy overview of the importance of Decision Support
Tool (DST) development for addressing municipal water quality problems, which is also
relevant in other sectors. The applications of DSTs to other sectors is addressed by the
other ten papers in this collection. Trends in the use of remote sensing for the development
of DSTs used for watershed water quality regulation is explored next, followed by two
papers that focus on salinity regulation as it pertains to drainage return flows from irrigated
agriculture. The first of these papers is policy-focused and provides an economic perspec-
tive on salinity regulation, whereas the second paper describes and assesses the relative
performance of two DSTs used in forecasting salt load assimilative capacity in a California
river basin. This is followed by three papers that demonstrate various aspects of machine
learning and artificial intelligence (AI) in the development of DSTs for water quality regu-
lation at watershed and river basin scales. All three papers deal with forecasting and the
interpretation of water quality data using various modeling frameworks. Next, two papers
from Israel with an agricultural focus are presented, addressing the blending of saline water
supply for optimal crop production and the rehabilitation and preservation of ecosystems,
respectively. The next study presents a novel application in the pharmaceutical industry
that details the development of a DST to regulate wastewater pollution from the household
consumption of personal care products. The DST in this case is a simple ecological impact
calculator based on the personal consumption of various products. A final methods paper
describes the development of a DST based on tree-ring modeling data that indirectly use the
effects of salinity on ecosystem damages. This ordering of papers was chosen in an attempt
to provide a coherent thread of topics that starts with the description of various DSTs used
for water quality forecasting, management and regulation, including the application of
novel modeling approaches. More detailed summaries of each paper follow.

The first paper in this Special Issue—“The Municipal Water Quality Investigations Program:
A Retrospective Overview of the Program’s First Three Decades” [26] (https://www.mdpi.
com/2073-4441/14/21/3426, accessed on 30 October 2022) by Paul Hutton, Sujoy Roy,
Stuart Krasner and Leslie Palencia—is a policy paper that presents the history and evolution
of the Department of Water Resources’ Municipal Water Quality Investigations (MWQI)
Program in California, USA. This paper will be of interest to readers involved in developing
science-based decision-support capability related to the management of water quality. This
paper focuses on regulating water quality in the Sacramento–San Joaquin Delta (Delta),
which supplies nearly two-thirds of the population of California with drinking water. Some
features of the Program is its ability to provide an early warning of changing conditions
in source water quality, as well as data- and knowledge-based support for State Water
Project (SWP) operational decision making for a wide variety of urban water users. In their
paper, the authors follow Program’s formation and its evolution in response to changing
regulations and technological advances in water treatment and field monitoring. The paper
particularly notes the development of federal drinking water quality regulations, such as
the Disinfection By-Products Rule impacted the Program. The MWQI Program is the first
drinking water supply program in the United States to conduct a continuous, real-time

3



Water 2022, 14, 3644

monitoring of organic carbon, bromide, and anions and to report these data on the internet.
Future programs are likely to be guided by factors that trigger changes in treatment plant
processes and operations, such as emerging contaminants, changes in land and water
management practices, permanent Delta island flooding, sea level rise and climate change.

The second paper—“Can Remote Sensing Fill the United States’ Monitoring Gap for
Watershed Management?” [27] (https://www.mdpi.com/2073-4441/14/13/1985, accessed
on 30 June 2022) by Vamsi Sridharan, Saurav Kumar, and Swetha Kumar—addresses the
utility of various remote sensing tools for improving watershed water quality management
using regulatory policy vehicles such as total maximum daily loads (TMDLs). An example
of remote sensing discussed in the paper is the use of maps with different cost–payoff
relationships to help stakeholders plan and incentivize remote-sensing-based water quality
monitoring campaigns. One cogent application is the use of cloud cover as a proxy for the
likelihood of acquiring remote scenes. The shortest time of travel to population centers was
also discussed as a proxy for access to ground-truth imagery for water quality monitoring.
Combining spatial indices of population, water demand, ecosystem services, pollution
risk, and monitoring coverage deficits in remote-sensing-based in maps can help guide
environmental management and the future use of remote sensing products. The authors
found that remote sensing applications were most cost-effective for watershed monitoring
in the southwestern United States and the central plains regions.

The third paper in this Special Issue—“Developing a Decision Support System for
Regional Agricultural Nonpoint Salinity Pollution Management: Application to the San
Joaquin River, California” [28] (https://www.mdpi.com/2073-4441/14/15/2384 (accessed
on 2 August 2022)) by Ariel Dinar and Nigel Quinn—is one of a number of papers that focus
on pressing water quality issues in California. The authors describe a novel stakeholder-
centric approach that is being used to manage salinity in the San Joaquin River, which
drains some of the most productive agricultural land in the nation and discharges into the
Sacramento–San Joaquin River Delta. The authors argue that environmental problems such
as salinity, the degradation of receiving waters, and groundwater resource contamination
associated with irrigated agriculture require a paradigm shift in resource-management
policy and a suite of new decision support tools to create sustainable solutions. The
concept of real-time water quality management with a regulatory schema for sharing
and allocating cost is described in the paper, as well as the application of this schema
to a 20-year time series of flow and salinity data of the San Joaquin River Basin. The
paper describes the simulation models and other decision support tools being applied by
regulators and stakeholders.

The fourth paper—“Comparison of Deterministic and Statistical Models for Wa-
ter Quality Compliance Forecasting in the San Joaquin River Basin, California” [29]
(https://www.mdpi.com/2073-4441/13/19/2661 (accessed on 30 September 2021)) by
Nigel Quinn, Michael Tansey and James Lu—examines two modeling approaches for the
forecasting of water flow and quality in the San Joaquin River of California. This San
Joaquin River Basin application complements the first paper of this Special Issue, reviewing
the models used to implement real-time salinity management (RTSM). Web-based infor-
mation portals have been developed to share model input data, salt-assimilative-capacity
forecasts and provide stakeholder decision support in the River Basin. The paper describes
two modeling approaches. The first approach is a statistical model that relies on the relation-
ship between flow and salt concentration at three compliance monitoring sites and the use
of these regression relationships for forecasting. The second approach relies on a compre-
hensive, data-driven computer simulation model of the Basin. The Watershed Analysis Risk
Management Framework (WARMF) operates on a daily timestep and estimates daily river
salt assimilative capacity along each major river reach. Although the daily regression-based
forecasting model provided a marginally better performance, this was partly because the
model was updated daily and was able to correct itself, whereas the WARMF model was
run weekly and did not have the ability to self-adjust. The physical-based WARMF model
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has more utility for providing decision support to stakeholders who need to schedule salt
loads from contributing watersheds.

The fifth paper—“A Hybrid Model for Water Quality Prediction Based on an Artificial
Neural Network, Wavelet Transform, and Long Short-Term Memory” [30] (https://www.mdpi.
com/2073-4441/14/4/610 (accessed on 20 February 2022)) by Junhao Wu and Zhaocai
Wang—is a machine learning application for water quality assessments in China. This
study focuses on water quality prediction in the Jinjiang River using a combination of
artificial neural network (ANN), discrete wavelet transform (DWT), and long short-term
memory (LSTM) models. Water quality predictions are compared to results from other
models, and the results of the study show the superiority of the ANN-WT-LSTM model
and suggest its potential as a decision support tool for water quality prediction.

The sixth paper—“Classification and Prediction of Fecal Coliform in Stream Wa-
ters Using Decision Trees (DTs) for Upper Green River Watershed, Kentucky, USA” [31]
(https://www.mdpi.com/2073-4441/13/19/2790 (accessed on 30 October 2021)) by Abdul
Hannan and Jagadeesh Anmala—is another machine leaning application for water quality
simulation modeling.

The paper focuses on the classification of stream waters using the parameter of fecal
coliform count for instances where there is body contact, such as in recreation, fishing and
boating, and domestic utilization. The machine learning techniques involving decision
trees can shed light on the structure of input variables, such as climate and land use for
stream water quality prediction. The evaluated techniques include the classification and
regression tree (CART), iterative dichotomiser (ID3), random forest (RF), and ensemble
methods such as bagging and boosting. Input variables are used in the classification of the
unknown stream water quality behavior. Of the techniques tested for the classification of
fecal coliforms in the upper Green River watershed, Kentucky, USA, DTs with adaptive
boosting and bagging were found to be the most accurate.

The seventh paper—“Meeting the Moment: Leveraging Temporal Inequality for Tem-
poral Targeting to Achieve Water-Quality Load-Reduction Goals“ [32] (https://www.mdpi.
com/2073-4441/14/7/1003 (accessed on 30 March 2022)) by Nicole Opalinski, Daniel
Schultz, TamieVeith, Matt Royer, and Heather Preisendanz—focuses on the phenomenon
of hydrologic and water quality variation, often expressed as “hot moments” or episodes
of unexpectedly high pollutant loading. In their study, the authors developed a Lorenz in-
equality decision-making framework using Lorenz curves and Gini coefficients to quantify
temporal inequality using eight impaired catchments in the Chesapeake Bay watershed.
The framework helps to guide the development of site-specific, cost-effective tools for
contaminant load reduction and compliance with water quality objectives.

The eighth paper—“Blending Irrigation Water Sources with Different Salinities and
the Economic Damage of Salinity: The Case of Israel” [33] (https://www.mdpi.com/20
73-4441/14/6/917 (accessed on 20 March 2022)) by Yehuda Slater, Ami Reznik, Israel
Finkelshtain, and Iddo Kan—is one of two international papers that focuses on agricultural
salinity decision support. Israel has long been recognized as a leader in innovative water
conservation and irrigation management technologies. Two strategies for blending water
sources with different salinities as an irrigation water supply are compared using a dynamic
mathematical programming model that captures this interdependence of hydrology and
production economics. The two strategies compare field blending, which enables farmers to
assign water with a specific salinity to each crop, with blending at a regional scale. Elevated
crop salinity was observed for the regional-scale strategy, and the model results show the
largest yield reductions for salt-sensitive crops.

The ninth paper—“Environmental Decision Support Systems as a Service: Demon-
stration on CE-QUAL-W2 Model” [34] (https://www.mdpi.com/2073-4441/14/6/885
(accessed on 20 March 2022)) by Yoav Bornstein, Ben Dayan, Amir Cahn, Scott Wells, and
Mashor Housh—is another contribution from Israel that describes the application of an
environmental decision support system (EDSS) for the rehabilitation and preservation
of ecosystems. The EDSS is built upon the popular CE-QUAL-W2 model platform with
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enhancements that are configured to leverage new open-source technologies in software
development (i.e., Docker, Kubernetes, and Helm) with cloud computing to significantly
reduce implementation costs. For Python programmers familiar with the GitHub reposi-
tory, new algorithms and executable code can be accessed by the EDSS from GitHub and
employed in river basin water quality simulations. A case study is described in the paper
from the Yarquon River Authority that combines agriculture and urban stakeholders and a
variety of water sources with water quality concerns.

The tenth paper—“Development and Demonstration of an Endocrine-Disrupting
Compound Footprint Calculator” [35] (https://www.mdpi.com/2073-4441/14/10/1587
(accessed on 20 May 2022)) by Rachel Taylor, Kathryn Hayden, Marc Gluberman, Laura
Garcia, Serap Gorucu, Bryan Swistock, and Heather Preisendanz”—addresses an important
topic in municipal water supply decision support. Few wastewater treatment plants were
designed to remove chemicals in commonly used personal care products; hence, many
of these products and their metabolites persist in plant effluent. Many of these chemi-
cals are potential endocrine-disrupting compounds (EDCs) that cause adverse impacts to
aquatic organisms at trace concentrations. The authors developed a public-domain EDC
footprint calculator that prompts users to input the number of products they own into
categories of health and beauty, laundry, and cleaning and estimate a user’s EDC footprint
(mass) together with the ranked importance of each product. A case study is presented
involving 39 citizen scientists in the northeastern United States, which found the average
household EDC footprint to be around 150 g. This decision-making tool can help reduce
household footprint impact on future water supply by substituting certain products with
greener alternatives.

The eleventh paper in this Special Issue—“Supporting Restoration Decisions through
Integration of Tree-Ring and Modeling Data: Reconstructing Flow and Salinity in the
San Francisco Estuary over the Past Millennium” [36] (https://www.mdpi.com/2073-4
441/13/15/2139 (accessed on 20 August 2022)) by Paul Hutton, David Meko and Su-
joy Roy—also focuses on salinity, although this application is further downstream in the
Sacramento–San Joaquin River Delta. This paper presents updated reconstructions of water-
shed runoff into the Estuary from tree-ring data coupled with models that associate rainfall
runoff with freshwater flow to the estuary and salinity intrusion. The authors’ aim is to
better understand the long-term magnitude and seasonality of changes in the Estuary, and
thus provide decision support to agency engineers and regulators charged with sustaining
adequate freshwater flow to the Estuary and protecting the important anadromous fishery
resource. This paper confirms a dramatic decadal-scale hydrologic shift in the watershed
from very wet to very dry conditions, which occurred during the late 19th and early 20th
centuries, causing an increase in salinity intrusion in the first three decades of the 20th
century. Population growth and extensive watershed modification during this period
exacerbated this underlying hydrologic shift. Understanding the anthropogenic drivers
behind this process is important for setting realistic salinity targets for estuarine restoration.

4. Conclusions

This Special Issue provided a number of modern-day examples of decision support
capabilities directed toward improving environmental water quality. The collection of
papers in this Special Issue suggest a wide range of issues and regulatory means that can
make good use of current state-of-the-art achievements in DSTs and DSSs to improve the
policy regulation of deteriorated water quality.

These examples embrace the use of state-of-the-art computer-aided technologies, in
particular the use of remote sensing and machine learning, both of which dominate research
applications in this field of endeavor. The DSTs derived from the applications of these
technologies provide direct and actionable links between scientific research and practice,
and this Special Issue highlights how such linkages can be achieved in programmatic,
thematic and operational ways. However, despite the excitement generated from these
activities, we should not lose sight of the important need to support and carry out basic data
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collection and data quality assurance activities, as well as the need to strive toward greater
dissemination and our ability to share these data. Assessment and interpretation techniques
count for nothing if they are based on flawed and inadequate background data. These
activities need to march forward in lockstep with advances in decision support capabilities.
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Abstract: Environmental problems and production losses associated with irrigated agriculture, such
as salinity, degradation of receiving waters, such as rivers, and deep percolation of saline water to
aquifers, highlight water-quality concerns that require a paradigm shift in resource-management
policy. New tools are needed to assist environmental managers in developing sustainable solutions to
these problems, given the nonpoint source nature of salt loads to surface water and groundwater from
irrigated agriculture. Equity issues arise in distributing responsibility and costs to the generators
of this source of pollution. This paper describes an alternative approach to salt regulation and
control using the concept of “Real-Time Water Quality management”. The approach relies on a
continually updateable WARMF (Watershed Analysis Risk Management Framework) forecasting
model to provide daily estimates of salt load assimilative capacity in the San Joaquin River and
assessments of compliance with salinity concentration objectives at key monitoring sites on the river.
The results of the study showed that the policy combination of well-crafted river salinity objectives by
the regulator and the application of an easy-to use and maintain decision support tool by stakeholders
have succeeded in minimizing water quality (salinity) exceedances over a 20-year study period.

Keywords: San Joaquin River; salinity; decision support system; policy; assimilative capacity;
real-time management economics

1. Introduction

Irrigated agriculture in semi-arid regions typically produces drainage return flows
with high salinity content. Tanji and Kielen [1], review the conditions of low precipitation
and high evaporation in semi-arid regions that lead to a high level of salinity in the drainage
return flows. They provide examples from several locations such as the Nile Delta in Egypt,
the Aral Sea Basin, and the San Joaquin Valley of California. An additional important region
affected by salinity and the salinity pollution of water ways is the Murry Darling River
Basin in Australia (Hart et al. [2]). The authors indicate that the clearance of deep-rooted
native vegetation for the development of dryland agriculture and the development of
irrigation systems in the basin have resulted in more water now entering the groundwater
systems, resulting in mobilization of salt to the land surface and to rivers. In these examples,
the return flows are discharged to water bodies (the Nile River, the Aral Sea, the San Joaquin
River, and the Murry Darling River) that could benefit from regulation aimed to minimize
negative externalities in the form of damage to crops and the environment. When these
negative externalities exceed certain thresholds, the regulator can respond by assessing
fines or other means of encouraging compliance with water quality objectives. We have
seen different types of regulators, such as a river basin authority, in charge of managing the
quantity and quality of water in the basin. A river basin authority could be a state or federal
entity with the authority to impose fines or restrict water allocations in the case of nonpoint
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source pollution. Baccour et al. [3] model the case of the Ebro River Basin in Spain, where
regulations to control nonpoint source pollution of nitrates from livestock production are
addressed, among other policy interventions, by restriction of water supply, imposed by
the Ebro Basin Authority. Quinn [4], compares the performance of real-time, basin-scale
salinity regulation in the San Joaquin River in California with those of the Hunter River
Basin authority, Australia.

Some numerical simulation models can be configured to act as decision support tools,
which provide alerts of potential violations of water quality objectives, and can assist
in the development of schemas for creating incentives or assessing fines to encourage
compliance [5,6]. Obropta et al. [5] developed a model to address hot spots for a water
quality trading program intended to implement the total maximum daily load (TMDL) for
phosphorus in the Non-Tidal Passaic River Basin in New Jersey. Zhang et al. [6] develop a
model-based decision support system for supporting water quality management under
multiple uncertainties. Such tools can have the added benefit of allowing equitable imposi-
tion of proposed incentives or fines on those polluters who bear the primary responsibility
for the load exceedances. Similar decision support tools have been developed in other
sectors and contexts. Ioannou et al. [7] designed a DSS to help managers in the process
of decision making, in handling areas that have been burnt by forest fires, by running
hypothetical (what-if) scenarios in order to achieve the best form of intervention in fire-
affected regions of Greece. Makropoulos et al. [8] demonstrate the development and use of
a DSS to facilitate the selection of bundles of water-saving strategies and technologies to
support the delivery of integrated, sustainable water management in the UK. Rose et al. [9]
identify factors affecting the selection and use of decision support tools by farmers and
farm advisers in the UK for agricultural planning purposes.

Our paper presents an approach using a regional framework that enhances the utility
of existing modeling tools (Watershed Analysis Risk Management Framework—WARMF),
which are currently in use by practitioners in the San Joaquin Valley (Systech Water Re-
sources Inc. [10]), to make forecasts of the salt load assimilative capacity of a major river.
The river receives salt loads from catchments in the form of irrigation return flows that often
exceed the river’s salt load assimilative capacity. Uses of the modeling framework WARMF
by practitioners are described by Quinn et al. [11], Fu et al. [12], and Quinn et al. [13],
where WARMF features and performances are compared with other tools currently in use
by practitioners.

The nonpoint source nature of agricultural salinity pollution poses a dual challenge
for regulators by making it difficult to identify primary polluters, and to quantify pollu-
tion loads on a continuous basis. Not all drainage outlets can be monitored; therefore,
calibrated simulation models play an important role in predicting pollutant loads under
various permutations of hydrological and water quality inputs. Models allow alternative
regulatory approaches, including schemes such as voluntary agreements and cap-and-trade
in pollution permits to be evaluated, provided they can be adequately calibrated. Examples
for such schemes are discussed and explained below [14–23].

Published literature on economic and regulatory aspects of nonpoint source pollution
in irrigated agriculture highlights a variety of socio-political issues. These include the
role of asymmetric information, value of information, effectiveness of policy interven-
tions, and adoption of pollution reduction production practices. In an early work Griffin
and Bromley [14], established a conceptual model for analyzing agricultural nonpoint
pollution. An important aspect of pollution quantification is the representation of the
biophysical processes linking production decisions to emission loads. Production decisions
are reflected in the type and quantity of inputs in management practices and in local
biophysical conditions.

An extension of the analysis in [14], was proposed in Shortle and Dunn [15], which
included stochastic components in the pollution functions that arose from random natural
processes as a means of addressing the lack of information about key biophysical processes.
A review of various nonpoint source pollution control regulations (either incentives, taxes,
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or quotas) on inputs was also provided in Shortle and Dunn [15]. These are second-best
interventions in the absence of direct measurements of polluter discharges. Shortle and
Dunn [15], identified a reduction in the cost-effectiveness of these pollution control mea-
sures when applied uniformly across diverse agriculturally dominated subareas, which are
heterogeneous in terms of water management practices and landscape characteristics, that
can lead to different receiving water impact functions. To address such shortcomings, a cost-
effective approach was developed by Shortle at al. [16] and was used to determine the best
single-input tax policy for nonpoint source pollution in agriculture. The authors examined
the question of reducing nitrate leaching from lettuce fields in California. Larson et al. [17]
argue that under the certain circumstances applied, irrigation water can be the easiest single
input to regulate since nitrate loading to groundwater is directly related to soil leaching
rates. However, for other contaminants such as salinity, salt loads in subsurface drainage
return flows may not be well correlated with surface water applications since most of the
salt captured by the sub-surface drains may originate from deeper layers in the aquifer
rather than from infiltrating water. Considerations of transaction costs and other political,
legal, or informational constraints for dealing with nonpoint source pollution regulation
were presented in Ribaudo et al. [18]. Such considerations could be applied to achieve
specific environmental goals in a cost-effective manner. The authors discussed the economic
characteristics of five instruments that could be used to reduce agricultural nonpoint source
pollution (economic incentives, standards, education, liability, and research).

Several authors [9–23], considered regulation that had a spatial component in the
presence of heterogeneity instead of regionally uniform instruments. In these works,
authors demonstrated that spatially uniform policies resulted in economic efficiency losses
and reduction in welfare. Kolstad [19], modeled a two-pollutant economy and showed
that when marginal costs and benefits become steeper, the inefficiency associated with
undifferentiated regulation increases. Wu and Babcock [20], demonstrate, among other
things, that a uniform tax on polluter farmers may result in some farmers not using the
chemical, and a uniform standard may have no effect on low-input land. Doole [21], finds
that because of the disparity in the slopes of abatement–cost curves across dairy farms
in New Zealand, a differentiated policy is more cost-effective at the levels of regulation
required to achieve key societal goals for improved water quality. Doole and Pannell [22],
find that due to variation in nitrate baseline emissions and the slopes of abatement–cost
curves among polluting dairy farms renders a differentiated policy which is less costly than
a uniform standard in the Waikato Region of New Zealand. Finally, the work by Esteban
and Albiac [23], demonstrated and quantified the welfare loss from a spatially uniform
regulatory policy to reduce salinity pollution and the efficiency gains from different policy
measures based on the same spatial characteristics, applied in the Ebro River Basin of Spain.

Very few studies consider joint management of the nonpoint source pollution in
a regional setting, using cooperative arrangements and trade, including trade-in water
rights/quotas and trade-in pollution disposal permits in a regional setting. Several exam-
ples from actual cases exist. The Murray Darling Basin Authority [24], initiated a basin-wide
agreement, a joint work program designed for setting salt disposal permits based on histor-
ical loads, including a revised cost-sharing formula and salinity credit allocation shares for
Victoria, New South Wales, South Australia, and the Commonwealth [25]. In the Hunter
Basin of New South Wales, Australia [25,26], a scheme of salt permit discharges has been
put into work. The main idea of this scheme was to permit discharge of salt loads only
when there was available salt load assimilative capacity in the Hunter River that drains
the Hunter Basin. Quinn [4], reviews how salt load discharges to the river were scheduled
by quantity, time, and location based on stakeholder need and calculations of salt load
assimilative capacity using a simple spreadsheet mass–balance model.

Increasing use of high-salinity water as an irrigation source could be a serious problem.
Yaron et al. [27] analyzed the economic potential to address such a problem by cooperative
settlements in Israel and calculated income distribution schemes for three farms, using
cooperative game theory (GT) algorithms. Work by Dinar et al. [28] also applied cooper-
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ative GT to the regional use of irrigation water under scarcity and salinity. Their model
addressed inter-farm cooperation in water use for irrigation and determined the optimal
water quantity and quality mix for each water user in the region.

Several additional works that represent various efforts and methods include
Nicholson et al. [29] who conducted a comprehensive assessment of decision support
tools used by farmers, advisors, water managers, and policy makers across the European
Union as an aid to meeting the EU Common Agricultural Policy objectives and targets.
Development and use of a GIS-based decision support framework was suggested by
Chowdary et al. [30], integrating field scale models of nonpoint source pollution processes
for assessment of nonpoint source pollution measures of groundwater-irrigated areas in
India. A GIS was used to represent the spatial variation in input data over the project area
and to produce a map that displayed the output from the recharge and nitrogen balance
models. Different strategies for water and fertilizer were evaluated using this framework
to foster long-term sustainability of productive agriculture in large irrigation projects.

The work by Quinn [4], which uses monitoring, modeling, and information dissem-
ination for salt management in the Hunter River Basin in Australia, was compared to a
more model-intensive approach deployed in the San Joaquin River Basin in California.
Decision support systems for these river basins were developed to achieve environmental
compliance and to sustain irrigated agriculture in an equitable and socially and politically
acceptable manner. In both basins, web-based stakeholder information dissemination was
a key for the achievement of a high level of stakeholder involvement and the formulation
of effective decision support salinity management tools. The paper also compared the
opportunities and constraints of governing salinity management in the two basins as well
as the integrated use of monitoring, modeling, and information technology to achieve
project objectives.

In the present paper, we provide a scalable water quality simulation model and
decision support tool for a regional water quality (salinity) management problem that
incorporates water/irrigation regions, each serving several individual farmers. The model
operates at the subarea level where each subarea has distinct features that include political
and hydrologic boundaries and which recognize different accesses to water supply and
drainage resources. These subareas have been recognized by the State of California water
regulatory agency with jurisdiction over the project area. We highlight the role of top-down
regulations as well as market-based arrangements that might form a basis for cap and
trade in pollution permits. We compare and discuss the physical as well as the welfare
consequences of various policy interventions. The combination of monitoring system
networks and decision support frameworks are scalable—hence, the final work product
can be applied at the individual stakeholder level or aggregated at the water district
level. Institutional and managerial components of the schema would need to be separately
developed. Regional cooperation in the form of a market for tradeable salinity pollution
permits [16], would be a significant outcome of a future study and one that is facilitated by
the unique application of the simulation modeling tool.

The paper develops as follows: First, we present the analytical model aimed to eval-
uate the various options for pollution control at the subarea (regional) levels, responses
of individual dischargers to introduced regulations, and the allocation of joint costs and
benefits among the salt-discharging regions. Next, we introduce a proposed empirical
framework to be applied to the San Joaquin River in California, given existing model re-
sources in use by regulatory agencies. Then, we define a subset of seven subareas within the
region as the basis for the empirical application aimed to test the analytical model. Finally,
we evaluate the results to expand the method to incorporate future cooperative strategies.

2. Theoretical Model Building

2.1. Theoretical Perspective of the Analytical Model

We refer to a region that is composed of N subareas (n = 1, 2, . . . , N). Each subarea n
could comprise water/irrigation districts that incorporate several agricultural producers
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regulated by individual water district mandates. Each subarea n includes Kn (kn = 1, 2,
. . . , Kn) agricultural producers that are considered nonpoint source polluters of a given
pollutant, or of a set of several pollutants (for simplicity we will refer to salinity as the
pollutant in question). Each agricultural producer applies water on agricultural crops to
produce market products. A byproduct in the form of agricultural pollution is the irrigation
return flow that may contain a regulated water quality pollutant, which we will specify to
be salinity.

Each of the k producers in the n-th subarea may have different factors affecting
agricultural production conditions (natural and technical) that can lead to different cropping
patterns, crop yields, net revenue, and the salt concentration and salt load of the return
flow. We define a production function of agricultural yield and return flow for producer k
as (for simplicity we drop the indexes k and n):⎧⎨

⎩
Y = f (W, C, T|X)
Q = g(W, C, T|X)
S = h(W, C, T|X)

(1)

where Y is yield per acre of a given crop, W is water applied per acre, C is salinity level
of applied water, T is irrigation technology used (expressed in integer values to indicate
various irrigation technologies available to each agricultural grower within a designated
subarea), Q is volume of return flow produced on that farm, S is the salt concentration of
the return flows, and X is a vector of all fixed effects related to the location of that producer.
We will discuss later the first and second order conditions of the production function
derivatives, namely the shape of these three components of the production function.

Given Equation (1), agricultural producers within a designated subarea maximize
their net revenue under constraints imposed by both natural and regulatory conditions:

πkn = ∑
Crops

p·Y·L − w·W − t·T (2)

s.t.:
∑

Crops
L ≤ L (3)

∑
Crops

L·W ≤ W (4)

Additional constraints imposed on each agricultural producer within a designated
subarea by subarea management, are summarized in (5), and discussed below

Land f allowing constraints
Irrigation technology constraints
Speci f ic crop constraints

⎫⎬
⎭ (5)

where for each agricultural producer within a designated subarea, p is the price per unit of
crop, L is the area grown with that crop, w is the price of water, t is the per-acre cost of the
technology, L is the total cultivable land of the agricultural producer, and W is the water
quota imposed by the subarea on the agricultural producer. Net revenue is defined as the
revenue from crop sales minus the variable costs of production and payments of fees for
exceedance of pollution load.

The solution to (2)–(5) provides for each agricultural grower within a designated
subarea: the area under production with each crop selected; the total amount of water
applied; the technology selected for each crop; the total profit; the total volume of return
flow from the designated subarea; and the salt concentration of the return flow that can be
used to compute drainage salt (mass) loads. While we may predict the volume Q and salt
loading with associated S for each subarea, such information is not available to either the
subarea management or to the federal regulator.
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The subarea managers have access to monitoring data that provides the total volume
of Q from all agricultural producers and its quality, S, that can be used to estimate salt
loading. Salt loading is the factor each subarea manager is obligated not to exceed on a
monthly and annual basis by the regulator, as defined within the Total Maximum Daily
Load (TMDL) allocation for each subarea. TMDLs are the policy vehicles that are used
by the US Environmental Protection Agency to limit nonpoint source pollution to levels
that do not exceed the assimilative capacity of the receiving water body. TMDLs are
keyed into water quality standards or objectives at a compliance monitoring station for
the pollutant in the receiving water, and are designed to be protective. The agricultural
non-point source pollutant management problem is a typical principal–agent problem
under circumstances of asymmetry of information. Hence, we need to introduce several
simplifying assumptions. We start by drawing (Figure 1) a schematic regional setting, using
four agriculturally dominated subareas located on the valley floor, and a water body in
the form of a river (describing the actual situation in the region that we will empirically
analyze). The remaining three subareas are tributary river watersheds where water flow is
controlled by upstream dams and reservoirs and whose operation is largely independent
of agricultural drainage decision making.

Subarea 1

Subarea 2

Subarea 3

Subarea 4

Producer 1

Producer 2

Producer 3

Producer 1

Producer 2

Producer 3

Producer 1

Producer 2

Producer 3

Producer 1

Producer 2

Producer 3

River
Monitoring 
stations of 

return  flows 
from each 
subarea

Figure 1. A schematic representation of the region with subareas, agricultural producers, and a
regulated receiving water body (river).

2.2. Real-World Model Fitting

Water supply for the westside of the San Joaquin River Basin (SJRB) is provided by
a water agency (e.g., United States Bureau of Reclamation) to the two westside subareas
(Grasslands and the North-West Side subareas), according to water contracts negotiated
between the water agency and individual water districts within each subarea. The individ-
ual water districts, in turn, allocate and distribute water supply according to agreements
made with agricultural producers within each subarea. Water supply to subareas on
the eastside of the SJRB derives largely from snowpack runoff from the Sierra Nevada
Mountain Range, stored in downstream reservoirs along each major San Joaquin River
(SJR) tributary. A state government water quality regulator (such as the California State
Water Board), with the Regional Water Quality Control Board as enforcer, sets salt load
objectives for the Basin in accordance with a Total Maximum Daily Load (TMDL) alloca-
tion developed by the Environmental Protection Agency for the basin. The load-based
TMDL was further refined to develop subarea-level salt load allocations that take account
of different water year hydrology. The conservative nature of the TMDL computation
that utilizes the lowest 10% average low-flow condition resulted in allocations that were
unattainable without major impact to the agricultural economy in each subarea. Hence,
the initial TMDL allocations were replaced by concentration objectives, based on a 30-day
running average electrical conductivity (EC), for the most downstream monitoring location
on the SJR, Vernalis. A concentration objective allows agricultural producers and other
salinity dischargers to utilize more of the available salt load assimilative capacity in the
SJR. This initial compliance-monitoring objective has been supplemented with two addi-
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tional upstream salinity objectives, ostensibly to protect the water quality of agricultural
diversions made by westside agricultural producers. These additional salinity objectives
are set at 1550 uS/cm year-round, as opposed to the 1000 uS/cm non-irrigation season,
and 700 uS/cm objective set at Vernalis. The regulator suggested a number of approaches
by which the original salinity load allocations, under the TMDL, might form the basis for
salt load reduction strategies or cost allocation in situations where these various salt load
objectives were violated.

The salinity load (mass of salt from all producers which is calculated by summing
the product of drainage volume and salt concentration from each producer) produced on
subarea n is the result of the return flows (drainage) from the agricultural activity of all
producers, such that ∑kn SnQn ≤ Sn. There is no practical way that the regulator could
equitably assign salt pollution levels to the individual agricultural producers or enforce
this regulation at a reasonable cost to individual agricultural producers. Therefore, the
regulator has chosen to allow stakeholders to internally govern the strategies to attain and
abide by river EC objectives, while encouraging stakeholders to consider the subarea as
the organizing entity for stakeholder action. Stakeholder compliance is monitored by the
Regional Board using data supplied by state and federal water agencies.

To maintain compliance the agricultural producers can dynamically allocate salt loads
to each subarea given that available salt load assimilative capacity at each compliance sta-
tion is the product of the total assimilative capacity (defined by the current flow multiplied
by the EC objective) and the current salt load in the river.

The monthly salt load cap can be calculated for each subarea individually based on
the calculated TMDL allocations and the current salt loading to the river from each subarea
(measured in terms of tons of salt: SL = d [salt concentration, S; volume, Q]), where SL is
salt load (In the San Joaquin River the current TMDL criterion is a 30-day running average
salt concentration that is multiplied by a monthly design flow to determine allowable salt
loading). Using this stakeholder-maintained salinity load cap approach subareas would pay
a fine (F) to the regulator, which could be a price per unit of salt load above the cap or some
other equitable formula for dividing the fine amongst stakeholders. F can be specific to each
subarea or similar for all subareas (see [23], for critique on uniform tax). F is then equitably
distributed according to some formula (by land area, drainage volume, incremental salt
load etc.) among all Kn agricultural producers in the different subareas (or by water user
associations/districts in each subarea). We assume, for simplicity, that since we have a
non-point source salinity management problem where the exact source of salt is not known,
the most straight-forward and cost-effective initial approach to distribute F is to divide it
equally per acre of land in production, or per acre–foot of irrigation water supply delivered.
These initial approaches ignore the fact that some crops are associated with higher drainage
return flow volumes and that subsurface drainage return flow salt loads may be poorly
correlated with irrigation applications. Alternative allocation formulas may be relevant
and will be considered in the empirical model. We assume that the (hypothetical) subarea
manager (While there is no actual subarea manager, it is assumed that the model allocations
are respected by the individual farmers and other decision makers at the water district
level) has the authority or power to impose these allocations of river salt load assimilative
capacity. We also do not want to set an optimal level for F, but rather take F as given in the
empirical analysis. We will use several levels of F in a sensitivity analysis to evaluate the
effect of F on the behavior of the agricultural decisionmakers at the subarea level.

An additional consideration is in the temporal administration of fines and fee sched-
ules, which has a bearing on the design of a decision support system to aid the subarea
manager to orchestrates stakeholder responses to potential violations of the river salinity
objectives. An approach that attempts to respond to potential exceedance of salt load
assimilative capacity at each compliance site in real-time would require model simulation
tools that ran on a monthly timestep at a minimum. An optimization model would choose
between available salt load reduction strategies, purchase of available water supply for
dilution purposes, or payment of fines each month. Alternatively, accounting could be
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postponed until the end of each year and fines imposed retroactively. The latter strategy
would rely on uncertainty and the fear of a potential exceedance to motivate compliance.
However, the decision tool needed to support this strategy could be simplified to operate
on an annual timestep.

2.3. Individual Responses to Water Quality Regulations

We expect that each stakeholder within each subarea will respond to F, depending
on the level of F and the conditions (cropping patterns, physical conditions such as soil
properties, etc.) in that subarea. In the empirical application, we will look at the effects of
surface water and irrigation land and water limits and fees, as these are the main forms
of regulation that can affect salinity load in the case of a nonpoint source pollution. In
future empirical applications, we propose limits on the output of the model, specifically
the salinity loading. Here, we outline the full analytical model.

Given F, each subarea faces the following two options:

(a) Maintain the current (status quo) level of salt loading if F ≤ the cost of abatement.
The cost of abatement could include changing the crop mix and/or land use changes
(e.g., fallowing land) (Changes in land use (crop mix or fallowed land) is an important
component to maximize revenue and obtain maximum resource use efficiency. In
the empirical model, changes in land use is incorporated at a later stage in the model
development process), surface and/or subsurface drainage reuse, investing in more
efficient irrigation technology, changing irrigation scheduling, and other options.

(b) Abate to a level of allowable salt loading ≤ than the cap. Each subarea will require
abatement activities (detailed below) to the point where the marginal abatement cost
equals F.

We consider the abatement in (a) and (b) to be “individual responses” to the salinity
management regulation. That is, each subarea acts on its own responses, given its resources
and local conditions (In the empirical application section, we also consider some of the
individual responses, such as restrictions on water quotas, restrictions on cropping patterns,
land fallowing, and investment in water-conserving irrigation technologies, as regulatory-
imposed policies).

Each subarea is characterized by an aggregate revenue function (of all agricultural pro-
ducers within each water district) minus fines on excess salt loading and minus abatement
cost, such that

Πn =
Kn

∑
kn=1

πkn − Fn − An (6)

Fn = d(Q, S)·ϑ (7)

An =
Kn

∑
kn=1

mkn(Γkn{1, 2, 3 . . . N}) (8)

where Fn is a fine on excess salt loads, ϑ is pollution fine per unit of excess salt load, d is
salt load, An is abatement cost, and Γkn{1, 2, 3 . . . N} is a set of abatement options, such as
changing cropping patterns, fallowing land, adopting more efficient irrigation technologies,
and investing in monitoring drainage quantity and quality. Each subarea can select one of
these abatement options or a subset of the abatement options.

2.4. Allocation of Joint Costs and Benefits in the Case of Individual Responses

In both individual and cooperative responses, we estimate the subarea net benefits
as revenues minus variable operational costs and incremental costs. The incremental
costs include costs associated with activities that polluters introduce to the agricultural
production process in response to the regulatory objectives or constraints on input use
imposed by the regulator for each subarea. In the case of a fine imposed on the entire region
for exceeding the pollution EC objective, the subarea level of fine is allocated, based on
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several allocation principles, and the subarea amount of fine, Θj, is added to the incremental
costs. In the case of cooperation among the subareas; we estimate first the regional net
benefits to the entire region. The value of the regional benefits is obtained by running a
regional optimization model, coined ‘a social planner’ model, which maximizes the entire
regional welfare rather than looking at welfare of each subarea individually.

Economic theory [31], suggests that a social planner allocating regional benefits or
costs among the agents involved maximizes the joint welfare of the region, subject to
physical and institutional constraints relevant to the situation under study. Under a social
planner optimization, the region is seen as one unit without political borders. An optimal
social planner allocation is considered as first best and serves as reference (benchmark) to
which other allocation schemes are compared. Deviations from the social planner outcomes
represent inefficiency (welfare loss) of the alternative allocations.

Once a regional social planner allocation solution has been found, the regional gains
(either welfare benefits or savings of joint costs—such as regulatory fines) must be dis-
tributed among the regional parties. We will consider a couple of schemes for the allocation
of the joint benefits or the costs of pollution control, or regulatory fines, among resource
management regions, namely, the subareas (and the individual farmers in each subarea).
For example, allocation of benefits or fines could be based on annual drainage flows or
based on irrigated area. The likelihood of subareas forming stable coalitions aimed to
reduce salt loads can be measured by comparing the empirical attributes of the standard
allocation schemes with game theoretic allocation schemes whose acceptability and stabil-
ity can be measured. We introduced several allocation schemes, based on the subarea’s
contribution of pollution load and consistent with the strategy described previously [32].

2.4.1. Allocation of Regulatory Fines Based on Surface Water Applied

This allocation scheme simply suggests that each polluter (subarea) will be charged in
proportion to the volume of surface water applied on that subarea. Therefore, the cost to
subarea j is

Θj = F
SWj

∑j∈N SWi
(9)

where Θj is the regulatory fine allocated to subarea j; F is total regional regulatory fine.
This scheme allocates all the regulatory fine among all N subareas. SWj is the volume of
surface water applied for irrigation in subarea j (a summation over all irrigated area). The
disadvantage of this regulatory method is that it does not target those stakeholders who
physically discharge to the SJR and not take into account the significant reuse that occurs in
some areas that helps to curtail salt loading to the river. It is a blunt policy instrument that
is nonetheless relatively easy to administer.

2.4.2. Allocation of Regulatory Fines Based on Total Irrigation Water Applied

This allocation scheme simply suggests that each polluter (subarea) will be charged in
proportion to the total volume of water applied (surface water + groundwater + recycled
wastewater) on that subarea. Therefore, the cost to subarea j is

Θj = F
Wj

∑j∈N Wi
(10)

The drawbacks to this policy are the same as those of the prior policy, although, it does
account for groundwater use that can add significant salt to the total salt discharged from
each region, since the EC of groundwater is typically more than double that of applied
surface water on the westside of the Valley, and more than four times the average EC of
eastside water applications.
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2.4.3. Allocation of Regulatory Fines Based on Salt Load Generation

The allocation scheme in (11) simply suggests that each polluter (subarea) will be
charged in proportion to the amount of salt load it generates. Therefore, the cost to subarea
j is

Θj = F
Sj

∑j∈N Si
(11)

where Sj is the quantity of salt load generated by subarea j.
This policy is the most equitable but also the most difficult to administer since current

monitoring and modeling is insufficient to accurately measure or estimate the salt load
export from each subarea. Current models are not capable of recognizing the amount off
drainage reuse within each subarea.

2.4.4. Allocation of Regulatory Fines Based on Cultivated Area

The allocation based on cultivated area is built on a similar rule as in Equation (12),
except that Qj is cultivated land and not disposed drainage.

Θj = F
Lj

∑j∈N Li
(12)

where Lj is the cultivated land area in subregion j.

3. Model Testing

3.1. Application to Water Quality Issues in the San Joaquin River

Salinity loads to the San Joaquin River (SJR), the receiving water body for agricultural
drainage in the San Joaquin Basin, are regulated by the State of California through the
Central Valley Regional (Water Quality Control) Board. A TMDL was developed that set
load limits for each subarea [33,34]. The TMDL for each of the seven subareas (Figure 2)
was largely based on basin hydrography, and existing water district and jurisdictional
boundaries. Four of these subareas (Northwest Side, East Valley Floor, Grasslands, and
San Joaquin River Above Salt Slough) are located on the valley floor, and drainage from
these subareas is dominated by agricultural and managed wetland decision-makers. The
other three subareas are watersheds serving three major east-side tributaries to the SJR,
namely the Stanislaus, Tuolumne, and Merced rivers. Given the institutional history
and management functions within the basin, these seven subareas are the most logical
management units and any possible future trade in salinity load permits would initially
occur between these entities.

The load allocations under the TMDL ended up being overly restrictive, following the
typical TMDL development methodology and would have resulted in potential annual
fines in the order of USD 300,000 per subarea based on a 9-year average of salt loads. Load
allocations were based on a design flow hydrology representing the lowest 10% of monthly
flows. An additional safety factor was applied to the allowable monthly salt loads which
further reduced stakeholder ability to meet objectives. The Regional Board adopted a
real-time concentration-based schema to substitute for the TMDL salt load based approach
which allowed greater use of the river’s assimilative capacity. Salinity management in
the San Joaquin River Basin is complex, involving agricultural, wetlands, and municipal
stakeholders within the basin. Being cognizant of this complexity and the difficulty of
building coalitions among entities that had little history of working cooperatively, the
Regional Water Board named the alternative approach to TMDL implementation “real-
time salinity management”. The current Basin Water Quality Control Plan for the San
Joaquin Basin lays out the general requirements for a Board-approved Real-Time Salinity
Management Program:

1. The program is a basin-wide program requiring all stakeholders discharging to the
SJR to be signatories and active participants.
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2. Real-time monitoring networks should be developed and maintained to allow the esti-
mation of net salt loading to the San Joaquin River and residual salt load assimilative
capacity at the Vernalis compliance monitoring station.

3. Provision should be made to allow for free and easy sharing of real-time flow and EC
data that will be the basis for salt load assimilative capacity estimation.

4. A decision support tool or simulation model should be developed to allow reliable
forecasting of salt load assimilative capacity to give stakeholders adequate time to
make scheduling decisions to maintain compliance with River salinity objectives.

Figure 2. Map of the various San Joaquin River Basin contributing subareas as defined in the 2002
TMDL Regulation Plan: Northwest Side (NWS), Grasslands Agriculture (GRA), East Valley Floor
(EVF), Merced River (MER), Stanislaus River (STL), Tuolumne River (TLU), and San Joaquin River
above Salt Slough (SJR). Note: the eight red triangles in the Figure that are indicated in the legend by
numbers 1–8 are the locations of the flow and salinity load monitoring stations. Source: [33,34].

Salinity concentration objectives for compliance monitoring stations at Crows Landing
bridge, Maze Road bridge and Vernalis were set as 30-day running averages of EC. For
Vernalis these salinity concentration objectives were a winter objective of 1000 uS/cm and
a summer objective of 700 uS/cm. The summer irrigation season salinity objective was con-
sidered protective of irrigation agriculture and salt-sensitive crops. A year-round salinity
objective of 1550 uS/cm was later set for compliance monitoring stations at Maze Road
Bridge and Crows Landing Bridge, set to be protective riparian diversions used primarily
on orchards in the river reach between Crows Landing Bridge and Maze Road Bridge.

Using a water quality simulation model as a real-time decision support tool, two-week
forecasts of the 30-day running average salt load assimilative capacity were made routinely
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for the San Joaquin River at each compliance monitoring station. The model provides
information on the salt loads from each of the seven subareas and computes the excess load
that must be removed from the system by one or a number of salinity management options
that can adjust the scheduling of salt load discharge into the river, including: temporary
storage of these salt loads in ponds; shutting off discharge from agricultural drainage sump
pumps into drainage conveyances for periods of time; recirculating or reusing return flows
of high salinity; and/or providing dilution flows from eastside tributary reservoirs to lower
ambient salt concentration in the river to meet salinity concentration objectives. To illustrate
the potential use of assimilative capacity, the USBR calculated the available daily salt load
assimilative capacity in 2008, a year when violations of the salinity objective were still
common. During 2008, the SJR salt load assimilative capacity was available on 246 days of
the year (conservatively estimated when the SJR salinity was less than 85 percent of the
salinity objective) for a total of around 115,000 tons of salt (calculated on a daily basis). The
salt load assimilative capacity of the SJR was exceeded for 119 days.

A “strawman” allocation policy was developed as part of an analysis by Regional
Board staff in 2015, to demonstrate the potential fines that might have occurred under the
published TMDL using a suggested daily fine of US$5000 per day for each overage of the
EC objectives. The cultivated area in each subarea was the means by which the total fine
was distributed among subareas and the stakeholders within each subarea. During periods
when salt load assimilative capacity in the San Joaquin River was exceeded, stakeholders
within each subarea were obliged to provide a collective response to salinity objective
exceedances. Stakeholders in one subarea could engage in voluntary agreements with
stakeholders in other subareas through their representatives to trade individual subarea
salinity load exceedances for a number of management actions to be deployed in the
other subregions. The schema that was developed (Table 1) made clear the merits of a
collaborative and coordinated real-time water quality management program, even though
the ability of stakeholders to develop the partnerships required to realize the benefits
of the proposed alternative regulatory policy remained untested. One concession made
by the Regional Board was that in critically dry years, when the option was typically
foreclosed of releasing dilution flows from tributary reservoirs to help meet the three salinity
concentration objectives in the San Joaquin River, was that all three salinity concentration
compliance objectives would be waived.

Table 1. Potential Salt Discharge Load Exceedance Fees by subarea (2001–2012), ref. [35].

Subarea NWS GL SJR EVF

D
ay

s
ex

ce
ed

ed
by

pe
ri

od

Oct 0 0 0 0
Nov 90 60 0 0
Dec 124 248 0 0
Jan 186 0 310 0
Feb 28 196 0 0
Mar 0 279 0 0
Apr 28 56 42 14

VAMP a 0 0 30 30
May 0 0 51 17
Jun 30 30 210 90
Jul 0 0 248 91

Aug 0 0 248 31
Sep 0 0 0 0

Total days of exceedances 486 869 1139 273
Total penalties [US$5000 per day penalty] US$2,430,000 US$4,345,000 US$5,695,000 US$1,365,000

Years calculated 8 10 10 3
Average penalty per year US$303,750 US$434,500 US$569,500 US$455,000

Subarea acreage 118,000 353,000 187,000 201,000
Average penalty per acre US$2.57 US$1.23 US$3.05 US$2.26

Note: a VAMP stands for Vernalis Adaptive Management Program. These were programmatic reservoir releases
for fish migration that occurred each year from 15 April to 15 May. Values in the table are elaborated by the
authors, based on data in [35].
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3.2. Analysis of Exceedance Frequency of San Joaquin River Salinity Objectives

The first step in assessing salinity management options and developing policy for the
trading of salt load credits was to look at the exceedance frequency at the three compliance
monitoring sites. Given the changes in the San Joaquin Basin hydrology over the past fifty
years, in part due to the hydrologic variability induced by a warming planet and climate
change, only the past decade of the San Joaquin River hydrology was included in this
analysis. A pattern is emerging in California of more persistent back-to-back droughts
punctuated by years of abnormally wet weather (State of California [35]).

Table 1 presents a schedule of potential annual average penalties (2001–2012) that
could have been assessed for exceedances of salinity objectives at Vernalis under the salinity
TMDL, assuming a hypothetical penalty of USD 5000/day for each monthly overage [28].
Subareas include Northwest side (NWS), Grasslands (GL), Upstream San Joaquin River
(SJR), and East Valley Floor (EVF).

In December 2018 the Environmental Protection Agency approved a Regional Water
Board Basin Plan amendment that established upstream objectives at the Maze and Crows
Landing monitoring locations on the San Joaquin River. These objectives were ostensibly to
protect the water quality of riparian diversions to westside San Joaquin River irrigation
districts. The objectives of 1550 uS/cm apply year-round at both monitoring stations
and considered the field crops and orchards farmed adjacent to this reach of the river.
Figures 3 and 4 show the 30-day running average EC at the Maze and Crows Landing
compliance monitoring stations for the period 1 October 1995 through 1 September 2013.
At Maze Road some of the highest EC values occurred in below-normal years as opposed
to dry and critically dry years, although, all the data appear well below the 1550 uS/cm
concentration objective. Maze Road is downstream of the Tuolumne River which appears to
provide adequate dilution flow year-round. On the other hand, the Crows Landing site did
show exceedances of the 1550 uS/cm objective during April for all three water year types
(below normal, dry, and critically dry). Since the Vernalis compliance monitoring station
is downstream of the Stanislaus River and was obligated to meet the winter 1000 uS/cm
objective and 700 uS/cm objective through controlled releases by the USBR through their
New Melones Reservoir operation, the incidence of exceedance was largely eliminated at
this site [33,34].

 

Figure 3. Maze Road Historical 30-day Running Average EC by Water Year Type [36].

An analysis of the 30-day running average EC was subsequently conducted for all
three compliance monitoring stations using more decent data for a 21-year period between
2000 and 2021. The same logic was applied as in the prior Regional Water Board compliance
penalty analysis [35], although in this instance a second policy was introduced that imposed
a fine of USD 10 per ton of salt. This fine schedule was chosen ostensibly to be a round
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number that produced an outcome of similar magnitude to the first policy when the 30-day
running average monthly objective was exceeded. Figure 5 is a bar chart showing the
frequency (number of days) that the 30-day running average EC was exceeded at each of
the compliance monitoring stations. In Tables 2 and 3 the potential fines were compared for
the two policies for each month of the 21-year period. Note that this is a slight variation of
the prior Regional Water Board policy, which imposed a penalty for all days of the month
anytime the 30-day running average EC was exceeded in any month. With the use of the
WARMF forecasting model and decision support system, calculation of the 30-day running
average has become routine and provided a more equitable policy outcome. With better
online real-time access to estimated salt load from each of the seven subareas the response
time for remedial actions on the river was reduced. However, an institutional mechanism
for deciding real-time actions has still to be ratified by designated resource managers for
each of the seven subareas contributing salt load to the San Joaquin River.

 

Figure 4. Crows Landing Historical 30-day Running Average EC by Water Year Type [36].

The summary provided in Tables 2 and 3 shows that the Crows Landing station is
largely controlling salt management in the San Joaquin River. Hence, actions to achieve
compliance with the Crows Landing objectives need to be implemented in the three subar-
eas upstream of this compliance monitoring site. This would include the Grasslands, San
Joaquin River Above Salt Slough and Merced River catchment subareas (Figure 2). The
Grasslands subarea comprises agricultural, wetland, and municipal stakeholders and a
cost-effective equitable response would need to be developed among these entities. The
majority of exceedances at the Crows Landing compliance monitoring station occurred
in the months of March–May (Figure 4), which coincided with the wetland drawdown
period when irrigated agriculture in the subarea was also providing pre-irrigation to field
crops and orchards. Although the last 20 years have seen a significant move to drip ir-
rigation, more water conserving technologies and selenium management practices have
eliminated a major source of salt load from the subarea. Subsurface tile drainage is now
diverted to a dedicated 6000+ acres of reuse area, thus, any response would be expected
to include actions from all three entities. Managed seasonal wetlands in the Grasslands
subarea are constrained by the fact that any significant delay in wetland drainage from
the 160 private duck clubs and state and federal refuge wetland complexes can change the
germination success of high-value grasses potentially leading to lower value habitat for
the overwintering waterfowl that rely on this resource [37,38]. Irrigated agriculture may
need to invest in additional temporary storage ponds in areas free of selenium in shallow
groundwater (selenium is a potential toxin when drainage concentrations exceed 5 ppb)
or automation of sump pumps and new drainage conveyance plumbing to facilitate salt
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management through reuse and drainage recirculation. Municipal discharge of salts in
the Grassland sub-basin is minimal with most ponded water being eliminated through
seepage to groundwater. Municipal wastewater facilities may own storage ponds that
might be usable and temporary storage facilities to reduce salt loading from the Grassland
subarea. The potential for this cooperative and coordinated salt management strategy is
unknown at this time. In the Merced River catchment subarea, the salt load contribution
to the river is dominated by the reservoir releases from the McSwain and New Exchequer
Dams and irrigation return flows into the Merced River. The Merced National Wildlife
refuge contributes an insignificant return flow given its reliance on groundwater as the
water supply source. The subarea south of Salt Slough is bottomland in the Valley trough
and contributes to the San Joaquin River through groundwater seepage. Reservoir releases
from Friant Dam can be diverted into the subarea through riparian pumping. Seepage may
occur from the river into the subarea in response to local groundwater pumping.

 

Figure 5. Exceedance frequency of 30-day running average EC at all three compliance monitoring
stations of the San Joaquin River for 21 years: 2000–2021.

Table 2. Historical accounting on salt load exceedance, days of exceedance, monthly fees, and fine for
salt load exceedance 2001–2021 at Crows Landing [36].

Month-Year
Excess Monthly
Salt Load (ton)

Days of
Exceedance

Monthly Fine
(US$)

Fine (US$)

US$5000/day US$10/ton of Salt

Apr-2001 552 12 60,000 5518
Mar-2002 4967 16 80,000 49,669
Apr-2002 4510 23 115,000 45,099
Feb-2003 2238 18 90,000 22,377
Mar-2003 4403 31 155,000 44,034
Apr-2003 2245 18 90,000 22,453
Apr-2004 2034 18 90,000 20,344
Apr-2007 134 12 60,000 1340
Apr-2008 1807 21 105,000 18,066
May-2008 823 11 55,000 8233
Apr-2009 1559 25 125,000 15,593
May-2009 82 4 20,000 820
Feb-2012 66 4 20,000 658
Mar-2012 3374 31 155,000 33,743
Apr-2012 2898 29 145,000 28,979
Mar-2013 178 6 30,000 1777
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Table 2. Cont.

Month-Year
Excess Monthly
Salt Load (ton)

Days of
Exceedance

Monthly Fine
(US$)

Fine (US$)

US$5000/day US$10/ton of Salt

Apr-2013 1264 20 100,000 12,641
Jan-2014 147 6 30,000 1474
Feb-2014 2544 28 140,000 25,435
Mar-2014 7855 31 155,000 78,549
Apr-2014 7230 30 150,000 72,299
May-2014 1607 31 155,000 16,072
Jun-2014 1280 30 150,000 12,802
Jul-2014 1132 31 155,000 11,321

Aug-2014 82 25 125,000 823
Oct-2016 28 14 70,000 280
Mar-2021 77,514 27 135,000 775,145
Apr-2021 47,752 30 150,000 477,518
May-2021 30,491 31 155,000 304,910
Jun-2021 4719 8 40,000 47,193
Jul-2021 53 7 35,000 528

Aug-2021 547 31 155,000 5472
Sep-2021 14 5 25,000 40

Total cost US$3,320,000 US$2,161,305
Note: Total cost in nominal dollars. Values elaborated by authors, based on data in [36].

Table 3. Historical accounting on salt load exceedance, days of exceedance, monthly fees, and fine for
salt load exceedance 2001–2021 at Maze Road [36].

Month-Year
Excess Monthly
Salt Load (ton)

Days of
Exceedance

Monthly Fine (US$)
US$5000/day

Fine (US$)
US$10/ton of Salt

Jan-2015 727 14 70,000 7276
Jul-2015 5 3 15,000 48

Total cost US$85,000 US$7315
Notes: (1) Exceedence during the analyzed period occurred only in January and July 2015. (2) Total cost in nominal
US dollars. Values elaborated by authors, based on data in [36].

3.3. Economic Analysis of Selected Salt Management Strategies

The first part of this paper laid out the theoretical underpinning and principles of a
collaborative strategy that was anticipated would be necessary by the state regulator and
that is necessary to achieve cost-effective and equitable salt management strategies. The
cost and institutional feasibility of these strategies should be juxtaposed against paying
the fine that the Regional Water Board has formulated to provide an incentive for regional
basin cooperation and coordination without creating an undue burden on stakeholders
or incentivizing stakeholder litigation. The seven subareas were chosen, not only from a
hydrological perspective but also from a jurisdictional and institutional viewpoint. This
paper now provides an economic rationale for a couple of effective salt management
strategies that were proposed for consideration in the region.

We start by comparing the strategy of building and maintaining temporary holding
ponds to store salt loads until they can be safely discharged to the San Joaquin River
without exceeding objectives at any of the three compliance monitoring sites. Other means
of providing temporary storage are surface and subsurface drainage reuse or short-term
storage of salt load in the shallow groundwater, achieved by temporarily switching off tile
drainage sump pumps. The analyses in [39], and prior in the United States Department of
the Interior, Bureau of Reclamation model report [40], provide realistic cost parameters for
various temporary salt storage options relevant to real-time management of salt loading to
the San Joaquin River.

The CDM Smith report [39], refers to two regions that can be relevant to two of our
sub areas: Tulare Lake Bed (TLB) (Note that the Tulare Lake bed is outside our study
area. It does not export salt to the San Joaquin River. However, the costs of ponds may be
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relevant to our study.) and San Joaquin River Quality Improvement Project (SJRIP). Table 4
summarizes the relevant results to our work from the report of [39].

We used the observed data for the region during 2001 through 2021 as the basis for
calculating the excess annual salt load above the regional allowances that could either be
disposed of to the river with an excess fine paid, or be temporarily stored and reduced
through reuse, recirculation, or storage in the shallow groundwater system (shut off sump
pumping). The cost values in Table 4 are based on several assumptions. First, it is assumed
that the cost per ton of salt stored in the pond include variable, fixed, and the opportunity
cost of the land assigned to the pond. We used the working assumption in [39], without
changing them.

Table 4. Costs and effectiveness in removing salt of the evaporation pond technology in two locations
in the Central Valley.

Region
Water Volume

(AFY)
Salt Stored
(Ton/Year)

Salt Accumulation
(Ton)

Salt /Managed
(%)

Cost/AF
(US$)

Cost/Salt Stored
(US$/Ton)

TLB 17,240 139,897 155,479 90 76.58 9.62
SJRIP 19,248 98,108 890,639 11 129.62 24.72

Source: Extracted from [39], Tables 2 and 3. Note: pond cost assumed to be equivalent to the cost of an evaporation
pond. Selenium issues have pretty much nixed mixed evaporation ponds for the past 20 years. However, any
selenium in drainage will warrant bird hazing and the cost of temporary holding ponds may not be that different
from evaporation ponds. Values elaborated by authors, based on data in [39].

The pond technology in [39], was assessed in two regions in the Central Valley. How-
ever, in our analysis we used the cost and effectiveness values in each region as our higher
and lower values within which the technology performed. One set of values suggested that
it took USD 9.62 per ton of stored salt and with an effectiveness rate of 90%. The second set
of values suggested a USD 24.72 per ton of temporary storage of salt with an effective rate
of 11% (Table 4).

Salt load that exceeded the allowance for disposal was subject to a fine. Taxes were
either by days of exceedance of salt concentration or by total tons of salt above the level of
allowance (Tables 2 and 3). The analysis in this paper refers only to tons of salt observed
on a monthly basis between 2001 and 2021. Two levels of fine rates have been arbitrarily
used (USD 10/ton and USD 20/ton) to reflect incentive–provision fines on the part of the
stakeholders in the subarea. Since the analysis spans over 20 years (2001–2021) we used a
discount rate to allow comparisons of sums between 2001 and 2021. We used the directive
for using a real discount rate of 7% [41]. That source requires the use also of a 3% discount
rate, but for our purposes this was not necessary.

The WARMF model provided the salt load allocation for each of the seven subareas
that was developed for the Real-Time Program by the Regional Water Quality Control
Board based on the original salt load TMDL. These salt load allocations provide an initial
basis for negotiation and allow the excess salt loads over and above the subarea allocation
to be calculated. If treated, we applied the cost and effectiveness parameters to calculate
the treatment cost. Since effectiveness is always less than 100%, the remainder of the salt to
be disposed of was subject to the fine. Then, we compared the total annual cost of treating
the salt plus paying the incremental fee to the total annual cost in the case that the salt load
is not treated and is disposed of in its entirety.

4. Results and Discussion

4.1. Results

Table 5 presents the results of our analysis under the various assumptions regarding
the parameters we presented earlier.

The results provide a clear distinction between the different scenarios: efficient-
inexpensive-low fine ((90%; USD 9.62/ton); USD 10/ton); inefficient-expensive-low fine
((1%; USD 24.72/ton); USD 10/ton); efficient-inexpensive-high fine ((90%; USD 9.62/ton);
USD 20/ton); and inefficient-expensive-high fine ((1%; USD 24.72/ton); USD 20/ton),
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which are reflected in Table 5. Clearly seen are the suggestions that, in three out of the four
scenarios, the net present value of the differences between the fee payments for the total
managed salt load and the storage or reuse cost plus the fee payment for the remainder
of the unmanaged salt suggest that the subarea should not engage in managing the salt
and should pay the cost of the fine. Only under the scenario of a high level of fee per ton
and efficient and inexpensive treatment, the difference between the costs was positive,
suggesting that treatment is justified.

Table 5. Cost of temporarily storing salt in surface ponds, reusing, or recirculating the salt or
temporarily storing it in the shallow groundwater system under different assumptions of fee level,
storage efficiency, and cost.

Year with
Exceedance

Salt
LOAD
Excess
(ton)

ANNUAL Fine Payment on
Stored or Reused Quantity

Annual Storage or Reused Fee Cost on
Remainder of Salt Retained and

Managed (US$10/ton)

Annual Fee Cost on Remainder of
Salt Not Temporarily Retained and

Managed (US$20/ton)

US$10/ton US$20/ton
(US$9.62/ton;

90%)
(US$24.72/ton;

1%)
(US$9.62/ton;

90%)
(US$24.72/ton;

1%)

2001 552 5520 11,040 5862 18,558 1159 23,471
2002 9477 94,770 189,540 100,645 318,616 19,901 402,962
2003 8886 88,860 177,720 94,369 298,747 18,660 377,832
2004 2034 20,340 40,680 21,601 68,383 4271 86,485
2007 134 1340 2680 1423 4505 281 5697
2008 2630 26,300 52,600 27,930 88,420 5523 111,827
2009 1641 16,410 16,410 17,427 55,170 3446 69,775
2012 6338 63,380 126,760 67,309 213,083 13,309 269,491
2013 1442 14,420 28,840 15,314 48,480 3028 61,313
2014 21,877 217,300 437,540 230,772 730,562 45,941 930,210
2015 732 7320 14,640 7773 24,609 1537 31,124
2016 28 280 560 297 941 59 1190
2021 161,090 1,610,900 3,221,800 1,710,775 5,415,845 338,289 6,849,547

Net Present Value of Difference Between Payment for
Management of Entire Salt Load and Cost of treatment and

payment for incremental storage or reuse
(In 2021 dollars, 7% discount rate)

−172,574 −6,610,459 +5,030,130 −6,229,518

4.2. Discussion

As California battles another year of drought; records are being broken for climate
extreme conditions impacting the sustainability of water resources and human-induced
problems of water scarcity, quality, and misallocation. The State of California has taken
aggressive action starting in 2014 with the passage of the Sustainable Groundwater Man-
agement Act and the formation of the stakeholder-led Central Valley salinity Coalition
(CVSALTS) that together address problems of unsustainable groundwater pumping prac-
tices, problems of subsidence and water quality degradation of surface and groundwater
resources, and the fertility of agricultural soils. Although salinity degradation of receiving
waters, such as rivers and deep percolation of saline water to aquifers, have been studied
for over 100 years and are well understood, there has been a reluctance of the state to
commit to addressing this problem. The publication of the 2002 Total Maximum Daily
Load (TMDL) by the federal EPA for salt and boron incentivized the search for effective
and cost-effective policy tools to address salinity impairments in the San Joaquin River
and to find a feasible and equitable schema that would be accepted by stakeholders and
foreclose costly litigation that would result in a continuation of the status quo.

TMDL required the state government water quality regulator to set salt load objec-
tives for the basin in 2002. However, the conservative nature of the TMDL computation
and utilizing the lowest 10% average low-flow condition resulted in allocations that were
unattainable without a major impact to the agricultural economy in each subarea. This
created a need to replace the initial TMDL allocations with more flexible concentration
objectives based on a 30-day running average electrical conductivity (EC) that will accom-
modate agricultural production and irrigation practices. A concentration objective allows
agricultural producers and other salinity dischargers to utilize more of the available salt
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load assimilative capacity in the SJR. This initial compliance monitoring objective has been
supplemented with two additional upstream salinity objectives, ostensibly, to protect the
water quality of agricultural diversions made by westside agricultural producers.

The adjustments of the quality standards to seasons and to the different locations
(subareas) and the real-time reporting to the stakeholders allow farmers more flexibility in
adjusting their practices and responding to the standards in a creative way. In that respect,
the approach suggested in our work is similar to Doole [21], and Doole and Pannell [22],
which take into account the differences in abatement cost and ability to address quality
standards by different dairy farms in New Zealand. Hence, a differential standard is
suggested for more cost-effective results at the regional level.

Adjustment of the salinity standard to the conditions in the river assimilative capacity
and in each subarea along the river also allows introduction of trade in salinity disposal
permissions among subareas as another way of handling the salinity load to the river. In
that respect, the experience of the Hunter Basin of New South Wales, Australia [25,26], is
similar to the suggested scheme in the SJR as discussed in our paper. The main idea of the
scheme in the Hunter was to permit discharge of salt loads only when there was available
salt load assimilative capacity in the river that drains the Hunter Basin. Details in Quinn [4],
explain how salt load discharges to the river were scheduled by quantity, time, and location,
based on stakeholder need and calculations of salt load assimilative capacity using a simple
spreadsheet mass–balance model. While our work has not explored regional cooperative
arrangements, such as trade in salt load permissions, or side payments for improvements
in on-farm salinity load disposal, our future work will focus on such options.

5. Conclusions and Policy Implication

This paper presents an alternative approach to salt regulation and control that follows
first attempts to implement the 2002 TMDL, when it was realized that TMDL policy
objectives could not be achieved without potential annual costs to stakeholders in the
millions of dollars annually, using typical penalty schedules for daily exceedance of a 30-day
running average EC objective at a single downstream compliance site. These costs would
have potentially risen with the inclusion of two additional upstream compliance monitoring
sites adopted to protect agricultural riparian diverters from high salt concentrations in
irrigation applied water. The novel concept of “Real-Time Water Quality management”
relies on a continually updated forecasting model to provide daily estimates of salt load
assimilative capacity in the San Joaquin River and assessments of compliance with salinity
concentration objectives at three monitoring sites on the river, based on the 30-day running
average EC. A water quality forecasting model WARMF was developed as part of this
alternative regulatory schema, which served both as a compliance forecasting tool and the
means by which salt load allocations and salt exports from each of the seven contributing
subareas could be estimated and compared. The trading of salt loads between subareas is
now feasible as both the regulatory salt load allocation and actual salt load discharge to the
river can be quantified. The results of the study have shown that the policy combination
of well-crafted river salinity objectives by the regulator and the application of an easy-to
use and maintain decision support tool by stakeholders have succeeded in minimizing
water quality (salinity) exceedances over a 20-year study period. The WARMF model
improvements, and consequent increase in stakeholder and agency confidence in this
decision support tool, suggest its potential application in other river basins facing similar
challenges. Our framework allows farmers and regulators to jointly understand and
evaluate the meaning of various regulatory policy interventions on the emission of salinity
and on the cost to be incurred by farmers at various locations along the river. The results of
the paper support the development of close collaboration between farmers and regulators
in the application of non-point source pollution policy. The paper also suggests significant
benefit from better cooperation and coordination among and between farmers and other
dischargers of salt load who rely on the river for drainage disposal and who are already
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organized into sensible subareas for salt management. This can provide a cost-effective
pathway for agricultural sustainability.
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Abstract: Remote sensing has been heralded as the silver bullet in water quality modeling and
watershed management, and yet a quantitative mapping of where its applicability is likely and most
useful has not been undertaken so far. Here, we combine geospatial models of cloud cover as a proxy
for the likelihood of acquiring remote scenes and the shortest time of travel to population centers as a
proxy for accessibility to ground-truth remote sensing data for water quality monitoring and produce
maps of the potential of remote sensing in watershed management in the United States. We generate
several maps with different cost-payoff relationships to help stakeholders plan and incentivize remote
sensing-based monitoring campaigns. Additionally, we combine these remote sensing potential maps
with spatial indices of population, water demand, ecosystem services, pollution risk, and monitoring
coverage deficits to identify where remote sensing likely has the greatest role to play. We find that the
Southwestern United States and the Central plains regions are generally suitable for remote sensing
for watershed management even under the most stringent costing projections, but that the potential
for using remote sensing can extend further North and East as constraints are relaxed. We also find
large areas in the Southern United States and sporadic watersheds in the Northeast and Northwest
seaboards and the Midwest would likely benefit most from using remote sensing for watershed
monitoring. Although developed herein for watershed decision support in the United States, our
approach is readily generalizable to other environmental domains and across the world.

Keywords: remote sensing; geographical information systems; watershed management; water
quality; decision support; ambient monitoring; data collection

1. Introduction

Of the 37.6 million waterbodies including canals, stream segments, ponds, and lakes
in the United States, fewer than three million are monitored in situ, with only about 60,000
monitoring sites providing information that can be compared with remotely sensed data
(Figure 1a) [1,2]. Of the millions of waterbodies, only 430,893 have been assessed for water
quality impairments as of 2022 (Figure 1b) [3,4]. Within the recent past, even for the assessed
waterbodies, ambient monitoring of general state of the water quality and synoptic data
collection of the load, transport, and fate processes associated with impairment happens
sporadically in only about a third of the cases [5]. Remote sensing, both with airborne and
space-borne platforms offers tremendous potential for bridging these massive data gaps.
But there are significant data gaps to even be able to use remote sensing everywhere in
the United States (Figure 1a). Our contribution herein is, albeit with several simplifying
assumptions, to map out the potential for remote sensing to be a viable monitoring tool
for all the subwatersheds—the smallest catchment class associated with waterbodies as
defined by the United States Geological Survey (USGS)—within the conterminous United
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States. As a corollary to these maps, we also present a geospatial estimate of where remote
sensing is likely to have the greatest impact in the country by mapping the intersection
of remote sensing potential and high risk of impairment and low data coverage. These
maps will serve as decision support tools for researchers and practitioners to plan where
to invest their energies and resources with respect to data collection for water quality
management approaches.

Figure 1. Assessment and in-situ monitoring gap for water quality in the United States:
(a) 39.6 million stream segments, ponds, lakes and estuaries in the National Hydrography Dataset and
603,433 in-situ monitoring locations from the AquaSat database for Secchi disk depth, Chlorophyll-a,
total suspended solids and dissolved organic carbon that have been matched to landSat scenes,
and (b) the 430,893 assessed waterbodies in the United States obtained from the United states
Environmental Protection Agency’s Assessment and Total Maximum Daily Load Tracking and
Implementation System (ATTAINS) database. Red lines indicate state borders.

Our focus in this paper is not to limit our treatment to a specific land surface process,
water quality parameter, type of impairment or remote sensing data source. This is because
water quality is a complex system response within the watershed to surface, subsurface
and hydrologic processes that are modulated by human influence. Therefore, rather than
focusing on a specific aspect of watershed processes, we develop a comprehensive scoping
tool for adopting remote sensing in monitoring and data collection. Scoping tools such as
the one presented here can be developed for specific land surface process monitoring, or
water quality management of given impairments by using information relevant to certain
remote sensing platforms and data collection methods.

Over the past two decades, a large number of many aerial and space-borne platforms
and sensors that sample different parts of the electromagnetic spectrum have come on-
line [6]. Platforms such as LandSat, GeoEye, WorldView, and technologies such as Light
Detection and Ranging (LiDAR) are useful for water body delineation (e.g., [7]), while
bathymetry of waterbodies can be obtained either from LiDaR, or by analyzing spectral
band ratios of satellite and drone imagery [8,9]. Streamflow can be obtained using Ra-
dio Detection and Ranging (RaDAR) altimetry and rating curves from platforms such as
Jason-3, Sentinel-3, and Saral/ALtika [10]. The terrestrial water budget can be quantified
using gravimetric data, while floods can be characterized using optical sensors such as
the Advanced Very-High-Resolution Radiometer (AVHRR), the Visible Infrared Imaging
Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS),
Sentinel, Landsat, Satellite Pour l’Observation de la Terre (SPOT), the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), IKONOS, Worldview, RapidEye,
Ziyuan 3 and Gaofen and synthetic aperture radar data [10]. Water quality parameters that
are directly observable can be monitored using LandSat, Sentinel, MODIS, the MEdium
Resolution Imaging Spectrometer (MERIS) and other specialized sensors such as Hyperion
(chlorophyll-a), SPOT, AVHRR (Total suspended sediments), IKONOS (water clarity) and
the Coastal Zone Color Scanner (CZCS) [colored dissolved organic matter] imagery [10].

32



Water 2022, 14, 1985

Hyperspectral imagery [11], LiDAR and airborne laser scanning [12] can be used to infer
crop characteristics and tree canopies in agrarian and forested watersheds. Within water-
sheds, indices developed by using reflectances from different spectral bands are useful for
classifying land cover and land use types [13]. Also within watersheds, the state of best
management practices such as low impact developments and green infrastructure can be
monitored using visible and thermal imagery and spectral reflectance-based indices [14].

Authors have developed an array of methods ranging from the well-established to
the experimental frontier have emerged to quantify watershed loading and receiving
water quality pertaining to various types of impairment [15,16]. Broadly, for land surface
processes such as crop cycles, land cover and land use changes, observations of surface
reflectances and ratios of reflectance across multiple spectral bands are used with validation
datasets such as land use classification maps or photographs are common (e.g., [17]). For
water quality parameters that affect the inherent and apparent optical properties of the
water column and spectral properties of the reflectances, such as total suspended solids,
Chlorophyll-a, colored dissolved organic carbon, turbidity, and water surface temperature,
statistical models linking observations of surface reflectances and ratios of reflectance
across multiple spectral bands with the water quality parameters are popular [18]. For such
processes, bio-optical and bio-geo-optical models that mechanistically link the irradiance-
reflectance ratio across multiple spectral bands to the bulk water column properties are
a reliable alternative [19]. For impairments such as harmful algal blooms and oxygen
depletion, more sophisticated statistical (e.g., [20]) or mechanistic models (e.g., [21]) are
used to relate watershed nutrient loads with impairment. For water quality parameters that
do not directly affect the optical properties of the water column and spectral properties of
the reflectances (e.g., mercury and heavy metals), statistical, machine learning and artificial
intelligence models relating the quantities of interest with other water constituents (e.g.,
turbidity) are becoming increasingly common [15].

Two unifying requirements of all of these approaches are that for a given location,
(i) it must be possible to obtain remotely sensed spectral imagery in the first place, and
(ii) the land surface process such as fertilizer application, presence of a pollutant load
attenuation best management practice like a detention pond or bioswale, and the receiving
water quality must all be ground-truthed with in-situ observations [22–24]. This means
that the vast potential of remote sensing can only truly be exploited in those areas where
atmospheric conditions are generally conducive to remote sensing, and where some access
to the watershed is possible. We leverage geospatial datasets containing information
on atmospheric conditions and accessibility to rank subwatersheds according to their
propensity to being amenable to remote sensing for water quality monitoring under a
variety of cost-payoff scenarios.

Reasons for the gap between the number of this assessment and monitored waterbod-
ies and the total number of waterbodies in the United states can include (i) applicability,
(ii) accessibility, (iii) resource constrains and (iv) socioeconomics. First, in most cases,
waterbodies might be located in remote, locations with minimal human development
and limited beneficial uses to society apart from preserving pristine natural beauty and
bounty. Second, there may be access issues due to rugged landforms, impassable land use
features and limited mobility networks which make monitoring difficult or even impos-
sible. Third, state, tribal and local agencies tasked with assessing and programmatically
attaining designated uses for waterbodies may be hampered by resource constraints that
make regular ambient monitoring and synoptic data collection difficult or even impossible
in all watersheds. Fourth, there may be environmental justice issues with impairment
being linked to socioeconomic and demographic conditions (e.g., [25]). In this paper, we
only look at the first three factors, as we are only interested in the technical constraints of
feasibility of using remote sensing for water quality monitoring and data collection here.
The advantage of remote sensing over conventional monitoring programs is that for areas
where the former is applicable, ground-truthing need not be performed very often, and in
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the overall life cycle of monitoring and data collection programs, can be significantly less
expensive to implement, particularly if public domain data and tools are used.

The paper is organized as follows: in Section 2, we describe our classification approach,
the datasets we used and the geostatistical methods we adopted. In Section 3, we showcase
the remote sensing potential map. In Section 4, we discuss where in the country gaps
need to be filled, given the potential for remote sensing by looking at the applicability and
accessibility of the subwatersheds and the intersection of quantified risks of impairment,
ecological vulnerability and lack of coverage. Finally, also in Section 4, we outline the
caveats in our approach, and chart our future trajectory in making these classifications
more robust and readily accessible to the watershed management community.

2. Materials and Methods

Our fundamental premise is that we can determine the potential of remote sensing
to be useful for ambient monitoring and synoptic data collection in a given waterbody by
mapping this potential at the USGS’ Hydrologic Unit Code 12 (HUC-12) subwatershed
scale. The HUC-12 subwatershed classification allows us to analyze watersheds at the
1:24,000 scale. At this scale, these subwatersheds typically contain four stream segments,
except in a few larger subwatersheds in the Northeast and the Great Lakes. We feel that
this spatial scale is sufficient to identify the potential for remote sensing, as the streams
encompassed within these subwatersheds are usually higher order distributaries or small
areal bodies with similar climate, land use and terrain characteristics. In total, there
are 102,973 HUC-12 subwatersheds in the conterminous United States. We discuss our
approach in Section 2.1 below.

We used numerous Geographical Information System (GIS) resources in this study
to map access, acquisition, constraints and risks of impairment. All GIS operations and
visualizations were performed in QGIS [26], while the model development was performed
in MATLAB [27]. In determining the potential for remote sensing and its applications,
we used existing accessibility and image acquisition conditions, and did not account for
the effects of land use and land cover change or climate change. After determining the
potential of remote sensing as a data source within each subwatershed, we subsequently
subset subwatersheds on the basis of applicability and resource constraints as described in
Section 2.2 below. We have listed all the datasets we used in these analyses in Table 2.

Table 1. Data sources used in this study.

Serial Number Data Use Source Location

1 Hydrologic Unit Class 12
subwatersheds

Smallest hydrologic
feature for analysis

National Hydrography
Dataset

https://www.usgs.gov/national-
hydrography/national-

hydrography-dataset (accessed on
20 April 2022)

2 Digital Elevation Model Hillshade and basemaps

Advanced Spaceborne
Thermal Emission and
Reflection Radiometer

(ASTER)

https://earthexplorer.usgs.gov
(accessed on 20 April 2022)

3 Cloud cover database Acquisition analysis EarthEnv https://www.earthenv.org/cloud
(accessed on 20 April 2022)

4 Time to cities Accessibility analysis Malaria Atlas Project

https:
//malariaatlas.org/research-
project/accessibility-to-cities/

(accessed on 20 April 2022)

5 United States
administrative boundaries Basemaps Census cartographic

boundary files

https:
//www.census.gov/geographies/

mapping-files/time-series/geo/
cartographic-boundary.html
(accessed on 20 April 2022)
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Table 2. Cont.

Serial Number Data Use Source Location

6 Assessed waterbodies Evaluating assessment
gaps

Assessment and Total
Maximum Daily Load

Tracking and
Implementation System

(ATTAINS)

https://www.epa.gov/
waterdata/attains (accessed on 20

April 2022)

7 Population by HUC-12 Evaluating human
footprint EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

8

Agricultural, domestic,
industrial and

thermoelectric water
demand by HUC-12

(MGD)

Evaluating water supply
needs EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

9

Protected areas under the
International Union for
Conservation of Nature
and the United States

protected areas by
HUC-12 (% of land cover)

Evaluating conservation
need EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

10

Big game and bird
hunting, fishing, and

migratory bird watching
demand by HUC-12

(days/year)

Evaluating recreational
need EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

11
Vulnerability index of

native aquatic species by
HUC-12

Evaluating biodiversity
needs EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

12

Wastewater discharge
(MGD), total permitted

discharge, daily
agricultural runoff (mm)

Evaluating environmental
needs EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

Although our analysis pipeline extends to Alaska, Hawaii and other minor islands
and United States protectorates, we have restricted all figures to only the conterminous
United States for simplicity. To illustrate the role of topography on various watershed char-
acteristics, in most figures, we have superimposed our analytical products on a hillshade
relief we generated from the 30 m resolution ASTER digital elevation model obtained from
the USGS Earth Explorer portal.

2.1. Potential for Remote Sensing as a Tool to Collect Data on the Subwatershed Scale

We used the mean annual fraction of cloudy days from the EarthEnv global cloud
cover model dataset [28] as a surrogate to indicate how likely it is to acquire remote sensing
imagery of a 1 Km2 scene and how hard it is to process this imagery for use (Figure 2a).
This dataset includes 1 Km resolution mean conditions between the period of 2001 and 2014.
We used the global map of minimum travel times from a location to a population center
(defined as a city or township with more than 50,000 people) produced by the Malaria
Atlas Project [29] as a surrogate for accessibility to a given 1 Km2 grid cell (Figure 2b). This
raster map is the outcome of a geospatial travel time model that takes existing road and
rail networks, land cover and 30 m resolution digital terrain models of the entire globe.
The combination of these two datasets, respectively indicate how likely it is to acquire a
scene remotely, and how easy it is to ground-truth reflectances to link the remotely sensed
data to land cover characteristics and water quality impairments. The tacit assumption
is that it will be possible for stakeholders tasked with managing the watershed to reach
any major population center, and then travel from there to perform in-situ sampling work.
To link these datasets to the hydrological units of interest, we used the USGS’ National
Hydrography Dataset’s (NHDplus) HUC-12 layer [3].
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Figure 2. Datasets used to model potential for remote sensing in watershed monitoring: (a) mean
annual fraction of cloudy days, and (b) maximum shortest travel time to population center within
each HUC-12 subwatershed. These quantities are surrogates for acquisition and accessibility of
remotely sensed scenes and in-situ data needed to ground-truth them.

We modeled the potential for using remote sensing for monitoring and data collection
within each subwatershed as the product of various categorical levels of τShortest

max , the
maximum of the shortest time to reach a population center from anywhere within the
subwatershed, and various categorical levels of μCloud Cover, the mean annual fraction of
cloudy days within the subwatershed. Within each subwatershed, we estimated τShortest

max
as the maximum over all pixels within the area of the shortest time to reach a population
center. We estimated μCloud Cover as the mean over all pixels within the area of mean annual
fraction of cloudy days. Thus, for the ith subwatershed, we have

PRemote Sensing,i = C

(
τShortest

max,i

)
×C(μCloud Cover,i) (1)

Here, the function C(·) assigns a category from 0 to 3 to both the acquisition (μCloud Cover)
and access (τShortest

max ) variables according to Table 3. 0 indicates a low potential for success, and
3 indicates the highest potential for success. The possible values of PRemote Sensing obtained
in this way are binned into four categories for ease of application: 0 (unsuitable), 1–3 (low),
4–6 (good), and 9 (excellent). We note that the numeric values of PRemote Sensing themselves
are only meaningful when they contribute to the different categories of “unsuitable,” “low,”
“good” and “excellent.”

Table 3. Cost-payoff matrix for modeling potential of remote sensing for watershed monitoring.

Category
Accessibility: Shortest Time to

Population Center
Acquisition: Fraction Cloudy

Days Per Year

Conservative
0 >6 h >75%
1 2–6 h 50–75%
2 1–2 h 25–50%
3 <1 h <25%

Normal
0 >24 h >90%
1 6–24 h 75–90%
2 3–6 h 50–75%
3 <3 h <50%

Optimistic
0 >48 h >95%
1 24–48 h 90–95%
2 6–24 h 75–90%
3 <6 h <75%

As stakeholders in the watershed management domain may weigh the costs associated
with the logistics of travel to remote locations for in-situ ground-truthing of remote sensing
data, and the careful planning of periods when to collect in-situ data in conjunction with
clear sky days, we represented these weights in cost-payoff matrices to set the categorical
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values of the acquisition and access variables (Table 3). These weights effectively lower the
τShortest

max and μCloud Cover threshold values, respectively for the accessibility and acquisition
criteria for the different categories going from conservative to normal to optimistic estimates
of the cost-payoff relationships (Table 3).

For example, one regulatory agency may be willing to send an engineer on a six-hour
long journey to collect water quality data. So, any value of τShortest

max,i smaller than six hours
for a subwatershed within the jurisdiction of this agency would get a C

(
τShortest

max
)

value
of 3. Another agency may decide that it does not want its engineers to spend more than
one hour traveling to a remote site. In this case, the C

(
τShortest

max
)

for any τShortest
max larger

than one hour would be 2 or lower. Similarly, a consultant may be willing to invest the
effort into building robust processing pipelines to deal with largely cloudy scenes or invest
time and resources in data fusion-based cloud removal algorithms that are becoming more
popular across various platforms [30,31]. This consultant would perhaps be willing to
assign a C(μCloud Cover) value of 2 or higher for a subwatershed where the sky is likely
to be cloudy for almost 75% of the days in the year. Another consultant who is perhaps
geared to directly use analysis-ready products may assign a C(μCloud Cover) value of 3 for
their subwatershed only if the sky is likely to be clear for 75% of the days in the year. By
presenting maps of the categorical levels of the potential across a range of C(·) values, we
allow decision-makers to choose the cost-payoff level they are comfortable with to plan
their workflows accordingly.

2.2. Quantifying Benefits of Remote Sensing in Watershed Monitoring

We modeled the potential for remote sensing using Equation (1) and surrogates for
accessibility and acquisition. However, these maps in themselves provide only one piece of
the puzzle. It is only when the potential for watershed monitoring using remote sensing
is combined with risk maps and lack of coverage by conventional monitoring that areas
can be identified where remote sensing can play a crucial role. To do this, we developed
maps of five metrics of risk using published GIS data from the EnviroAtlas [32] (Table 2):
(i) the human footprint, (ii) anthropogenic water demand, (iii) ecosystem vulnerability,
(iv) impairment, and (v) conventional monitoring and assessment coverage gaps. As the
units of these metrics are different from one another, we simply overlaid these maps and
determined the intersecting areas to determine where the remote sensing role would be
most useful.

Human footprint: We collected the human population in each subwatershed. The
conventional wisdom is that impairment and watershed management matter most where
human settlements are prevalent. The subwatersheds populations were then ranked from
0 to 6 with decadal increase from less than 10 to more than one million people.

Anthropogenic water demand: We combined the domestic, agricultural, industrial and
thermoelectric water demand in each subwatershed to estimate the total water demand
from each subwatershed. Watersheds with greater demand are likely to experience larger
ecological deficit flows and a higher propensity for critical conditions of impairment. The
subwatershed demands were then ranked from 0 to 6 with decadal increase from less than
12,000 Gallons Per Day (GPD) [the per capital daily water demand is 1200 GPD estimated
by dividing the total water demand by the total population].

Ecosystem vulnerability: We combined three key ecosystem services with equal weigh-
tage to each to estimate an overall vulnerability index. First, we summed the average
number of days in a year that hunting, fishing, and recreational activities are typically
engaged in within a subwatershed to obtain a fractional recreation time, fRecreation. Large
values of this number indicate greater pressure for recreational activities. Second, we com-
bined the total fraction of land cover earmarked for conservation by both the International
Union for Nature Conservation (IUCN) and the United States Government, fConservation.
Large values of this number indicate that additional monitoring, assessment, and restora-
tion effort must be expended in these subwatersheds. Third, we collected the native aquatic
species vulnerability index, fVulnerability, a key measure of how many endangered, native
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species are threatened [33]. This index is also a proxy for ecosystem health in general.
Higher values of this index imply generally poorer ecosystem health. All these numbers
range from 0 to 1. The overall ecosystem vulnerability of the subwatershed is then

f = w
(

fRecreationIRecreation + fConservationIConservation + fVulnerabilityIVulnerability

)
(2)

where Ii is an indicator that can either be 0 or 1 depending on whether the service i, i.e.,
recreation, conservation or species vulnerability, is being provided by the subwatershed or
not, and w is 1, 0.5 or 0.33 if there are one, two or all three of the services being provided by
the subwatershed. The subwatersheds ecosystem vulnerability indicator was then ranked
0 for no vulnerability, and then from 1 to 4 in increments of 0.25.

Impairment risk: We developed subindex curves of the total wastewater discharge in
Million Gallons per Day (MGD), the total permitted pollutant load in pounds per year, and
the total agricultural overland, tile and non-tile subsurface runoff in mm as described in
Walsh and Wheeler [34]. We then combined these subindices using a maximum subindex
measure as the overall index of impairment within a subwatershed. This index was deemed
to represent the impairment risk in the subwatershed. To develop these subindex curves
the following approach was adopted: first, we summed the total load in each class, i.e.,
wastewater, permitted sources, and agricultural runoff, and divided it by the total surface
area of waterbodies within the watershed to normalize loads across subwatersheds. Then
we omitted zero values and obtained the 25th, 50th and 75th quantiles of these normalized
loads across all the subwatersheds in the country and assigned rank values from 0 to
4 depending on whether there was no impairment from that loading class to whatever
quantile range the normalized loads fell into. This effectively positioned the normalized
loads in each load class onto a subindex curve. Then, as the nature of impairment is likely
to vary depending on the dominant economic sector, human activity, and land surface
processes in each subwatershed, we took the overall impairment risk to be the maximum
of the three rank values. Thus, higher values of this index (ranging from 0 to 4) represents
higher risk of impairment.

Conventional monitoring and assessment coverage gaps: For each subwatershed, we es-
timated the total length of assessed stream segments, LStream, the total area of assessed
ponds, lakes, and estuaries, ABody, and the total number of monitoring stations, NStation,
from the Assessment and Total Maximum Daily Load Tracking and Implementation System
(ATTAINS) database [4]. A subwatershed was determined to have a monitoring gap if
LStream + ABody + NStation = 0.

Finally, we also produced a remote sensing monitoring potential map using the normal
cost-payoff estimates from Table 3 to indicate where remote sensing would be likely feasible.
Subwatersheds where the role of remote sensing is likely to be most crucial were then
classified as those that met the decision tree in Figure 3, that is, where all the layers after
suitable thresholding to represent various risks intersect with at least good potential for
remote sensing.
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Figure 3. Flowchart for estimating where the role of remote sensing will be crucial in watershed
management. The operation represents the intersection of geospatial layers. The numbers indicate
threshold values of various index levels.

3. Results

We show the maps of potential for remote sensing in monitoring within watersheds for
various cost-payoff scenarios in Figure 4. These potential rankings represent an interplay
between the ambient cloud cover (Figure 2a) and the maximum of the shortest travel
time to a population center (Figure 2b). The model predicts that when cloud cover is low,
and travel times are short, the potential is maximized. Conversely, when cloud cover is
high and travel times are long, the potential is inhibited. Typically, cloud cover is lowest
in the Southwest, and increases generally through the Central Plains towards the East
and is highest over the North and the Rockies and Appalachian mountains (Figure 2a).
Travel times are generally relatively low (less than three hours) on the Eastern and Western
seaboards, and throughout the Central plains and in the South, and increase to more than
six hours in the mountainous Rockies and the remote Midwest. These patterns are reflected
in the model.

Going from left to right in Figure 4, the expense of effort to build pipelines for occluded
images and changing light conditions is budgeted increasingly generously. This reflects in
the improved potential for remote sensing in more parts of the Mideast and East. Going
from top to bottom in Figure 4, the effort required to collect in-situ data for ground-
truthing is budgeted increasingly generously. This reflects in the improved potential for
remote sensing in more parts of the Southwest and the Midwest, until in the bottom right of
Figure 4, there is more or less uniformly high potential throughout the country. Nonetheless,
most of the California Central Valley, Southern California, and the Central Plains have
uniformly good to excellent potential under all cost-payoff scenarios, owing to generally
clear skies and short travel times.
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Figure 4. Modeled maps of the potential of remote sensing for data collection and monitoring of
watersheds under various cost-payoff assumptions. As the effect of cloud cover decreases (more
cloudy days are acceptable), more cloudy areas display higher potential. As the effect of access
decreases (longer travel times are acceptable), more remote areas display higher potential. Thin red
lines are state boundaries.

In Figure 5, we show the various risk metrics (a through e) and the associated remote
sensing utility map (f) by applying the flowchart in Figure 3 to each subwatershed in these
layers. Population centers, as expected, are generally concentrated near the major cities
on the Eastern and Western seaboards and in the Mideast and the Gulf of Mexico coast
(Figure 5a). The water demand generally tracks the population centers, except in California,
the Midwest, and the Central Plains subwatersheds from where water is diverted to other
places (Figure 5b). For instance, in California, water is gravity fed from reservoirs in the
North to consumers in the South. Almost everywhere in the United States, ecosystems are
vulnerable (Figure 5c). In most of the Midwest, this is likely due to large tracts of lands
being designated as protected zones, and in the Sierra Nevada mountains in the West,
due to ecological disasters by sustained drought and forest fires. Most of the population
centers on the Eastern and Western seaboard are polluted by wastewater and permitted
discharges, while the Central plains and Midwest impairments reflect of agricultural runoff
into the Mississippi River tributaries (Figure 5d). The ATTAINS database indicates that
most of the nation’s subwatersheds have at least some waterbodies that have been assessed.
But many subwatersheds in the United States-Mexico border region, the remote Midwest,
and the Rockies remain unassessed (Figure 5e). Based on a combination of these layers in
conjunction with the remote sensing potential model under the assumption of a normal
cost-payoff scenario (middle panel in Figure 4 and Table 3), several hotspots emerge banded
predominantly in the South and the North where remote sensing could be crucial, and often
perhaps the only source of assessment of the condition of these subwatersheds (Figure 5f).
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Figure 5. Predicted subwatersheds where the role of remote sensing could be crucial as the intersec-
tion of greater than good remote sensing potential, high impairment risk indicators, and low coverage.
Across subwatersheds, (a) population, (b) total water demand, (c) ecosystem vulnerability index, (d)
pollution entering streams and waterbodies, (e) water quality monitoring gaps, and (f) intersection of
these layers with normal accessibility and normal cloud cover cost-payoff model predicted higher
than good remote sensing potential subwatersheds (blue polygons).

It is evident from these remote sensing potential maps and the combination of risk
metrics and remote sensing potential that there are specific areas within the country where
watershed researchers and managers can beneficially leverage remote sensing data at
various spatial scales ranging from stream segment-reach to the subwatershed scale. By
allocating resources preferentially to occluded and poorly-lit scene imagery usage pipelines,
the potential for using remote sensing can be tremendously maximized. This is borne out
by rapidly improving potential going left to right in Figure 4, than by going from top to
bottom in Figure 4.

4. Discussion and Conclusions

We have presented a set of maps that chart the potential of remote sensing to augment
the monitoring and data collection in watersheds for land surface and water quality pro-
cesses. These are available for open source download in a Git repo [35]. To enable easy
access to, and visualization of these maps, the risk factors for impairment, and summary
statistics of the potential of remote sensing under various assumptions within the cost-
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payoff matrix, we have also developed an app [36] using Google Earth Engine [37]. This
app contains an interactive map within which the user can click on a specific subwatershed
of interest to obtain additional information (Figure 6). A summarization of this paper
is available as a guide to using the app in a separate panel. Once a subwatershed has
been clicked, a summary visual report will be generated, and the relevant information on
the impairment risk factors and the potential for remote sensing can be downloaded as
comma-separated value files.

 

Figure 6. Google Earth Engine application to demonstrate the potential of remote sensing in moni-
toring watershed management in the United States. Attribution: Map Data © 2022 Google INEGI
Imagery © 2022 NASA, TerraMetrics.

Additionally, we have shown how such maps can be modified within a cost-payoff
landscape to be truly customizable by watershed decision-makers. The cost-payoff analysis
also shows that improving the data processing pipelines for occluded and poorly lit scenes
can tremendously benefit the power of remote sensing (going left to right in Figure 4). By
combining the regions of high remote sensing potential with other risk factors describing
human footprint, impairment risk, ecosystem vulnerability, and conventional monitoring
coverage gaps, we can identify those subwatersheds where remote sensing is likely to have
the highest benefit, and in fact, likely be an integral source of primary data. Large areas
in the Southern United States, particularly in California, New Mexico, Texas, Mississippi,
Georgia, and the Carolinas, and sporadic watersheds in the Northeast and Northwest
seaboards (Washington and Maine) and the Midwest would likely benefit most from using
remote sensing for watershed monitoring (Figure 5f).

Our approach represents a seminal and necessary step in aiding the decision-making
process for resource-constrained regulatory agencies and contractors. By augmenting these
maps with other socio-economic geospatial data, deeper insights can be gained to tackle
challenges of environmental justice and equity. Rather than focusing on specific watershed
processes, impairments, and remote sensing platforms, we have developed a method of
assessing the general potential for remote sensing for whatever applications are envisioned
by system managers in their monitoring and data collection workflows. This approach
allows us to explore the benefits of remote sensing further, as (i) not all parts of the country
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are monitored regularly, and even when they are, in-situ monitoring costs can typically
exceed several hundred thousands of dollars a year within a small watershed [38], and (ii)
remote sensing can provide long-term cost savings. Remote sensing potential maps could
be constructed for specific applications outlined in the introduction by suitably modifying
the factors considered in the model presented in Section 2.1. For example, if a consultant
proposes a data fusion pipeline using Sentinel 2, MODIS, and Planet imagery [39] to study
watershed health, heavy metal concentrations in a nearby lake, and the role of watershed
best management practices, then the principal costs of image acquisition will likely be the
cost of procuring high-resolution Planet imagery, while in-situ monitoring costs will likely
be driven by personnel costs rather than access time.

There are several caveats to the maps we have produced here. First, the assumptions
built into the EarthEnv cloud cover and the Malaria Atlas travel time databases carry over to
our maps. While these data sources are excellent for global coverage at the kilometer-scale,
our pipeline may be refined with source DEMs and spectral imagery for specific watersheds
to systematically downscale our national coverage maps. The shortest time to reach a
population center, while somewhat ad-hoc, is an appropriate metric to characterize the
difficulty of ground-truthing remote sensing imagery because typically waterbodies outside
major population centers are not monitored. However, as we show in Figure 5d, such areas
are also at high risk of impairment. Second, our remote sensing potential model is extremely
simple and steady state, and yet captures the underlying tradeoff between scene acquisition
and ground-truthing. Within a watershed, multiple process-scales exist, ranging from
storms and coastal upwelling events that happen on hourly to daily timescales, land use
and land cover changes that happen on annual to decadal timescales, and landform changes
that happen over many decades to centuries [40]. Our maps do not factor in these different
timescales. More sophisticated models, including spatial kriging approaches and Gaussian
process models that incorporate seasonal variability in scene acquisition and travel time
can be developed. Cloud cover, for instance, can vary seasonally so that even in areas
with many cloudy days, there can be periods with clear skies during which period field
campaigns could be planned. We do not capture such nuances here. For simple applications
that require only a single remote sensing image such as a National Agricultural Image
Program [41] or LandSat scene, cloud cover may not even be an issue if the acquisition
window can be carefully determined. Although many non-dimensional metrics for land
use and land cover classification for characterizing the environment can be derived from
multi- and hyperspectral imagery in most locations within the United States, as we showed
in Figure 1, there are still significant data gaps that require physical ground-truthing for
which our maps will be useful. Third, we have operated at the HUC-12 subwatershed scale
in this project for computational tractability. However, much finer reach-scale resolution
of the impaired waterbodies can be incorporated within our pipeline by combining the
NHDplus and ATTAINS datasets using cloud platforms such as Google’s Earth Engine [37].
Fourth, our thresholds for cloud cover and minimum travel time to population centers
for the various cost-payoff scenarios are somewhat arbitrary, but still indicate sensible
and meaningful trends in the remote sensing potential maps. This is a reflection of the
fact that we have sacrificed specificity to different remote sensing technologies for the
generality of our guidance maps. These thresholds can be more rigorously defined for
different types of remote sensing platforms by combining the atmospheric conditions and
ground-truthing needs of specific technologies. Fifth, while we have chosen risk metrics
that largely encompass most risk factors for watershed impairments, a more thorough
exploration of available datasets, particularly socioeconomic data, is possible to identify
other, transdisciplinary benefits of remote sensing within a watershed. It is likely that such
exhaustive inclusion must be done on a local municipal, county, or state scale than on the
national scale for disparate factors to sensibly be combined at meaningful physical scales.
In subsequent iterations of these products, we will tackle these advances. Sixth, we only
considered terrestrial subwatersheds in our current pipeline, and excluded all coastal and
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Great Lakes impairments. In subsequent iterations of these maps, we will include these
areas as well.

While we have developed the pipeline for the United States, a similar workflow could
be developed anywhere in the world, or even for the entire planet. The only consideration
is that while Earth Explorer, the United States Environmental Protection Agency, and the
EnviroAtlas catalog a wide array of geospatial datasets for immediate use, such data may
be difficult to find in the international landscape, and may have to be stitched together from
disparate sources of information. Nonetheless, for any serious, reproducible, and scalable
application of remote sensing for monitoring and data collection on watershed loads and
impairments, this is a necessary first step. For the first time ever, a product is available that
will allow researchers and managers to evaluate the potential of remote sensing to augment,
or even fulfill ambient monitoring and data collection needs throughout the United States.
We hope that our maps will be useful for the watershed managers within the United States,
even as we continue to improve them with finer granularity and additional factors.
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Abstract: Chemicals in personal care products used in everyday lives become part of the wastewa-
ter stream. Wastewater treatment plants were not designed to remove these chemicals; therefore,
these products and their metabolites persist in the effluent. Many of these chemicals are known,
or suspected to be, endocrine-disrupting compounds (EDCs) and can cause adverse impacts to
aquatic organisms at trace concentrations. Here, we developed a publicly available EDC footprint
calculator to estimate a household’s EDC footprint. The calculator prompts users to input the
number of products they own in each of three categories: health and beauty, laundry, and cleaning.
The calculator, which is programmed with average values of EDCs in each product, outputs an
estimate of the user’s EDC footprint (mass) and ranks the contribution of each product to the
footprint. When used by a group of 39 citizen scientists across the Susquehanna River Basin in
the northeastern United States, the average household EDC footprint was ~150 g. Results of
this tool aid in decision making by providing users with the information necessary to reduce the
household’s footprint through product selection that avoids specific ingredients or by replacing
the top-ranking products with greener alternatives.

Keywords: chemical footprint; emerging contaminants; endocrine-disrupting compounds; footprint
calculator; personal care products; water quality

1. Introduction

The personal care product (PCP) industry is a significant contributor to the global
economy, accounting for 3.9 million direct and indirect jobs in 2018, representing 1.9% of
total US employment and USD 267.3 billion in the United States’ gross domestic product [1].
Many of the compounds used in PCPs are referred to as “endocrine-disrupting compounds”
(EDCs) because they can mimic or alter hormones, leading to complications in growth, de-
velopment, and reproduction [2]. Given that many PCPs are applied topically, compounds
classified as EDCs have been found in human tissues [3]. Triclosan, an antibacterial agent
used in PCPs, has been monitored and detected in blood, breast milk, urine, adipose tissue,
and liver [4]. Other EDCs used in cosmetics, including bisphenol A (BPA), phthalates,
and parabens, have been studied in human urine samples to better understand potential
toxicological effects [2,4]. As more EDCs are identified in consumer products, there is
concern over the ability of some EDCs to lower spermatozoid production and potentially
increase the risk of breast cancer and other anomalies in human bodies [5].
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Globally, EDCs are increasingly considered major contributors to a wide array of
ecotoxicological impacts on non-target aquatic organisms. In the United States, EDCs
have been found in surface water, particularly downstream of wastewater treatment
plants [6], and have the potential to impact the endocrine systems of aquatic species
at environmentally relevant concentrations [2]. In Pennsylvania, the smallmouth bass
(Micropterus dolomieu) decline in the Susquehanna and Juniata Rivers triggered a sig-
nificant amount of research and heightened awareness around the issues of EDCs in
these river networks [7]. For example, the United States Geological Survey (USGS)
reported that 60–100% of large- and smallmouth bass populations sampled near wildlife
refuges in the Northeast exhibit intersex characteristics [8]. A causal analysis conducted
by the Pennsylvania Department of Environmental Protection (PA DEP) indicated the
presence of EDCs, such as pesticides, pharmaceuticals, and ingredients in PCPs as likely
contributors to the decline [7]. Although a virus was ultimately determined to be the
greatest contributor to the decline, the presence of intersex characteristics in the fish
populations could not be explained by the virus, and therefore, a better understanding of
the presence and impacts of EDCs is still needed [9]. In the Susquehanna River Basin, an
increased presence of steroidal hormones was observed with the increased feminization
of the local smallmouth bass population, where male fish were developing female sexual
characteristics [7].

Beyond the well-documented impacts on fish populations from EDCs in surface
water bodies, EDCs in wetlands and vernal pools pose potential threats to amphibians,
which are also known to be declining globally at alarming rates [10–12]. The amphibian
decline, which has been referred to as the sixth mass extinction [13], is attributed
to a wide range of factors, including diseases, invasive species, climate change, and
habitat loss. Water quality contaminants, including EDCs, are also suspected to be
contributing to the amphibian decline [14,15]. In studies monitoring human wastewater
contaminants from septic tanks and wastewater irrigation activities in critical amphibian
habitats (vernal pools), EDCs were present at levels high enough to elicit intersex
characteristics in native frog species [16–18]. Aside from causing intersex characteristics,
EDCs such as triclosan have been shown to affect tadpole hindlimb development
at concentrations as low as 0.15 μg/L [19]. Understanding the effects of EDCs on
amphibians and other sensitive aquatic organisms is critically important for prioritizing
conservation efforts.

The mechanisms through which domestic wastewater introduces EDCs into the en-
vironment are generally well-understood, with human sources of EDCs most commonly
associated with the usage of PCPs and pharmaceuticals. Despite nearly two decades of
research since the seminal Kolpin et al. [6] study promoted an exponential growth of
research on the impacts of EDCs on drinking water quality and aquatic ecosystem health,
little clear evidence remains of the reduced presence or quantity of these contaminants in
the environment. These chemicals are introduced into the environment during various
stages of the life cycle of PCPs, including manufacturing, use, and disposal. In each
of these stages, EDCs may be present in the influent water to wastewater treatment
plants (WWTPs) [20–24]. WWTPs were not designed to remove these chemicals, and
therefore, the chemicals and their metabolites, which can retain potency, often persist
in the wastewater effluent. This wastewater effluent is typically discharged to surface
water bodies but may also be land-applied or used to recharge groundwater aquifers.
Although wastewater must be treated to meet permit requirements, EDCs are currently
not regulated, and therefore, the extent to which treatment plants remove EDCs prior
to discharging their effluent varies widely across treatment technologies and types of
EDCs [23].

Given that these chemicals do not currently have water quality regulations, one
way to reduce their presence in the environment is by reducing their sources. However,
it is difficult for consumers to make informed decisions about the PCPs they purchase
because labels are often insufficient for determining whether or not a product may contain
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EDCs, or which type of EDCs may be present. In the United States, the Food and Drug
Administration (FDA) regulates some PCPs such as toothpaste, deodorant, sunscreen, and
antibacterial hand soap. However, the FDA only requires that active ingredients be listed
on the product’s label, and not all of the EDCs found in these products are considered to
be “active ingredients”. The FDA requires that cosmetic labels list all ingredients from
highest to lowest concentration in the product [25,26], but given that some ingredients may
be more potent or exhibit higher endocrine-disrupting potential than others, this method of
labeling may not provide information in an easily accessible manner for making informed
decisions about product choices.

A large study was conducted by the Silent Spring Institute to quantify the presence
of EDCs in commonly used PCPs [27]. The authors selected 66 target compounds that
included EDCs and compounds suspected to trigger asthma that were expected to be
present in PCPs, and they analyzed 85 samples for these compounds. The samples were
composites of up to seven products in each product category and represented more than
200 products. They classified the results of their EDC analysis into four main categories:
not detected, 1–100 μg/g, 100–1000 μg/g, and >1000 μg/g. The highest levels of EDCs
detected varied by product type, with the highest UV filters in sunscreen; highest cy-
closiloxanes in sunscreen and car interior cleaners; highest glycol ethers in floor and
carpet cleaners, polish/wax, and sunscreen; highest fragrances in surface cleaners, car
fresheners, dryer sheets, air fresheners, and perfume/cologne; highest alkylphenols
in shower curtains and car interior cleaners; highest ethanolamines in glass cleaners
and laundry detergent; highest antimicrobials in hand and bar soaps; highest BPA in
detergent, soap, shampoo, conditioner, detergent, shaving cream, face lotion, toilet bowl
cleaners, body wash, and nail polish; highest phthalates in foundation, car fresheners,
and perfume/cologne; and highest parabens in face lotion, mascara, hair spray, and
sunscreen. In addition to conventional products, composites of alternative products that
were advertised as “greener” were also analyzed in the study. The results of the analysis
demonstrated the widespread presence of EDCs in commonly used household products
and the co-occurrence of multiple compounds in the same products, raising concerns
regarding their biological activity and potential toxicological and ecotoxicological impli-
cations of the use of these products. Further, the study revealed multiple compounds in
the products that were not listed on the product labels, highlighting concerns regarding
the ability of consumers to make informed choices should they wish to select products
without specific EDCs.

The goal of this research was to develop a tool that the general public could use
to estimate their “footprint” (i.e., the mass) of EDCs in products that they currently or
typically own and use in their personal hygiene, household cleaning, and laundry routines.
Although the footprint does not provide temporal context, it serves as a “snapshot” of
the EDC footprint for the products used by members of a household at the time the
calculator is taken. The footprint tool was inspired by online water and carbon footprint
calculators, which prompt users to answer questions about their daily activities. These
types of tools are useful in increasing awareness of complex environmental issues, such
as water pollution and climate change. Here, we present an example output of the EDC
calculator to demonstrate the utility of its graphical outputs in helping individual users
make decisions about ways they could lower their household EDC footprint through their
consumer choices. Further, we analyzed EDC footprint results for 39 citizen scientists
in the northeastern United States to better understand the dominant product categories
and individual products each contributing to total EDC footprints. Overall, we hope
that users of the EDC footprint calculator become more aware of the issue of emerging
contaminants in the water cycle and feel empowered to reduce their contribution to this
global environmental concern.
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2. Materials and Methods

2.1. EDC Footprint Tool Development

The EDC footprint calculator was developed by conducting a review of existing
databases and papers to identify the masses of EDCs in various commonly used PCPs. The
three product categories that were selected are health and beauty products, household
cleaning products, and laundry products. The individual products included in the health
and beauty products category are hand soap, hand sanitizer, bar soap, body wash, shampoo,
conditioner, shaving cream, body lotion, face lotion, facial cleanser, toothpaste, deodorant,
hair products, lipstick, mascara, foundation, nail polish, sunscreen, and perfume/cologne.
The products included in the household cleaning products category are surface cleaner,
floor cleaner, glass cleaner, bathtub and tile cleaner, toilet bowl cleaner, air freshener, carpet
cleaner, floor polish/wax, dishwasher detergent, and dish liquid. The individual products
in the laundry category are laundry bleach, laundry detergent, and dryer sheets. The
EDCs that can be found in these products and are included in the calculator are outlined
in Table 1. Although pharmaceuticals are often grouped with personal care products as
sources of EDCs, we decided not to include them and instead focused only on products
used for personal hygiene and other household cleaning activities, as these are likely to
be the dominant contributors to a user’s total EDC footprint and are less intrusive than
prompting a user to input potentially sensitive or confidential medical information.

Table 1. Categories of endocrine-disrupting compounds (EDCs) and specific compounds within each
category that were included in the EDC footprint calculator.

EDC Category Compounds

UV Filters Octinoxate, Benzophenone, Benzophenone-1, Benzophenone-3
Cyclosiloxanes Dodecamethylcyclohexylsiloxane, Decamethylcyclopentasiloxane, Octamethylcyclotetrasiloxane

Parabens 2-Butyl paraben, Methyl paraben, Ethyl paraben,
Glycol Ethers 2,2-Butoxyethoxyethanol, 2,2-Methoxyethoxyethanol, 2-Phenoxyethanol, 2-Butoxyethanol

Antimicrobials Triclosan, Triclocarban
Ethanolamines Monoethanolamine, Diethanolamine

Phthalates
Diethyl phthalate, Di-n-propyl phthalate, Di-n-octyl phthalate, Di-n-hexyl phthalate, Di-n-butyl

phthalate, Di-isononyl phthalate, Di-isobutyl phthalate, Di- cyclohexyl phthalate, Benzylbutyl phthalate,
Bis(2-ethylhexyl) phthalate, Bis(2-ethylhexyl)adipate

Fragrances

Phenethyl alcohol, Musk xylene, Musk ketone, Methyl ionone, Isobornyl acetate, Methyl salicylate,
Hexyle cinnemal, 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta [g]-2-benzopyran (HHCB),

6,7-Dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), Bucinal, 6-acetyl-1,1,2,4,4,7
hexamethyltetraline (AHTN), Terpineol, Pinene, Eugenol, Methyl salicylate, Methyl eugenol,

Benzylacetate, Diphenyl ether, Limonene, Linalool

Alkylphenols Nonylphenol diethoxylate, Nonylphenol monoethoxylate, 4-t-Nonylphenol, Octylphenol diethoxylate,
Octylphenol monoethoxylate, 4-t-Octylphenol

Numbers used in the calculator were taken as an average of the results in the Dod-
son et al. [27] study when the concentrations were <1000 μg/g. For the products containing
EDCs above 1000 μg/g, concentrations were obtained from the Consumer Product In-
formation Database (CPID) [28]. The concentrations of EDCs in perfume and cologne
were further improved using concentrations reported by Peters [29]. This report analyzed
phthalates and fragrances in 36 perfume products.

The EDC footprint calculator was initially developed in Microsoft® ExcelTM as a down-
loadable spreadsheet-based tool (the blank version is shown in Figure 1). The calculator
was divided into sections for each of the three major product categories: cleaners, laundry,
and health and beauty. The user interface column accepts input in milliliters (mL) for liquid
products and grams (g) for solid products (shown in green on the calculator; Figure 1). If a
user has multiple containers of a product (e.g., two tubes of toothpaste), the user can add
the quantities together and enter a total amount in the appropriate column. The calculator
uses the information (i.e., masses and volumes) inserted by the user and multiplies the
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concentration of EDCs (and the density of the product if the input is in mL) to estimate the
mass (in mg) of EDCs in each product:

x
μgEDC
gproduct

× y
gproduct

cm3
product

× z mLproduct × 1
cm3

product

mLproduct
× 1 mgEDC

1000 μgEDC
= mgEDC (1)

where x is the concentration of EDC in a product from the existing literature [27–29], y is the
density of that product from CPID [28], and z is the volume of product the user entered. The
calculator then sums the mass of EDCs calculated for each product and determines the total
mass (in g) of EDCs estimated to be in all of the products the user entered. This total mas is
the EDC footprint and is shown in red in the bottom right corner of the calculator (Figure 1).
The footprint tool was made publicly available through Penn State Extension [30].

 

Figure 1. Endocrine-disrupting compound (EDC) footprint calculator user interface. User input is
accepted in either volume (mL) or mass (g). The calculator then calculates and displays the estimated
mass of EDCs in each product. The total EDC footprint for all products entered by the user is
displayed in red on the bottom right side of the tool’s interface.

To facilitate a more user-friendly version of the calculator that did not require a
Microsoft® ExcelTM license, we developed a web-based version of the tool using QualtricsTM

(Qualtrics, Provo, UT, USA). This version made the calculator more widely accessible to a
broader audience since it does not require users to have the software or the technical skills
to use it. Further, the online Qualtrics version allows data to be collected anonymously, en-
abling research to be conducted to better understand what typical ranges of EDC footprints
are for households at various scales from local to regional to national and potentially even

51



Water 2022, 14, 1587

global. Between 2018 and 2022, the EDC footprint tool has been used more than 1400 times,
with users in the United States, Mexico, Canada, India, Taiwan, and Europe.

The tool provides several graphical outputs to assist the user in interpreting the results.
The first visual output is a pie chart that provides the percent contribution of each of the
three product categories to the total EDC footprint, enabling the user to easily assess how
much of the total footprint is from products in the health and beauty, cleaners, and laundry
categories. The second visual output is a pie chart that provides the percent contribution of
each EDC category to the overall EDC footprint. This allows the user to easily assess the
percent contribution of the following categories to the overall EDC footprint: UV filters,
cyclosiloxanes, glycol ethers, fragrances, alkylphenols, ethanolamines, antimicrobials, BPA,
phthalates, and parabens (see Table 1 for the specific chemicals included in each of these
categories). Finally, the calculator ranks the percent contribution of each product to the
overall EDC footprint and visualizes the contribution (mass) of the top 10 products in a
bar chart. This chart is intended to help the user determine which specific products are
contributing the most to the total EDC footprint, thereby providing the user with easily
accessible information regarding which products have the highest potential to reduce the
user’s EDC footprint if they were to be exchanged for a “greener” product.

A “green” version of the EDC footprint calculator was developed in the same manner
described for the original version of the calculator; however, it has not yet been made
publicly available. This “green” version is based on EDC concentrations for products
marketed as “eco-friendly” or “green” in the study by Dodson et al. [27]. Specifically, we
replaced the original concentrations of each EDC in each product reported by Dodson
et al. [27] with the concentrations of the products that Dodson et al. [27] reported for the
“green” products.

It should be noted that the EDC footprints generated from this tool are based on the
products in a household at the time the footprint tool was used and is not meant to provide
an estimate of usage of these products over a specific amount of time. For example, some
products, such as hand soap, are likely used more frequently than other products. We
did not attempt to capture the time frame over which the products contributing to the
footprint would be consumed. Rather, at the scale of an individual household, the results
are meant to serve the following purposes: (1) informing the user of the total EDC footprint
of the products in the household at the time the calculator was used; (2) visualization of the
results to enable the user to understand the contribution of products used in each of the
three product categories to the total footprint; (3) determination of the individual products
contributing the most to the total footprint; and (4) understanding the individual ingredi-
ents categorized as EDCs that are present in the products used in the household. The user
is then empowered with the information necessary to make changes in product selection to
reduce the household’s footprint through product selection that avoids specific ingredients
or by replacing the top-ranking products with greener alternatives. We recognize that a
footprint could be reduced by having less of a product in the household at the time the
footprint calculator is used, such that someone who buys products in bulk may have a
higher “snapshot” footprint than someone who buys products as needed; however, the
user knows what the shopping habits of the household are and can interpret the results in
the context of that knowledge (e.g., a higher snapshot footprint does not necessarily mean
a higher annual footprint).

2.2. Citizen Science Demonstration of EDC Footprint Calculator

In June 2021, we recruited 58 citizen scientists to take part in a project that sought to
establish links between EDCs in household products they use and the presence of these
EDCs in surface water samples from various locations across the Pennsylvania portion
of the Susquehanna River Basin, which is the largest tributary to the Chesapeake Bay
watershed in the northeastern United States. The citizen scientists were volunteers and
filled out the EDC footprint calculator as part of their participation in the project. Results
of the footprint tool were distributed to participants in a final report that included their
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household’s footprint, as well as a summary of the results for the other 57 participants
to provide context regarding their own household’s footprint. After final reports were
distributed, 39 citizen scientists responded to a post-study survey, which included some
general demographic questions. In this research, we used the results of the demographic
questions (Table 2) to interpret the results of the EDC footprint tool based on household size.

Table 2. Demographic information for each of the 39 citizen scientists located across the Susquehanna
River basin in the northeastern United States who volunteered to calculate and share their endocrine-
disrupting compound (EDC) footprint.

Participant Demographics Number of Participants
Percentage of
Participants

1 Person household 10 26%
2 Person household 12 31%
3 Person household 9 23%
4 Person household 8 21%

3. Results

3.1. Example Results

To demonstrate the results that an individual user receives by using the EDC footprint
tool, example product inputs are provided in Figure 2, and the output is shown in Figures 3
and 4. Based on the user’s input (Figure 2), the first pie chart shows that EDCs in the
household cleaners category contributed to nearly half (48%) of the total EDC footprint,
while products in the laundry and health and beauty categories each contributed to 26% of
the total EDC footprint (Figure 3a). Glycol ethers, fragrances, and ethanolamines together
contributed to more than 85% of the total EDC footprint (Figure 3b). The top individual
product that contributed the most to the user’s EDC footprint was glass cleaner (Figure 4).
The other products contributing the most to the example user’s footprint were three
household cleaners (floor cleaner, surface cleaner, and dish liquid); five health and beauty
products (hand soap, bar soap, perfume/fragrance, body wash, and body lotion); and one
laundry product (laundry detergent) (Figure 4).

To facilitate decision making regarding the potential for the example user’s EDC
footprint to be lowered if individual products were switched to “greener” alternative prod-
ucts (i.e., plant-based laundry detergent, natural air fresheners, etc.), product inputs were
recalculated using the “green” version of the calculator. Results show that, by switching to
an alternative version of the top five products alone, this example user could reduce the
household EDC footprint by more than 75% (Table 3).

Table 3. Potential endocrine-disrupting compound (EDC) footprint reduction that could be achieved
by replacing the top five contributing products with a greener alternative for one example user.

Product
EDC Mass (g)

Conventional Products
EDC Mass (g)

Alternative Products
Percent Reduction

(%)

Glass cleaner 31.68 0.44 98.6
Laundry detergent 20.19 0.09 99.6

Hand soap 6.34 3.34 47.3
Bar soap 3.96 0.04 99.0

Floor cleaner 3.52 0.38 89.2
All other products 15.93 NA 0.0

Total Footprint (all products) 81.62 20.21 75.2

NA = not applicable, as only the top five products were switched in this example to alternative products. All
other products in this example input (Figure 2) remained the same.
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Figure 2. Example of one user’s input to the endocrine-disrupting compound (EDC) footprint
calculator and corresponding footprint calculation results, where the amount of each product input
in either volume (mL) or mass (g), depending on whether the product is a solid (green box with red
text) or a liquid (white box with black text).

 

Figure 3. Example of endocrine-disrupting compound (EDC) footprint calculator results for one user
with (a) the mass and percent contributions of each product category to the total estimated EDC
footprint; (b) the percent contribution of each EDC to the total estimated EDC footprint.
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Figure 4. Example of endocrine-disrupting compound (EDC) footprint calculator results for the top
10 products and their contribution to the overall EDC footprint for one example user.

3.2. Citizen Science Footprint Results

The EDC footprints for the 39 citizen scientists who participated in this study ranged
from as low as 2.5 g to as high as 720.2 g, with high coefficients of variation (CV > 0.6) for the
footprints across all household sizes (Table 4). Household cleaning products contributed
nearly half of the total EDCs in the household-based citizen science study. Glass cleaners
contain high concentrations of ethanolamines and glycol ether, while air fresheners contain
high concentrations of fragrances [27]. Other products that often appeared on the top 10 lists
for all 39 footprints were laundry detergent, carpet cleaner, sunscreen, bar soap, and
shampoo (Figure 5). Laundry detergents, which generally contain high concentrations of
ethanolamines and fragrances [27], are sold and used in larger quantities than are most of
the other products.

Table 4. Summary by household size of endocrine-disrupting compound (EDC) footprint calculator
results from 39 citizen scientists. Summary results include the average footprint per household size,
standard deviation, coefficient of variation, and footprint ranges.

Persons in
Household

Number of
Footprints

Average
Footprint (g)

Standard
Deviation (g)

Coefficient of
Variation

Footprint
Ranges

(g)

1 10 112.8 107.2 0.95 15.0–336.7
2 12 151.3 170.3 1.13 2.5–622.1
3 9 183.8 208.8 1.14 44.6–720.2
4 8 144.6 94.6 0.65 31.6–293.4

Evaluation of average masses provides an indication, for this study, of products that
are used in most households. In contrast, products with very disparate median and mean
values are used relatively in some houses and not at all in others. For example, relatively
high values for both mean and median EDC masses from the citizen science portion of
this study showed that laundry detergent, glass cleaner, and sunscreen contributed to
many of the 39 EDC footprints obtained (Figure 6). In contrast, air freshener and carpet
cleaner contributed substantially to the EDC footprints of some households but were not
present at all in more than one-half of the households studied, as evidenced by much higher
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mean than median values for these compounds. Comparison of mean and median values
can help future scientists identify potentially different sample populations with targeted
outreach techniques. For example, it is likely that nearly all households will have some
form of glass cleaner for windows and some laundry detergent. However, efforts to reduce
contributions from air fresheners, carpet cleaners, furniture polish, dishwater detergent,
and dryer sheets need to target communities where households are likely to have carpets,
dishwashers, and dryers.

 

Figure 5. Average percentages of the contribution of each product to the overall footprint of cleaning
products, health and beauty products, and laundry products, with products in the cleaning, health
and beauty, and laundry categories, contributing an average of 44.9%, 34.8%, and 20.3%, respectively,
to the total EDC footprints of the 39 participating citizen scientists. The size of each rectangle provides
a visual representation of the extent to which that product contributes to the total footprint.

Figure 6. Average and median masses (mg) of EDCs calculated to be in each product for the
39 participating citizen scientists. Error bars represent the standard deviations.
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4. Discussion

The average total footprint for each of the households that participated in the
citizen science study was 113–184 g (Table 4). This is such a small mass that it can
be challenging to interpret the potential for this footprint to inadvertently impact
aquatic ecosystems. Therefore, the footprint calculator was programmed to provide
the user with perspective for the interpretation of their results by scaling up the per
capita footprint (i.e., total household EDC footprint divided by the number of people
in the household) and multiplying by the total population of the United States. For
example, the average two-person household‘s footprint of 151 g would estimate that
the total EDC footprint for the United States (330 M people) if everyone had the same
per capita footprint as the user would be approximately 24,915 metric tonnes, which is
the equivalent of approximately 82 commercial airplanes (each plane is approximately
300 tonnes).

In the context of the specific citizen science study conducted here, a more regional
context would be the potential impacts of these EDC footprints on the presence of
emerging contaminants in the Chesapeake Bay watershed. Given the population in
the watershed (18 M people) and an average per capita EDC footprint, the total EDC
footprint across the Bay watershed would be 1287 metric tonnes. If this entire footprint
reached the Chesapeake Bay, which has a volume of approximately 81.8 km3, the EDC
concentration in the Bay would be 15.7 g/L. Although some of these EDCs can be
treated by wastewater treatment plants or septic tanks before ultimately reaching the
Bay, mitigation in the treatment facilities may not be effective enough to remove potential
ecological risks.

These estimated footprints are significant given the potential impact of the presence
of these contaminants in the environment even at trace concentrations (μg–ng/L). For
example, triclosan has been shown to affect hindlimb development in amphibians at
concentrations as low as 0.15 μg/L [19]. Musks, which are significant contributors to the
fragrances commonly found in perfume and cologne [29], have been shown to exhibit
estrogenic effects [31,32]. BPA is also known to exhibit estrogenic potential and has been
documented to cause gender skewing in flathead minnows at exposure concentrations
as low as 0.32 ng/L [33]. Additionally, EDCs have been shown to exhibit synergistic
behavior when multiple compounds are present together, such that the total endocrine-
disrupting potential of the “cocktail” is greater than simply adding the potential of each
individual compound [34]. Although the potential harm to human health is unclear, there
is a significant need to understand synergistic interactions and the risks to humans and
the environment.

While these results clearly have implications for both human and environmental
health, Dodson et al. [27] found that various compounds detected in tested personal
care products were not present on the products’ labels. This makes decision making
more challenging for consumers, as even someone who wants to be an informed con-
sumer may be unable to make satisfying decisions about product selection, especially
in real time while shopping. Additionally, the study found that some product labels
can be misleading due to labeling standards, with some products advertising to be
“fragrance-free” when they indeed contained synthetic fragrances to mask an undesir-
able chemical odor. Rather than the product being “free” of fragrances, the product has
a neutral smell due to a combination of various fragrances ultimately canceling each
other out. Therefore, this EDC calculator tool can serve as a mechanism to increase
awareness of EDCs and their potential effects on environmental quality, as well as
engage the public about the role everyone plays in contributing to the presence of
EDCs in the environment.

The rhetoric surrounding the presence of EDCs in the aquatic environment is often
filled with fear and uncertainty, particularly because of the near-ubiquitous presence
of synthetic chemicals in the environment and because of the lack of water quality
standards for EDCs. Here, we sought to provide a tool that could shift the public
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perception from one of fear to one of empowerment by providing consumers with the
knowledge they need to make more informed choices. The results of the tool may help
to reduce the consumption of EDC-containing products and ultimately reduce EDC
presence in the environment.
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Abstract: Inequality is an emergent property of complex systems. In catchments, variation in
hydroclimatic conditions and biogeochemistry cause streamflow and constituent loads to exhibit
strong temporal inequality, with most loads exported during “hot moments”. Achieving water-
quality-restoration goals in a cost-effective manner requires targeted implementation of conservation
practices in “hot spots” in the landscape and “hot moments” in time. While spatial targeting is
commonly included in development of watershed management plans, the need for temporal targeting
is often acknowledged, but no common way to address it has been established. Here, we implement
a Lorenz Inequality decision-making framework that uses Lorenz Curves and Gini Coefficients to
quantify the degree of temporal inequality exhibited by contaminant loads and demonstrate its
utility for eight impaired catchments in the Chesapeake Bay watershed. The framework requires a
load-reduction goal be set and then links the degree of temporal inequality in annual nutrient loads
to the periods of time during which those loads could be targeted. These results are critical in guiding
development of site-specific, cost-effective tools that facilitate load-reduction and water-quality goal
attainment for individual catchments. The framework provides valuable insight into site-specific
potentials for meeting load-reduction goals.

Keywords: conservation practices; decision making; nutrients; sediment; targeting; water quality

1. Introduction

Inequality is a ubiquitous, emerging property of complex systems. In catchments, the
spatial and temporal inequality of hydrologic and biogeochemical responses lead to the
emergence of “hot spots” and “hot moments”, with the vast majority of these responses
occurring during relatively short periods of time and in relatively small locations. While
the importance of spatial and temporal inequality is widely recognized, the methods used
to identify “hot spots” and “hot moments” are not well established, with the methodol-
ogy employed to analyze spatial data generally disconnected and inconsistent with the
methodology employed to analyze temporal data.

The quantification of “hot spots” has been more consistently reported in the literature
than the quantification of “hot moments”. By calculating area-normalized loads (or other
nutrient-cycle responses, such as gaseous emissions), “hot spots” are identified as the
locations over a given spatial extent of interest (i.e., field, catchment, or watershed) that
have the highest loads per unit area. If an area of interest needs to be managed for
water-quality impairment, for example, then decision makers can direct resources to a

Water 2022, 14, 1003. https://doi.org/10.3390/w14071003 https://www.mdpi.com/journal/water
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relatively small number of places, knowing that implementing conservation practices in
those locations will achieve a higher impact on load reduction than placing the same
resources and practices in other areas. Crop nutritionists increasingly support this principle
through management framework called “4R Nutrient Stewardship”: right nutrient source
at the right rate at the right time in the right place [1]. Previous research has shown that
spatially targeting adoption of agricultural conservation practices at the field scale leads to
larger load-reduction goals at the watershed scale [2–6]. It is also important to recognize
and manage temporal inequalities, or “hot moments”, such that resources can be targeted
based on both spatial and temporal inequalities. However, no uniform metric for describing
temporal inequality has been widely adopted despite the prevalence of temporal inequality
documentation across small and large watersheds [7–10].

The need to quantify the degree of inequality in a system is not new. Perhaps nowhere
has the degree of inequality been more routinely quantified than in economics. For more
than a century, Lorenz Inequality and the corresponding Gini Coefficient (G) have been
used to determine wealth distribution by quantifying the degree of income inequality in a
population. Lorenz Inequality analysis was first applied to quantify the degree of inequality
for streamflow hydrology and water quality in 22 locations in the Lake Okeechobee water-
shed [11] and has since been utilized globally at the continental scale to better understand
how climate change is likely to affect flow regimes [12]. Additionally, the analysis has been
applied to time series data for geogenic constituents, nutrients, sediment, and pesticides in
more than 100 watersheds ranging from 2.5 km2 to 70,000 km2 and at time scales ranging
from daily to annually [13–15].

Water-quality degradation of coastal water bodies due to the presence of excess nutri-
ents is a leading global environmental concern [16], with agricultural activities identified
as common contributors to degraded water quality [17]. The Chesapeake Bay is the third
largest estuary in the world and has a watershed area spanning 166,000 km2 across seven
jurisdictions. In 2010, a federally mandated Total Maximum Daily Load (TMDL) was
established by the United States Environmental Protection Agency, designed to reduce
nutrient and sediment loads and restore water quality to be in compliance with the Bay’s
designated use of fishing and swimming by 2025 [18]. To achieve mandated load-reduction
goals, widespread adoption of conservation practices has occurred across the Chesapeake
Bay watershed. However, current Chesapeake Assessment Scenario Tool (CAST) estimates
of load reductions indicate that the Commonwealth of Pennsylvania (PA) in particular is
behind the pace likely needed to meet the 2025 reduction goals [19]. Although a range
of factors contribute to the overall water quality of the Chesapeake Bay, we argue that a
failure to target load reduction during “hot moments” is a contributing factor. The Com-
monwealth of PA has established a four-tiered system for prioritizing spatial adoption
of conservation practices, with each tier of counties needing to reduce 25% of the state’s
portion of the overall Chesapeake Bay TMDL in its current Watershed Implementation
Plan [20]. Tier 1 consists of the two greatest “hot spot” counties that rank highest in nutrient
and sediment loads, Tier 2 consists of five counties, whereas Tiers 3 and 4 consist of 16 and
20 counties, respectively. However, no efforts have been documented towards effectively
target “hot moments”.

The goal of this study is to demonstrate the impact that temporal variability from year
to year can have on achieving load-reduction goals in an impaired watershed through the
development of a decision-making framework for temporal targeting of “hot moments”
during which the targeted load is exported. The framework consists of a novel application
of Lorenz Inequality to link the temporal inequality of contaminant loads to the specific
“windows of opportunity” and corresponding flow conditions necessary to target to achieve
the desired load-reduction goals. The framework is demonstrated here using daily load
and discharge data from eight impaired catchments in the Chesapeake Bay watershed.
By comparing these loads on an annual basis with established load-reduction goals for
each catchment, we determine the catchment-specific variability in percent reduction
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needed from year to year and discuss how this framework enables watershed planners to
understand and inform stakeholders of the risk of a watershed conservation plan.

2. Materials and Methods

2.1. Study Site Selection

The Chesapeake Bay Nontidal Network is a monitoring network comprising 123 water-
quality-monitoring stations throughout the Chesapeake Bay watershed that provide nu-
trient and sediment data [21]. The water-quality-monitoring stations are co-located with
U.S. Geological Survey (USGS) streamflow gauges, allowing loads to be calculated. While
streamflow data were collected at the sub-daily scale, water-quality data were collected
monthly and during targeted storm events, providing 20 data points per station per year.
Load data are available in the USGS database at monthly and annual time scales back to
1985; however, daily-scale data were estimated by USGS using the weighted regression on
time, discharge, and season (WRTDS) load-estimation technique [21,22].

Here, we analyze eight stations from the Chesapeake Bay Nontidal Network (Table 1;
Figure 1). These stations were selected because they are located in Tier 1 or Tier 2 counties
in PA, which are the counties with the greatest nutrient loads to the Chesapeake Bay
watershed [20]. Further, the drainage areas for each of these monitoring stations are within
one county’s boundaries, enabling more accurate calculation of the specific load-reduction
goals that need to be met at each point (Table 1). The load reduction for TN and TP that
each county needs to meet is specified in the PA Watershed Implementation Plan [20], and
the load reduction needed for each selected study site was calculated based on the size of
the drainage area relative to the county. For example, a drainage area that spans half of a
county would need to meet half of the county’s mandated load reduction.

Table 1. Information regarding drainage area, percentage of land use (agricultural, forested, and
urban), and annual load-reduction goals for total nitrogen (TN) and total phosphorus (TP) for each
selected study site in the Pennsylvania portion of the Chesapeake Bay watershed. Land use is based
on USGS 2016 National Land Cover Data (https://www.mrlc.gov/data/nlcd-2016-land-cover-conus;
accessed on 30 June 2020).

Station ID Stream Name County
Drainage Area

(km2)

Land Use (%)
Forested/

Developed/
Agriculture

TN Load
Reduction
(kg-N/y)

TP Load
Reduction

(kg-P/y)

1570000 Conodoguinet Creek Cumberland 1217.29 39/20/24 847,735 11,439
1573160 Quittapahilla Creek Lebanon 192.18 15/33/51 204,356 6916
1573695 Conewago Creek Lebanon 53.09 42/15/41 56,454 1910
1574000 West Conewago Creek York 1320.89 57/16/26 1,016,787 -
1575585 Codorus Creek York 691.53 37/34/28 532,322 -
1576754 Conestoga River Lancaster 1217.29 17/42/39 2,483,862 101,460
1576787 Pequea Creek Lancaster 383.32 48/13/39 782,158 31,949
1614500 Conococheague Franklin 1279.45 19/16/64 839,974 28,985

-, Mandated load-reduction goal has already been met.

2.2. Lorenz Inequality Analysis

The extent of temporal inequality in the TN and TP loads observed at each selected
monitoring station were determined using Lorenz Curves and corresponding Gini coeffi-
cients (G). The Lorenz Curves were created by sorting the daily loads in ascending order
and graphing the fractions of the cumulative loads as a function of the fractions of cumu-
lative time (Figure 2). Lorenz Curves were generated for each station from 2010 through
2018 given that the TMDL began in 2010 and data are available from the Chesapeake
Bay Nontidal Network through 2018. In a few cases, where data were not available from
2010–2012, data were analyzed from 2013 through 2018.
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Figure 1. Land-use composition of the eight selected study site in the Pennsylvania portion of the
Chesapeake Bay watershed. Base layer for the maps is the USGS 2016 National Land Cover Data
(Available at: https://www.mrlc.gov/national-land-cover-database-nlcd-2016; accessed on 30 June 2020).

 

Figure 2. Visual representation of Lorenz Curves for perfect equality (G = 0) and perfect inequality
(G = 1) scenarios in economics and their hydrologic analogues, where G is the Gini Coefficient.
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Lorenz Curves plot on or below a line of equality (Figure 2), with the value of G
quantifying the extent to which the curve plots below the line of equality. G was calculated
as the ratio of the area between the line of equality and the Lorenz Curve to the entire
area under the line of equality (Figure 2). These metrics are commonly used in economics
and have more recently been applied to hydrology and water-quality data [11–15]. In the
economics scenario, G would equal 0 (i.e., perfect equality) if everyone in the population
had the same amount of wealth, while G would equal 1 (i.e., perfect inequality) if one person
in the population had the entirety of the wealth, while everyone else in the population had
none. In the water-quality scenarios, G = 0 if every moment contributes equally to observed
biogeochemical and/or hydrologic responses, whereas G = 1 if one moment contributes
to the entirety of the observed responses. The appeal of this analysis is its applicability to
data over any duration of time or spatial extent in exactly the same mathematical manner.

2.3. Temporal Targeting Decision-Making Framework

The results of the temporal inequality analyses were used to develop a decision-
making framework to identify the time and flow conditions under which the targeted
load was exported. The Lorenz Curves were used to identify the fraction of time during
which the cumulative TN and TP loads were exported, respectively, during low-flow and
high-flow conditions. The framework then links the targeted loads to a flow-duration
curve (FDC) for each site, which enables the flow conditions during the periods of time
that the targeted loads were exported to be specified. The decision-making framework
produces the specific flowrates for high- and low-flow conditions that export the loads that
need to be mitigated to meet the desired load-reduction goals. If the annual load is greater
than the targeted load, there are generally two “windows of opportunity” for achieving
the load-reduction goals, with low-flow targeting resulting in a longer period of time
over which opportunities arise to effectively mitigate the load, while high-flow targeting
provides a shorter, more targeted period of time to achieve the same load reduction.

3. Results

3.1. Load-Reduction Goals

The percentage of the annual TN and TP loads that must be reduced to meet the
load-reduction goals mandated for each county are reported in Table 2. They range from
less than 10% of the annual TP load to more than 100% of the annual loads for both TN
and TP. For the years in which the load reduction was more than 100% of the annual load,
the load was smaller than the mandated load reduction (see Tables 1 and 2), meaning that
even if the entire annual load had been effectively mitigated, the annual load reduction
would not have been met. Further, the percentage of the annual TN and TP loads that need
to be reduced varied across years for each site, with the load reduction needed for some
catchments ranging from less than 30% in some years to more than 70% in others (Table 2).
The range was particularly large for the West Conewago Creek site, which only needed to
reduce its load by approximately 40% in 2011 but, in other years, could have reduced 100%
of its load and still not met its annual load-reduction goal (Table 2).

3.2. Temporal Inequality Results

The degree of temporal inequality exhibited by each of the selected study sites was
generally lower for TN than TP (Figure 3; Table 3), with an average value of G for TN (GTN)
across all years at all sites of 0.44, while the average G for TP (GTP) across all years of all
sites was 0.67. Across all sites, the range of G values exhibited by TN was 0.19 to 0.73,
while the range for TP was 0.32 to 0.90. The study site with the lowest degree of temporal
inequality for TN and TP was Quittapahilla Creek, which had average GTN and GTP values
of 0.24 and 0.41, respectively. The Conewago and West Conewago Creek study sites had
the highest average GTN and GTP values of >0.60 and >0.75, respectively.
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Table 2. Annual loads for total nitrogen (TN) and total phosphorus (TP) for each selected study site,
along with the calculated percent reduction of TN and TP needed to meet the annual load-reduction
goals provided in Table 1.

Station ID Stream Name Year Annual Load (kg/y) Reduction Needed in Annual Load (%)
TN TP TN TP

1570000 Conodoguinet
Creek

2010
2011
2012
2013
2014
2015
2016
2017
2018

2,519,351
3,020,707
2,626,795
1,714,809
2,257,449
1,595,774
1,480,014
1,329,605
3,208,919

46,921
84,057
43,936
21,728
39,676
22,924
20,259
16,788
73,436

33.65
28.06
32.27
49.44
37.55
53.22
57.28
63.76
26.42

24.38
13.61
26.04
52.65
28.83
49.90
56.46
68.14
15.58

1573160 Quittapahilla
Creek

2013
2014
2015
2016
2017
2018

615,651
727,136
505,997
555,417
512,714
888,834

16,176
20,475
8,768

10,311
7,548

24,005

33.19
28.10
40.39
36.79
39.86
22.99

42.75
33.77
78.87
67.07
91.62
28.81

1573695 Conewago Creek

2013
2014
2015
2016
2017
2018

51,752
81,874
47,854
58,677
47,514

137,565

5,825
9,607
3,601
5,335
3,185

24,338

109.08
68.95

117.97
96.21

118.82
41.04

32.80
19.89
53.06
35.81
59.98
7.85

1574000 West
Conewago Creek

2010
2011
2012
2013
2014
2015
2016
2017
2018

1,696,470
2,683,395
1,766,520
1,451,354
2,017,352
1,156,909
1,455,303
781,830

2,310,778

133,314
357,276
157,856
148,154
225,083
97,761

135,015
55,144
270,731

59.94
37.89
57.56
70.06
50.40
87.89
69.87

130.05
44.00

-
-
-
-
-
-
-
-
-

1575585 Codorus Creek

2013
2014
2015
2016
2017
2018

1,320,054
1,835,336
950,050

1,245,531
740,603

1,598,243

77,114
108,968
41,905
59,141
31,663

123,154

40.33
29.00
56.03
42.74
71.88
33.31

-
-
-
-
-
-

1576754 Conestoga
River

2010
2011
2012
2013
2014
2015
2016
2017
2018

4,296,086
5,284,077
3,909,384
4,023,552
5,027,739
3,311,859
3,281,919
2,473,277
4,636,651

144,816
431,397
152,379
221,673
298,263
138,998
138,687
87,942
325,283

57.82
47.01
63.54
61.73
49.40
75.00
75.68

100.43
53.57

70.06
23.52
66.58
45.77
34.02
72.99
73.16

115.37
31.19

1576787 Pequea Creek

2010
2011
2012
2013
2014
2015
2016
2017
2018

1,569,087
1,482,631
1,246,702
1,238,306
1,605,497
1,006,888
958,201
598,215

1,218,037

87,343
120,837
63,093

137,569
146,393
69,547
52,977
16,240

136,156

49.85
52.75
62.74
63.16
48.72
77.68
81.63

130.75
64.21

36.58
26.44
50.64
23.22
21.82
45.94
60.31

196.73
23.47
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Table 2. Cont.

Station ID Stream Name Year Annual Load (kg/y) Reduction Needed in Annual Load (%)
TN TP TN TP

1614500 Conococheague
Creek

2010
2011
2012
2013
2014
2015
2016
2017
2018

2,721,257
3,251,720
2,839,020
2,115,025
2,603,312
1,511,072
1,700,538
1,704,557
3,647,005

78,048
131,625
64,177
47,024
82,177
32,248
37,061
43,349

137,505

30.87
25.83
29.59
39.71
32.27
55.59
49.39
49.28
23.03

37.14
22.02
45.16
61.64
35.27
89.88
78.21
66.86
21.08

-, Mandated load-reduction goal has already been met.

Figure 3. Lorenz Curves for total nitrogen (TN) and total phosphorus (TP) loads exported for each
year for each selected study site. The dotted line represents the “Line of Equality”, with temporal
inequality signified by the degree to which the Lorenz Curve plots below the line. Blank plots are
shown when no load data are available for those years for specific gauging stations.
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Table 3. Gini Coefficients for total nitrogen (GTN) and total phosphorus (GTP) loads exported for each
year for each selected study site, along with percentages of time that each load is exported during
low- and high-flow conditions.

Station ID Stream Name Year GTN GTP

% Time TN % Time TP

Low Flow High Flow Low Flow High Flow

1570000 Conodoguinet
Creek

2010 0.42 0.74 63.8 11.0 82.2 0.5
2011 0.49 0.81 63.6 5.2 78.4 0.3
2012 0.34 0.64 55.7 12.6 74.6 0.8
2013 0.42 0.70 77.5 21.6 98.1 3.6
2014 0.42 0.71 67.7 12.9 83.3 1.4
2015 0.42 0.72 82.5 22.7 95.3 4.7
2016 0.52 0.77 89.6 19.4 98.1 3.8
2017 0.43 0.69 88.8 32.9 98.1 15.1
2018 0.48 0.72 60.5 5.8 71.2 0.8

1573160 Quittapahilla
Creek

2013 0.19 0.38 46.3 22.5 69.9 15.6
2014 0.22 0.42 43.0 16.7 61.9 6.8
2015 0.22 0.32 55.6 26.3 94.0 61.1
2016 0.26 0.40 55.7 20.8 92.1 40.2
2017 0.22 0.36 55.3 25.5 98.9 79.7
2018 0.31 0.60 42.2 9.9 69.0 3.8

1573695 Conewago
Creek

2013 0.54 0.82 100.0 100.0 97.3 0.5
2014 0.60 0.82 96.4 23.6 85.5 0.5
2015 0.61 0.78 100.0 99.7 74.8 31.0
2016 0.62 0.81 99.7 73.5 95.6 1.1
2017 0.58 0.75 100.0 100.0 97.8 5.5
2018 0.7 0.90 91.5 2.7 80.5 <0.1

1574000
West
Conewago
Creek

2010 0.64 0.76 92.9 16.2 - -
2011 0.73 0.86 89.3 3.3 - -
2012 0.55 0.72 90.2 19.1 - -
2013 0.62 0.79 97.2 25.5 - -
2014 0.68 0.82 92.1 8.2 - -
2015 0.62 0.74 99.2 47.9 - -
2016 0.68 0.79 96.7 19.1 - -
2017 0.63 0.69 100.0 100.0 - -
2018 0.64 0.76 87.1 7.9 - -

1575585 Codorus
Creek

2013 0.4 0.67 68.5 15.9 - -
2014 0.46 0.67 61.1 7.1 - -
2015 0.38 0.49 81.9 28.8 - -
2016 0.45 0.55 75.1 13.7 - -
2017 0.36 0.37 91.5 47.7 - -
2018 0.49 0.69 68.8 7.7 - -

1576753 Conestoga
River

2010 0.37 0.53 79.2 32.6 96.7 31.0
2011 0.40 0.78 74.8 20.3 86.6 0.3
2012 0.34 0.56 82.5 39.3 96.7 25.4
2013 0.32 0.66 82.2 38.9 95.3 2.2
2014 0.36 0.63 73.2 25.8 81.9 1.6
2015 0.34 0.55 91.8 53.4 98.4 33.4
2016 0.36 0.54 91.5 51.9 98.6 36.1
2017 0.30 0.46 100.0 100.0 100.0 99.7
2018 0.39 0.67 78.4 26.8 81.4 2.2

1576787 Pequea Creek

2010 0.34 0.69 72.1 27.7 90.1 1.4
2011 0.35 0.78 77.0 27.4 89.6 0.5
2012 0.32 0.68 80.6 40.2 95.4 5.2
2013 0.32 0.85 84.4 41.6 96.7 <0.1
2014 0.35 0.72 72.1 25.8 76.2 0.3
2015 0.33 0.77 94.2 58.1 98.4 1.1
2016 0.33 0.69 94.3 62.8 99.5 6.6
2017 0.24 0.51 100.0 100.0 100.0 99.7
2018 0.39 0.76 86.6 37.0 83.0 1.1

1614500 Conococheague
Creek

2010 0.54 0.75 69.9 5.5 93.7 1.1
2011 0.60 0.81 71.0 3.6 87.1 0.5
2012 0.40 0.56 58.2 10.1 84.7 10.1
2013 0.46 0.63 71.8 12.3 98.1 13.2
2014 0.48 0.72 66.3 7.7 90.4 0.8
2015 0.46 0.62 85.5 22.5 100.0 60.0
2016 0.55 0.68 87.2 12.0 99.2 26.0
2017 0.48 0.68 81.6 17.5 98.1 14.5
2018 0.50 0.71 57.8 4.7 76.7 1.6

-, Mandated load-reduction goal has already been met; <0.1%, targeted load exported in a single day.

In general, sites with a higher percentage of agricultural and developed area had lower
values of GTN and GTP. The Conodoguinet Creek drainage area comprises approximately
15% forested land, with nearly 85% of the drainage area either developed or agricultural
land use (Table 1). Conodoguinet Creek’s average values of GTN and GTP were 0.24 and
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0.41, respectively, which were the lowest of all the selected sites (Table 3). West Conewago
Creek, which was the site with the highest percentage of forested land use (Table 1), had
the highest average value of GTN and the second highest average value of GTP (0.64 and
0.77, respectively; Table 3).

3.3. Decision-Making Framework Results

The decision-making framework links annual load-reduction goals to the specific
percentage of days within the year needed to fully mitigate the targeted load under either
high- or low-flow conditions (Figure 4; Table 3). Thus, through the framework, a watershed
planner can identify two “windows of opportunity” in which to mitigate exported loads
sufficiently to meet the annual reduction goals for a particular pollutant. To illustrate the
framework’s utility, data from 2014 at the Conococheague Creek site were selected and
analyzed to determine the specific periods of time and corresponding flow conditions
during which the targeted loads were exported. The framework shows that to achieve
a 32% TN load-reduction goal, either 66.3% of low-flow conditions or 7.7% of high-flow
conditions must be targeted. Based on the flow-duration curve for the site, the flowrates
when those loads were exported were less than 20 m3/s if lower flowrates were targeted
for treatment. However, if high flowrates were targeted, loads exported were greater than
42 m3/s (Figure 4). The extent of temporal inequality exhibited by the TP loads meant
that either nearly all flow conditions (i.e., flowrates observed less than 90.4% of the time)
needed to be targeted to achieve the 35% annual load-reduction goal, or the highest 0.8%
of flow conditions (i.e., flowrates higher than 150 m3/s; Figure 4) could be targeted and
achieve the same load-reduction goals.

The temporal targeting analyses across all sites and all years reveal TN and TP loads
equivalent to the mandated load-reduction goals can be exported within as little 2.7% of the
year for TN and < 0.5% for TP. These results suggest that mandated load-reduction goals
could sometimes be achieved by effectively targeting loads exported over less than ten
days of the year. In several cases, the effects of a single storm event were so high that the
targeted load under high-flow conditions was exported in a single day (Table 3). The effects
of these extreme events on the shape of the Lorenz Curve can be seen for Conewago Creek
in 2018 and Pequea Creek in 2013 (Figure 3). However, mitigating the loads of such extreme
events requires similarly extreme conservation practices that are designed far beyond those
intended for everyday mitigation.

Conversely, during lower flow conditions, temporal targeting results showed that
loads equivalent to the annual load-reduction goals were never exported less than 42%
of the time for TN or less than 62% of the time for TP across any of the sites (Table 3).
To mitigate TN and TP loads during low-flow conditions, conservation practices or best
management practices need to be effective in treating TN and TP loads over longer stretches
of consecutive days during and between small storm events. However, conservation
practice effectiveness depends not only on storm patterns but also on crop-rotation cycles
and land-use management. Thus, evaluating seasonal patterns of time-series graphs across
several historical years in context of a specific watershed’s typical cropping and land-cover
patterns may help estimate expected effectiveness and lifecycles of long-term agricultural
conservation practices.

69



Water 2022, 14, 1003

Figure 4. (a) Decision-making flow chart demonstrated for Conococheague Creek (2014) to deter-
mine site-specific fractions of time during which the targeted loads are exported and identify the
corresponding flow conditions; arrows on the Lorenz Curve and flow-duration curve are shown for
targeting total nitrogen (TN) load. (b) Time-series graphs highlight specific events during which
targeted loads for TN and total phosphorus (TP) are exported during low- and high-flow conditions.

4. Discussion

This novel application of Lorenz Inequality and corresponding G demonstrates the
utility of leveraging an analysis commonly used in economics for quantifying income
inequality for quantifying the temporal inequality of contaminant loads and establishing a
framework for temporal targeting of “hot moments” to achieve load-reduction goals. Earlier
efforts to apply Lorenz Inequality to hydrology and water-quality data have helped to
explain the effects of scale (both temporal and spatial) on the degree of temporal inequality
exhibited by discharge and loads, with higher inequality in smaller headwater catchments
and lower inequality in larger watersheds as well as higher inequality when finer temporal
resolution data (e.g., daily scale) are used to generate the Lorenz Curves compared to
coarser temporal scales (e.g., monthly) [11]. Further, across the Chesapeake Bay, a wide
range of temporal inequality was documented for 108 stations in the Chesapeake Bay
Nontidal Network, with G ranging from 0.24–0.60 for flow, 0.18–0.69 for TN, 0.36–0.92 for
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TP, and 0.39–0.90 for total suspended sediment [15]. However, the results of the previous
analysis across the Chesapeake Bay watershed were for the entire 2010–2018 period since
the TMDL was enacted, limiting the utility of those results for decision making at the
annual scale.

Here, the results of this temporal inequality analysis demonstrate the potential effective-
ness of targeting “hot moments” to achieve load-reduction goals in impaired surface water
bodies. For catchments with a high degree of temporal inequality (i.e., G approaching 1),
this temporal targeting is especially important, as failing to adopt conservation practices that
do not adequately reduce loads during high-flow conditions may prevent load-reduction
goals from being met. Conversely, in catchments with low degrees of temporal inequality, the
period of time over which the targeted load is exported is longer, and spatial targeting may be
more effective than temporal targeting for meeting load-reduction goals, with more opportu-
nities available to effectively reduce the load over the course of a year. The implications of this
analysis may be helpful in understanding difficulties in meeting water-quality-restoration
goals in long-impaired watersheds, such as the Chesapeake Bay.

The results demonstrate that while in some years, load-reduction goals are only a small
portion of the overall load exported and may easily be met by targeting a few storm events,
in other years, loads are actually less than the targeted load, and even if 100% of the annual
load were effectively mitigated, the annual load-reduction goal could not be met. Viewing
these expectations through the lens of temporal inequality can be helpful in understanding
how easy or difficult achieving load-reduction goals will be in a given watershed since the
higher the value of G, the more difficult it will be to reduce loads without capturing and
treating high-flow conditions. When the G is relatively low, as is often the case for TN [15],
it is because export of the constituent of interest occurs largely during baseflow conditions,
and therefore, achieving load reduction without effectively treating high-flow conditions
may be possible. In these cases, conservation practices that help reduce groundwater
concentrations, such as cover crops and other nonstructural best management practices
(BMPs), may be most effective in meeting load-reduction goals. However, when G is high,
as is often the case for TP [15], it is because export of the constituent of interest largely
occurs during high-flow conditions, and therefore, if these events are not effectively treated,
meeting the load-reduction goal may not be possible. In these cases, conservation practices,
such as riparian buffers, vegetated filter strips, and detention basins, may be most effective
in meeting the load-reduction goals. Water-quality BMPs are often vegetative and therefore
are mainly effective in managing low-flow events over only the portion of the year when
the plants are actively growing and are not dormant. The portions of the year during which
water-quality BMPs are effective should align with months during which large portions
of annual loads are exported. This may require landowners to consider designing BMPs
to manage high-flow events or a combination of low-flow BMPs that are effective over a
longer time interval.

5. Conclusions

Overall, the results of this research demonstrated a decision-making framework that
can be applied at any temporal or spatial scale to quantify the importance of targeting “hot
moments” to achieve specific load-reduction goals. The results of our analysis demonstrate
the site-specific nature of the results such that even across a watershed with a single TMDL,
the implementation of conservation practices that will achieve the load-reduction goals is
likely to be heterogeneous, with the success of field-scale implementation of appropriate
conservation practices relying on local knowledge of hydrology and contaminant transport.
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Abstract: Israel’s water and vegetative agriculture sectors are interdependent, as the latter constitutes
the solution for wastewater disposal. We employ a dynamic mathematical programming model
that captures this interdependence for evaluating the economic damage of irrigation water salinity
under two strategies of blending water sources with different salinities: field blending, which enables
farmers to assign water with a specific salinity to each crop, and regional blending, under which all
crops experience similar water salinity. Relative to field blending, the buildup rate of desalination
under regional blending is slightly expedited; nevertheless, reallocations of water sources across
sectors and crops increase the average irrigation water salinity, and the overall welfare decreases by
USD 0.08 per cubic meter of irrigation water—about 20% of the water’s average value of marginal
product. Salinity-sensitive crops will face the largest per hectare production reduction if regional
blending replaces field blending; however, the combined variations in the prices of irrigation water
and agricultural outputs may motivate farmers to move irrigation water to these crops. Under
equilibrium conditions in the two sectors, a 1% increase in the average salinity of the irrigation water
supplied to a region reduces the value of the marginal product of that water by 2.4% and 1.6% under
field and regional blending, respectively.

Keywords: irrigation; salinity; agriculture; policy; water; economics; model

1. Introduction

For thousands of years, man has been coping with salinization processes in irrigated
agriculture [1], which is the main consumer of water worldwide, accounting for nearly
70% of the total global water withdrawal [2]. This problem continues to worsen, and
today, 25–30% of the world’s irrigated lands in more than 100 countries are affected by
salt [3,4]. Population growth, which increases the demand for both food and freshwater for
domestic use, further contributes to this growing challenge, as it incentivizes the expansion
of irrigated lands and the use of non-freshwater sources such as brackish water and treated
wastewater (TWW) for irrigation [5]. These processes are further augmented by climate
change, which increases irrigation needs due to higher vapor–pressure deficits [6] and
reduces the natural enrichment of freshwater sources [7]. Moreover, the common agronomic
solution to salinization is to apply excess amounts of irrigation water to leach the salts below
the root zone [8]. However, that method gradually increases the salinity of groundwater
bodies [9] and consequently counteracts its original purpose. The use of desalination, which
is a remedy for both the growing water shortage and salinization, is steadily increasing [10],
but it consumes a great deal of energy and entails high brine disposal costs [11].

The processes described above reflect a strong linkage between agricultural irrigation
and the supply of water to different users—a link that should be accounted for in the design
of sustainable and economically viable solutions to the problems of water shortages and
salinization. This study focuses on irrigation practices in agricultural regions with access to
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several water sources of different salinities and evaluates the impact of these practices on
water management in a multiregional water distribution network. Specifically, we evaluate
the economic damage caused by salinity under different strategies for blending irrigation
water sources with different salinities. We focus on the case of Israel—a country equipped
with a complex water supply system and a large agricultural reliance on non-freshwater
sources such as TWW and brackish water, which together, constitute about 60% of the
country’s total irrigation water. Our economic analysis accounts for the impact of blending
options on agricultural cropping patterns, optimal long-term management policies, and
the development of the Israeli water supply system.

Despite the vast agronomic literature on the production impacts of irrigation water
mixtures (e.g., recent agronomic studies explore the impact of conjunctive use of water
resources [12,13], employ GIS for assessing salinity impacts under different irrigation
practices [14], and measure the impacts of water irrigation strategies on soil and plant
properties [15]), economic analyses of that issue are scarce. Parkinson et al. [16] were
probably the first to economically evaluate water blending options. Knapp and Dinar [17],
Dinar et al. [18], Kan et al. [19], and Kan [20] employed field-level models to study the
profitability of mixing water sources with different salinities for the irrigation of specific
crops. Feinerman and Yaron [21] and Kan and Rapaport-Rom [22] incorporated blending
options in regional-scale models, in which the land allocation across crops was endogenous.
However, all of these studies assumed exogenous water supplies and therefore overlooked
the implications of water management strategies within agricultural regions on the water
economy as a whole. The contribution of this paper is the introduction of the nexus between
the agricultural and water sectors into the economic analysis of water blending strategies.

The linkage between the intraregional management of irrigation water and the design
of economy-wide water-supply systems is of particular importance in water economies
that supply water to different users from multiple sources and/or where the recycling of
domestic TWW in irrigated agriculture creates a strong interdependence between the two
sectors. In such water economies, the optimal allocation of water across users depends on
their demands for the various water sources, where the demand of any farming region for
different water types depends on the irrigation practices in that region. This is the case
in Israel, where the water distribution network connects almost all users and sources in
the country. That connectivity implies that water usage at a particular place and time may
have opportunity costs, as it cannot be used for other purposes at alternative locations and
times [23].

Hydroeconomic models provide a powerful tool to analyze water management prob-
lems on different scales and under various spatiotemporal conditions (see [24–34]). How-
ever, to the best of our knowledge, the only hydroeconomic model that incorporates salinity
considerations in the allocation of water to urban and agricultural users is the MYWAS-
VALUE (Multi Year Water Allocation System-Vegetative Agricultural Land Use Economics)
model, which was developed by Slater et al. [35] for the case of Israel. Slater et al. [35]
employed MYWAS-VALUE to evaluate the societal deadweight loss entailed by overlook-
ing the impact of salinity on agricultural production in the design of water infrastructures.
However, the model presumes regional irrigation water blending; that is, all of the inflows
of water sources into any agricultural region are mixed before they are applied to the irri-
gated crops. This assumption has two drawbacks: first, compared to field-level blending,
regional water blending may increase the detrimental impact of salinity on agricultural
production because it affects all of the irrigated crops in any given region, including both
salinity-tolerant and salinity-sensitive ones. Consequently, the exaggerated salinity damage
may motivate the faster-than-optimal expansion of desalination capacities. Second, it turns
out that farmers in Israel rarely blend irrigation water from different sources (personal com-
munication; Anat Levingert, Senior Manager of the Consulting and Professional Service of
the Israeli Ministry of Agriculture (Shaham)). Thus, designing the long-term development
of water infrastructures under the assumption of the regional blending of irrigation water
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sources may yield results that both inflate the agricultural damage incurred due to salinity
and that are inconsistent with reality.

In this paper, we analyze two irrigation water mixing scenarios: field blending (FB)
and regional blending (RB). The difference between the scenarios with respect to the
intraregional water supply system is illustrated in Figure 1 for a hypothetical region,
in which farmers grow five crops and have access to three water sources with different
salinities: freshwater, TWW, and brackish water. Under FB, farmers can select a specific
combination of the three sources for each crop, whereas the RB scenario implies one
combination for all crops. Note that, while both scenarios do not preclude the non-blending
option, avoiding blending in the RB case implies that only one water source is used in the
entire region, whereas the FB scenario enables farmers to use all of the water sources that
are available to them by assigning a single water source to each crop.

Figure 1. Schematic illustration of the field and regional blending scenarios in an agricultural region
with five crops that can be irrigated by three water sources with different salinity levels: freshwater,
treated wastewater, and brackish water.

Our analysis is based on the MYWAS-VALUE framework. We first calibrate the model
under the FB assumption to reproduce the observed situation in a baseline year (2019).
Then, we run the model under the FB and RB scenarios for a period of 30 years. We found
that switching from FB to RB slightly expedites the development of desalination plants,
but the average irrigation water salinity increased due to the reallocation of water sources
across sectors and crops. Although salinity-sensitive crops face the largest reduction in per
hectare production, the combined impact of changes in the (endogenously determined)
prices of irrigation water and agricultural outputs motivates farmers to shift more water
and land to the production of these crops.

We consider three measures of the economic damage caused by salinity under the two
blending scenarios. The first measures the reductions in the agricultural production value
caused by the design of water infrastructures that ignore the impact of irrigation-water
salinity on agricultural production. This reduction amounts to USD 1195 and USD 1326 per
hectare under the FB and RB scenarios, respectively (all monetary values are in terms
of the 15th year of the 30-year planning horizon). The second measure is based on the
negative relationship between the irrigation water value of the marginal product (VMP) in
an agricultural region and the average salinity of the region’s irrigation water; on average,
the VMP decreased with the salinity by USD 0.39 and USD 0.30 per dS m−1 per cubic
meter of irrigation water for the case of FB and RB, respectively, or by −2.4 and −1.6 in
terms of elasticity (note that both VMP and salinity are endogenous in MYWAS-VALUE).
The last measure computes the marginal damage caused by salinity based on the shadow
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values of the salt-balance constraints along the water delivery system; a salinity increase of
1 dS m−1 costs USD 525 and USD 534 million a year for the whole country under FB and
RB, respectively. Per cubic meter of irrigation water, we achieved USD 0.42 per dS m−1,
with minor differences between the blending scenarios being observed.

The following section briefly describes the MYWAS-VALUE model; Section 3 compares
the results under the two blending scenarios and discusses the three measures of the
economic damage of irrigation water salinity; Section 4 concludes the paper, and Section 5
discusses the limitations of the analysis and avenues for future research.

2. Methods

The Israeli water supply system was designed to cope with challenges associated with
temporal and spatial water distribution. Natural freshwater sources are enriched during
the winter, whereas most of the consumption occurs in the summer; this pattern requires
water storage. The water delivery system was originally designed to transfer water from
the rainier northern parts of the country to the populated center and for irrigating the large
agricultural lands in the south. Since 2005, with the installation of desalination plants on
the Mediterranean coast, the supply has been gradually shifted to a west–east direction.
As a public property, water is centrally managed by the government, which designs the
supply and controls consumption through a set of prices, quotas, and pumping licenses [36].
These physical and legislational structures imply that the government is facing a water
management optimization problem that integrates dynamic and spatial dimensions. The
MYWAS-VALUE model was developed to solve such problems.

MYWAS is a dynamic model of the Israeli water system, and VALUE represents the
activities in the vegetative agricultural regions as incorporated into MYWAS. MYWAS
encompasses 21 urban regions that consume freshwater for domestic and industrial uses
and 18 agricultural regions that can consume freshwater, TWW, and brackish water. The
water sources are represented in the model by 19 naturally enriched freshwater stocks,
5 seawater desalination plants, 4 non-enriched brackish water aquifers, 19 wastewater
treatment plants, 163 freshwater pipelines, and 74 pipelines for sewage, TWW, and brackish
water. MYWAS determines the socially optimal allocation of water types to the demand
regions during each period throughout a predetermined planning horizon while also
accounting for the welfare of the water users in those regions, the variable supply costs, the
constraints associated with water availability in the sources, and the infrastructural capacity
constraints. In addition, the model determines the extent to which each infrastructural
water element is extended during each period while weighing the investment costs versus
the net benefits associated with the extended capacities in future periods.

VALUE is a positive mathematical programming (PMP) model of MYWAS’s 18 agricul-
tural regions. Each region incorporates 55 crops whose output prices constitute equilibrium
in the statewide markets for industrial, export, and local fresh vegetative products that
are assumed to be competitive. The crop production functions account for the salinity of
the water supplied to each crop. The land allocations to the crops in the regions maximize
social welfare subject to regional input constraints, where social welfare incorporates the
surpluses of the consumers of agricultural products minus the production costs. The
constrained inputs in each region include land, foreign workers (who are allocated to
farmers based on cropping patterns), and the amounts of water delivered to the region
from accessible sources; the latter is determined by MYWAS.

Population growth shifts the demand for water in urban zones and the country-wide
demand for vegetative agricultural products to the right, thereby driving the dynamic
expansion of water supply infrastructures. The model tracks the salinity concentrations
along the water supply system and can control the salinity of the irrigation water in each
agricultural region by increasing desalination capacities and/or changing the shares of
allocated water from the different sources accessible to the region. The model reports the
efficiency water prices at any node of the water distribution network, which are equal to
the shadow price of the water at this node. In addition, it reports the irrigation water’s
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VMP, which depends on its salinity. Of course, for an optimal allocation, the efficiency
water price and the VMP are equal. Based on the efficiency prices, the model reports the
allocation of welfare among the urban and agricultural water users, the water suppliers,
and the consumers of agricultural outputs (this presumes that prices are the exclusive
water allocation instrument in the water economy; in practice, this is the case in Israel,
although prices are higher than optimal because of cost recovery regulations [29]). Our
scenarios span a 30-year period, which we divide into 10 equal sub-periods to reduce the
computational burden; each period is referred to by its last year.

The version of MYWAS-VALUE that is employed in this study was calibrated based
on 2019 data (the model is available as a Supplementary Material to this paper). A detailed
description of the model is provided by Slater et al. [35]; the rest of this section describes
the recalibration of the VALUE model under the FB assumption, which replaces the RB
specification based on which the version of the model in Slater et al. [35] is calibrated.

Our challenge is to calibrate VALUE in the absence of field-level information regarding
the actual allocation of water types to the crops in each region—an allocation that is assumed
to be optimal in the prevailing situation. To that end, we employ a multistage calibration
procedure that involves the optimal assignment of the water sources accessed by a region
to the crops grown therein while accounting for the crops’ relative salinity tolerance and
profitability. Specifically, we introduce a preliminary stage to the commonly used two-stage
procedure applied for the calibration of classical PMP models [37]. In this preliminary
stage, water types are optimally allocated to each crop subject to their respective regional
water availability constraints, where the land allocated to each crop is kept constant at its
baseline level. Note that our production function for each crop is a nonlinear function that
relates the per hectare yield to the per hectare annual water application and the salinity
level of the applied water (as in Slater et al. [35], the per hectare annual amount of water
applied to each crop is constant, and therefore only changes in the salinity of the water
assigned to each crop affect its per hectare yield); thus, changes in the type of water applied
to a crop vary its per hectare outputs. Therefore, the preliminary calibration stage optimally
assigns the water sources to the crops and sets the production function parameters so as
to reproduce the per hectare yield reported in crop budget reports (see Appendix A for a
formal description of the preliminary calibration stage). Then, we apply the first stage of
the PMP calibration procedure, which elicits the dual values of the perturbed crop-specific
land constraints. Note that to obtain the correct dual values, one should also incorporate
the water allocations to the crops as decision variables, which renders the optimization
problem of that stage nonlinear (in contrast to the first-stage linear problem of the original
PMP procedure). The rest of the calibration process follows the second stage of the PMP
procedure as well as the calibration of the demand functions for agricultural products and
urban water usage (see [35]).

The outcome of the preliminary calibration stage with respect to the optimal allocation
of irrigation water types to crops involves minimal blending; that is, each crop is irrigated
by only one water type, where mixtures are assigned to a few crops to meet the availability
constraints associated with the regional water sources. While this qualitative result was
already shown by Kan and Rapaport-Rom [22], here, the water allocation to crops is
optimal rather than imposed by other criteria (e.g., Kan and Rapaport-Rom [22] employed
a hierarchical procedure to assign water types to crops). Figure 2 presents the allocation of
the irrigation water types—desalinated freshwater (EC = 0.25 dS m−1), fresh groundwater
(EC = 1 dS m−1), TWW (EC = 1–1.77 dS m−1), and brackish water (EC = 2.35–4.0 dS
m−1)—to four groups of crops classified according to their sensitivity to salinity: sensitive,
moderately sensitive, moderately tolerant, and tolerant [38]; as expected, the higher the
salinity tolerance of the crops, the higher the salinity of the irrigation water allocated
to them.
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Figure 2. Optimal allocation of the four irrigation water types that differ in terms of their salinity
levels to four groups of crops with different salinity tolerances.

3. Results

We used the calibrated MYWAS-VALUE model to evaluate the impact of RB versus
FB on the optimal inter-regional water allocation policies, the development of water infras-
tructures, the agricultural activities of the farmers, and the economic welfare of the country.
In the analysis, we refer to the role of adaptation by the farmers through the reallocation of
their lands to the crops. We first describe the implications on the water supply patterns
associated with the switch from FB to RB. Then, we present the allocation of welfare in
the economy under the two scenarios and explain the welfare differences between the two
scenarios by analyzing the farmers’ adaptations through land and water allocations. Finally,
we present three alternative measures to determine irrigation water salinity damage.

3.1. Water Supply

It turns out that the intraregional strategies with respect to irrigation water blending
only have a minor impact on the water supply patterns in the country as a whole; the
total amount of water supplied to all users varies by less than 1% between the FB and RB
scenarios. While minor, these changes correspond to the hypothesis that the salinity impact
under the RB assumption is exaggerated: the buildup of seawater desalination capacity
under the RB scenario is expedited (Figure 3). Consequently, for a short period of time
during the middle of the planning horizon, desalinated water replaced some of the natural
freshwater and thereby reduced the salinity of the total supplied freshwater. In addition,
the agricultural sector obtains slightly larger amounts of freshwater, whereas the freshwater
quantities supplied to the urban sector decrease somewhat (not shown).

3.2. Welfare

The welfare implications of imposing RB instead of FB are summarized in Figure 4,
which shows the associated average annual welfare changes (RB minus FB) expected for the
various sectors (urban water consumers, consumers of agricultural products, farmers, water
suppliers and the overall welfare; the welfare elements represent the annual discounted
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values, averaged over the planning horizon). In addition, to elicit the impact of agricultural
adaptation, we compared the two blending alternatives while assuming that farmers do
not adapt to changes over time by reallocating their land to different crops; these scenarios
are termed as FBNA and RBNA (NA stands for “no adaptation”) in the figure.

Figure 3. Trajectories of freshwater types supplied from desalination plants and natural sources
throughout the simulated 30-year period under the FB and RB scenarios.

Figure 4. Differences in welfare elements computed under the field blending (FB) and regional
blending (RB) scenarios when agricultural land adaptation is allowed (RB minus FB) and not allowed
(RBNA minus FBNA).
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The overall welfare change is nearly USD 100 million a year—about 5% of the total
variable water supply costs. On average, the deadweight loss amounts to USD 0.08 per
cubic meter of irrigation water. Most of the burden associated with imposing RB falls on
the water suppliers; as it will be shown later, this loss is due to lower efficiency water prices,
which stem from the higher salinity of the irrigation water and consequently, its lower VMP.
With no adaptation (RBNA minus FBNA), most of the welfare loss caused by RB versus FB
is experienced by the farming sector, whereas the consumers of urban water benefit from
this situation. Thus, by reallocating agricultural land and irrigation water across crops,
farmers manage to reduce their welfare loss by 85% (see Section 3.3).

3.3. Land and Water Management

To understand the welfare changes reported in Figure 4, it is important to study
agricultural land and water management decisions with respect to the four salinity tolerance
groups presented in Figure 2 as well as the group of rain-fed crops. Figure 5 shows the
shares of these five groups in terms of the country’s total agricultural land, irrigation water,
production value, and profit. While 26% of the land is allocated to salinity-sensitive crops,
this group consumes more than 50% of the irrigation water, and accounts for 40% of the
total profit. In comparison, the moderately sensitive crops are also responsible for 40% of
the profits but consume more land and less water. The other groups of crops produce about
20% of the profits, with relatively little water consumption.

Figure 5. Shares of the groups of salinity-tolerant/sensitive crops and rain-fed crops in the state-wide
total agricultural land, irrigation water use, production value, and profit at the calibration stage.

In essence, the shift from FB to RB increases the salinity of the irrigation water for
salinity-sensitive crops and reduces that of irrigation water for salinity-tolerant ones. In
Figure 6, we report changes (RB minus FB) for a range of measures associated with that
shift in relation to the five groups under consideration. Figure 6a shows that the salinity-
sensitive crops obtain larger amounts of TWW and less freshwater under RB, whereas all
of the other groups face the opposite change. Consequently, the average salinity of the
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irrigation water applied to the salinity-sensitive crops under RB increases compared to FB,
and that of the irrigation water for the other groups declines (Figure 6b); this is because
the salinity-sensitive crops consume more than half of the irrigation water (Figure 5), and
therefore, on average across all groups, the salinity of their irrigation water increases
from 1.11 to 1.16 dS m−1. Figure 6b also shows that the changes in the average VMPs
of the irrigation water types are opposite to those of the salinity-sensitive crops (except
for the moderately salinity-sensitive crops, in which the change in the average VMP is
slightly negative). As previously mentioned, the VMP constitutes the efficiency price of
the irrigation water in our model such that lower VMPs imply lower prices; because the
salinity-sensitive crops consume most of the water, the average water price declines by 10%
(from USD 0.42 to USD 0.38 per cubic meter), and the number of payments delivered to the
water suppliers by the agricultural sector decrease. Although urban water consumers face
a slight price increase—and therefore their total welfare diminishes (Figure 4)—the overall
profit of the water suppliers declines (Figure 4).

Figure 6. Differences between the RB and FB scenarios (RB minus FB) with respect to (a) irrigation
water use, (b) salinity and VMP of irrigation water, (c) changes in Laspeyres quantity and price
indices, and (d) land allocation, per hectare profit, and total profit—all reported for the groups of
crops classified based on their salinity tolerance.

Figure 6c presents changes in the Laspeyres quantity and price indices (FB = 100), and
Figure 6d reports the respective changes in land allocation and profits. The per hectare
quantity index (computed by holding both the land allocated to the crops and their prices at
their values under the FB scenario fixed) of the salinity-sensitive crops exhibits the largest
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reduction; however, because the land allocated to these crops increases (Figure 6d), the
overall quantity of the salinity-sensitive crops’ production declines only slightly. In turn,
the output prices of these crops increase. Increasing the share of the salinity-sensitive
crops in the total agricultural land entails less water for all of the other irrigated crops, and
therefore, their share of the land shrinks, and they are replaced by rain-fed crops. Similarly,
the combinations of changes in land and the per hectare productivity of the other groups
dictate the overall quantity and price changes (Figure 6c), and, in turn, the per hectare
profitability and total profit (Figure 6d).

In terms of per hectare profit, even after adaptation through a change in the crop
portfolio, the growers of salinity-sensitive crops lose the most from the shift from FB to
RB; farmers who grow moderately salinity-sensitive crops show a slight loss, and all other
crops benefit. So why is more land allocated to salinity-sensitive crops? We explain this
phenomenon using the differences across the crop groups with respect to the relationships
between production and output prices, which affect the equilibrium in the markets for
agricultural products. On average, the demand elasticity (computed here by dividing the
change in the price index by that in the quantity index) of the salinity-sensitive crops is two
orders of magnitude larger than that of the other groups; this is because the prices of most
of the crops in that group are determined at equilibrium in the agricultural markets for fresh
products, which are subjected to import tariffs. Thus, the lower per hectare production of
the salinity-sensitive crops will increase the output prices of those crops, thereby increasing
their per hectare profitability and motivating farmers to increase their land share; this, in
turn, will moderate price changes until equilibrium is reached. As shown in Figure 4, for
farmers, the land reallocation benefits amount to USD 115 million a year—about 7% of their
profits under the FB scenario.

3.4. Salinity Damage

Here, we discuss three ways to measure irrigation water salinity damage. The first
follows Slater et al. [35] and uses the MYWAS-VALUE to evaluate salinity damage in the
context of water infrastructure development. In that work, two optimal infrastructural
development scenarios were compared: one accounting for changes in irrigation water
salinity throughout the planning horizon and the other considering fixed salinity; the
difference between the two scenarios reflects the damage associated with salinity when it is
ignored when designing water infrastructures. The assessment of that damage in terms of
the value of agricultural produce in Slater et al. [35] was USD 1200 per hectare. By repeating
the evaluation procedure under the FB and RB scenarios, we obtained per hectare damage
of USD 1195 and USD 1326, respectively, i.e., an additional USD 131 per hectare due to RB.

Another way to express the economic damage caused by the salinity of irrigation water
is to measure the relationship between salinity and the VMP of the irrigation water. To that
end, we use the variability in the water VMPs and salinities across the agricultural regions
that were incorporated into MYWAS-VALUE. In panels (a) and (b) of Figure 7, we plot the
regional average VMP of the irrigation water versus the respective average salinity levels
under the FB and RB scenarios (the data reported in Figure 7 exclude the most southern
region, Arava, which is both detached from the country’s main water distribution network
and is characterized by extremely dry conditions). The regional irrigation water VMPs
vary between USD 0.6 per cubic meter to almost zero across regions, with an average of
USD 0.34 and USD 0.31 per cubic meter under FB and RB, respectively. Notice the larger
variability in the regional average salinities under RB, which stems from the low usage
of saline water in some regions with high shares of salinity-sensitive crops. The linear
trendlines fitted to the data indicate a clear negative relationship between the water VMP
and salinity, with a steeper slope under FB compared to under RB. On average, a salinity
increase of 1 dS m−1 reduces the water VMP by USD 0.39 and USD 0.30 per cubic meter
for the cases of FB and RB, respectively. In terms of elasticity, a 1% increase in the average
salinity of the irrigation water supplied to a region reduces the value of marginal product of
that water by 2.4% and 1.6% under field and regional blending, respectively (we obtained
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elasticities by estimating the equation ln(VMPi) = α + β ln(salinityi) + εi, in which i is the
region index, α is the intercept, and the slope coefficient β represents the elasticity).

Figure 7. Regional VMPs of irrigation water and its salinity plotted against regional average salinities
under the field blending and regional blending scenarios.

Recall that both the regional salinity and VMP of the water are endogenous in the
model, and therefore, the curves depicted in Figure 7 represent the socially optimal relations
between these measures rather than the marginal impact of salinity on the VMP. Our third
measure of salinity damage is the VMP of the salinity itself; that is, the extent to which
irrigation water with a higher salinity reduces the value of the agricultural production in a
region. The VMP of the salinity is the shadow value of the salt balance constraint, which
imposes equality between the amount of salt carried by the irrigation water supplied to
a region and the salt content of the irrigation water applied to the crops. We obtained
a welfare reduction of USD 525 and USD 534 million a year for a salinity increase of
1 dS m−1 under FB and RB, respectively. In panels (c) and (d) of Figure 7, we plotted the
regional VMP of salinity divided by the regional amount of irrigation water (the units are
USD (dS m−1)−1 m−3) against the regional average salinity. Per average cubic meter of
irrigation water, the VMP of the salinity is similar under both scenarios, amounting to
about USD −0.42 per dS m−1. The trendlines fitted to the data indicate that the salinity
is characterized by diminishing marginal damage, where a salinity increase of 1 dS m−1

reduces the marginal damage by USD 0.21 and USD 0.23 per dS m−1 per cubic meter of
irrigation water under the FB and RB scenarios, respectively.
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4. Conclusions

Based on the context of Israel, this paper shows that the management of irrigation
water within the agricultural sector affects the optimal management of water in the water
supply sector, and vice versa, and hence, the importance of accounting for the interrela-
tionships between these sectors in the evaluation of economic damage due to irrigation
water salinity. We used a mathematical programming model of the Israeli agriculture and
water sectors to compare two intraregional irrigation water blending methods: blending at
the field level, which enables a specific water salinity to be set for every crop, and regional
blending, under which all crops obtain water with the same salinity. We found that enabling
field-level blending reduces the land allocated to salinity-sensitive crops and increases
welfare by USD 0.08 per cubic meter, which is about 20% of the average VMP for irrigation
water. However, blending has been found to be suboptimal; this means that the welfare
losses associated with regional blending could be avoided if regions were separated into
sub-regions, each assigned to a different water type and a different set of crops. We evaluate
the average salinity damage per cubic meter to be in the range of USD 0.30 to USD 0.42 per
dS m−1 depending on the method employed to evaluate the damage and the irrigation
water blending scenario.

5. Discussion

This study focuses on salinity as a single quality measure of irrigation water. However,
in water-scarce areas, TWW has become a significant water source that renders salinity
but one of many water quality measures. Compared to freshwater irrigation, the reuse of
TWW in agricultural applications can harm agricultural production [39], degrade output
qualities [40], and threaten the environment [41]. In response, TWW irrigation incentivizes
stricter TWW quality standards [42] and attracts the development of new agricultural
production technologies [43] and wastewater treatment methods [44]. Moreover, the
supply of TWW is more stable than that of natural freshwater [45], and TWW contains
nutritional elements that can partially replace fertilizers [46]. These processes have the
potential to alter the use of irrigation water sources as well as the damage caused by salinity.
To comprehend this, suppose that new regulations impose strict micropollutant standards
that can only be met by the desalination of a large fraction of the generated TWW; in this
case, the damage caused by salinity would become smaller and less sensitive to salinity
changes. This implies that future economic studies of agricultural and water management
should account for the interrelations across multiple water-quality measures.

Supplementary Materials: All the data used in this research have been incorporated into the MYWAS-
VALUE model, which is available at: https://zenodo.org/record/3702053#.Xx1jpSgzZPZ (accessed
on 3 January 2022).
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Abbreviations

EC Electrical Conductivity
FB Field Blending
FBNA Field Blending No Adaptation
MYWAS Multi Year Water Allocation System
PMP Positive Mathematical Programming
RB Regional Blending
RBNA Regional Blending No Adaptation
TWW Treated Wastewater
VALUE Vegetative Agricultural Land Use Economic
VMP Value of Marginal Product

Appendix A. Preliminary Calibration Stage

Consider an agricultural region in which farmers grow O crops. The region has access
to freshwater, TWW, and brackish water, the regional consumptions of which are limited to
the amounts denoted Q f , Qh and Qb, respectively, and their respective prices are p f , ph, and
pb, where p f > ph > pb. Let q f

o , qh, and qb
o denote the per hectare annual water applications

of freshwater, TWW, and brackish water to crop o (o = 1, . . . , O), respectively, where the sets
q f =

(
q f

1 , . . . , q f
O

)
, qh =

(
qh

1, . . . , qh
O

)
, and qb =

(
qb

1, . . . , qb
O

)
are defined accordingly. The

total per hectare annual application to crop o, wo, is considered constant. The production
function is given by θoeo

(
q f

o , qb
o, qh

)
, in which θo is a parameter for calibration, and eo(•) is

the evapotranspiration function of crop o, which is taken from Slater et al. [35]. The salinity
of brackish water is higher than that of TWW, the salinity of which is higher than that of
freshwater; therefore, ∂eo

∂q f
o
> ∂eo

∂qh
o
> ∂eo

∂qb
o
> 0. We denote by xo, the land allocated to crop o,

which is fixed at the preliminary stage. With the above setting, we first solve the nonlinear
optimization problem

max
q f ,qb , qh

π =
I

∑
i=1

xo

[
po

(
θoeo

(
q f

o , qh
o , qb

o

))
− p f q f

o − phqh
o − pbqb

o

]
(A1)

s.t.
q f

o + qh
o + qb

o = wo ∀ o = 1, . . . , O (A2)

O

∑
o=1

xoq f
o ≤ Q f (A3)

O

∑
o=1

xoqh
o ≤ Qh (A4)

O

∑
o=1

xoqb
o ≤ Qb (A5)

q f , qh, qb ≥ 0 (A6)

where the initial values of q f
o , qh

o , and qb
o are set based on the shares of Q f , Qh, and Qb in the

total regional water Q f+ Qh + Qb, and the parameter θo is set so as to equate the computed
yield to the observed one Ŷo:

θoeo

(
q f

o , qh
o , qb

o

)
= Ŷo ∀ o = 1, . . . , O (A7)

The resultant optimal water allocation sets q f ∗, qh∗, and qb∗ are then used fto recali-
brate θo based on Equation (A7).
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Abstract: An environmental decision support system (EDSS) can be used as an important tool for
the rehabilitation and preservation of ecosystems. Nonetheless, high assimilation costs (both money
and time) are one of the main reasons these tools are not widely adopted in practice. This work
presents a low-cost paradigm of “EDSS as a Service.” This paradigm is demonstrated for developing a
water quality EDSS as a service that utilizes the well-known CE-QUAL-W2 model as a kernel for
deriving optimized decisions. The paradigm is leveraging new open-source technologies in software
development (e.g., Docker, Kubernetes, and Helm) with cloud computing to significantly reduce the
assimilation costs of the EDSS for organizations and researchers working on the rehabilitation and
preservation of water bodies.

Keywords: CE-QUAL-W2; EDSS; SaaS

1. Introduction

The rehabilitation and preservation of ecosystems is an important goal to achieve
globally. There are multiple incentives for meeting this goal: preserving biodiversity,
mitigating climate change, and assuring future generations can enjoy clean air, land, and
water. Water quantity and quality management play an essential part in these conservation
efforts. Therefore, environmental agencies usually include in their guidelines the need for
stakeholder involvement in the decision-making process [1,2]. A standard tool that can
engage stakeholders in decision making is a decision support system (DSS). Specifically, in
the case of environmental usage, the tool is often called an environmental decision support
system (EDSS). In water-quality-related issues, a water quality model can be used as a
kernel in the EDSS that can guide recommendations to stakeholders. The recommendations
may include the impacts of changes in flow quantity and water quality, managing the day-
to-day operations of hydropower dams (or any water infrastructure) under environmental
restrictions, or responding to an unexpected pollution event.

To meet conservation efforts in aquatic environments, agencies often recommend
developing EDSSs to guide decision making and engage stakeholders [1]. These EDSSs are
part of a holistic system for allocating and managing water to maintain ecosystem functions.
Nevertheless, such tools are still not widely adopted in practice. The following factors make
an EDSS expensive (in resources and time) to implement: (1) Model assimilation and cali-
bration; (2) Lack of required expertise in the use and interpretation of EDSSs; (3) Software
development for the implementation and maintenance of the EDSS; (4) Computer resources
needed for the model computation and hosting the EDSS application (the installation of
the software on a computer or a server).

This study shows how the last two challenges could be addressed using a low-cost
implementation that leverages new open-source technologies in software development
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(e.g., Docker, Kubernetes, and Helm) and cloud computing. We demonstrate a water
quality EDSS that uses the CE-QUAL-W2 model [3] as a kernel to explore the water quality
changes resulting from different management decisions.

The choice of using the CE-QUAL-W2 model was based on a simple approach for
selecting a water quality model from Mateus [4]. This approach was based on a systematic
review of the main available models. The review consisted of the model abilities, dissem-
ination and publications, and the usage experience. In all categories, the CE-QUAL-W2
model was ranked first. CE-QUAL-W2 can simulate the hydrodynamics and water quality
of rivers, lakes, reservoirs, and estuaries [3]; thus, when used as a kernel in an EDSS, it
allows decision support for multiple types of aquatic environments.

Furthermore, this model is open-source, which means that there is no need to invest
money in buying licenses to use the model, and users that are familiar with software
programming can add features. Mateus [4] also notes that CE-QUAL-W2 simulations are
relatively fast and require low computational power compared to other models. The model
input and output are based on text files. The model itself is an executable that can be run
without interacting with a graphical user interface (GUI). This model design acts as a simple
external application programing interface (API) that allows another software program (e.g.,
EDSS) to change the inputs, execute the model, and analyze the results. CE-QUAL-W2 was
implemented in over 2000 sites in 116 countries [5]. The source code is actively maintained
with bug fixes and new features by Portland State University, USA.

As a result, we chose the CE-QUAL-W2 model as the kernel of our EDSS. The main
objective of a water quality EDSS is to provide a simple interface for stakeholders to better
plan future projects in the wetland or handle the day-to-day operations of the wetland.
Using CE-QUAL-W2 for decision making is not new; several attempts have been made
over the years to use the model in decision-making contexts.

For example, Eturak [6] used the model as part of an EDSS to understand the impact
of the planned “Buyuk Melen” reservoir on its watershed in Turkey. As the reservoir was
still in the planning stages, there was no option to calibrate the model. Thus, the model’s
setup was conducted according to the best knowledge available at the time. Next, a few
scenarios with different flow volumes of domestic and industrial wastewater were chosen,
and their simulations were executed using the model. Later, the results were compared
and graphed for the stakeholders to discuss the implications of different scenarios.

The manual approach of Eturak [6], where a modeler familiar with CE-QUAL-W2
can provide the needed analysis, highlights several drawbacks: (1) Execution of the dif-
ferent scenarios needs continuous involvement of the modeler in the process, including
setting up the different inputs, executing model runs, and then comparing the results.
Thus, the modeler must be involved in the detailed manual planning of each scenario
proposed by the stakeholders. This increases the cost of using the EDSS and makes the
discussion/involvement of the stakeholders more difficult; (2) The manual process is time-
consuming. For complex models, the stakeholders will need to wait for a report from the
modeler for each of their scenario requests. This does not allow for an active discussion in
which scenarios are refined rapidly. In practice, it is hard to define the scenarios in advance.
Usually, the scenarios are refined during an active discussion between the stakeholders
(partly by seeing how the model reacts). As such, an active discussion is critical, and it
could be conducted only if the EDSS can be used in real-time without manually performing
time-consuming analyses.

Kumar [7] developed a user-friendly web-based EDSS to interact with an existing
calibrated CE-QUAL-W2 model in the Occoquan Reservoir in northern Virginia, USA.
The purpose was to enhance stakeholders’ interaction with the modeling software. The
implementation included a multi-part system controlled by the user from a web server. The
web server connects to a bridge module that sends the requests for model execution and
mines the results. The final part utilizes other computers and servers on the local network
to execute the different model runs in parallel. The results are then returned to the user
for analysis.
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In the experiment of Kumar [7], the downsides of the manual approach in Erturk [6]
were addressed. Thus, the modeler was no longer involved in the process, and the parallel
execution on multiple computers facilitated fast computation. Still, the work of Kumar [7]
had some other downsides: (1) Not all parts of the EDSS were reusable. Furthermore, the
code was written specifically for the subject reservoir. Any other user who wants to use
this infrastructure will need to change the source code to match their system; (2) On each
computer in the network intended to be used for model execution, a piece of supporting
software must be installed. This requires information technology (IT) to set up and maintain
the software; (3) Part of the implementation uses ArcGIS, which is a licensed program.

Shaw [8] implemented a very different approach for the Cumberland River system.
This study described a method for computing hourly power generation schemes for a
hydropower reservoir using high-fidelity models, surrogate modeling techniques, and
optimization methods. The predictive power of the high-fidelity hydrodynamic and water
quality model CE-QUAL-W2 was emulated by an artificial neural network (ANN) then in-
tegrated into a genetic algorithm (GA) optimization approach to maximize the hydropower
generation subject to constraints on dam operations and water quality. By using the ANN
as a surrogate model, Shaw [8] demonstrated a way to address the drawbacks of both
Eturak [6] and Kumar [7]. The surrogate model ran within 2 s versus a 6 min runtime in
the CE-QUAL-W2 model of the considered system. This allowed running the EDSS on a
single six-core computer in a reasonable time frame.

Nevertheless, the surrogate approach still had some drawbacks: (1) There was still a
potential and need to implement and train a surrogate model in addition to the CE-QUAL-
W2 model. For the training itself, many CE-QUAL-W2 runs were needed. In this case,
729 runs were made; (2) The solution was implemented using MATLAB and its “Neural
Network” and “Optimization” toolboxes, which are licensed software.

Given the examples above, there is still a potential to develop a reusable EDSS solely
based on open-source tools without investing in expensive computation hardware. This
could be achieved by combining the software as a service (SaaS) paradigm with cloud
computing technology. According to market analysts, such as the international data
corporation (IDC), cloud computing has become more common and accessible over the last
decade. They also show a trend of reduced usage costs for the users. They indicate that
these factors have made SaaS usage more popular in the last few years. This conclusion
is derived from the immense growth in revenues and market share for SaaS in the public
cloud [9]. This can be explained by the benefits of this paradigm for the customers and
the service providers. Some of these benefits are: (1) Customers do not need to have any
computer infrastructure or install software on computers; (2) The company does not need
to pay for computers and servers that are not in use and can adopt a “pay as you use”
model; (3) The virtually “infinite” parallelization option for on-demand computer power
allows the companies to offer efficient solutions for any number of customers, termed
scalability; (4) The company eliminates the need for local IT personnel to maintain the
computation infrastructure and server rooms; (5) Updates are deployed quickly to all users.
Similar to our paradigm, other studies discussed leveraging cloud computing and SaaS
for environmental software development. Swain [10] presented an open-source platform
for interacting and developing environmental applications. The platform was designed to
simplify modern web-based software development over cloud infrastructure for scientists.
The study focused on simplifying the development but did not consider computational
aspects, such as parallel execution of the models. Ercan [11] developed a cloud-based
SaaS to calibrate the Soil and Water Assessment Tool [12]. The proposed solution is
based on a single algorithm that utilizes multiple (up to 256) central processing units
(CPU) for parallel executions of the model [11]. Recently, Li [13] implemented a Docker-
based [14] framework for developing EDSS that can be used on cloud infrastructure [13].
Considering the examples above, they all support the need to simplify environmental
software development for computationally intensive applications, making EDSS more
accessible to environmental scientists, hydrologists, and stakeholders. This study continues
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these efforts while focusing on a water quality EDSS that requires intensive computational
power. We propose a generic EDSS, which is based on the popular CE-QUAL-W2 model
for: (1) Simplifying and reducing the needed amount of software development by requiring
only a decision algorithm development instead of a full computational infrastructure;
(2) Supporting flexible scaling of computer resources of parallel model runs, which are
expected in decision problems that involve water quality simulations. To achieve the above
goals, we explore new technologies that simplify and reduce the cost of assimilating a
water quality EDSS. Thus, offering a new paradigm of “Water Quality EDSS as a Service”,
an open-source computationally efficient platform that can support any EDSS algorithm
application utilizing the CE-QUAL-W2 model. This paradigm can make these tools more
accessible and approachable for use by environmental agencies and organizations, enabling
advanced decision making and increasing stakeholder engagement.

The conceptual framework of EDSS as a service is illustrated in Figure 1. The EDSS
system disconnects the different levels of complexity between software and algorithm de-
velopers and the different end-users. The software developer maintains the computational
infrastructure, and, thus, they are responsible for advanced software development (e.g.,
configuring the computational cluster). In contrast, the algorithm developer interacts only
with a higher level of the EDSS using a simple interface; thus, little experience in cloud
computing technology is expected from the algorithm developer. Relying on a simple
interface, water engineers and/or hydrologists with experience in algorithm development
can use the system to distribute heavy computational tasks in the cloud. End-users (e.g.,
a watershed manager) can define scenarios and initiate runs using a web-based interface
without the need to make changes to the EDSS; hence, the arrow shown in Figure 1 does
not reach a deep level as in the case of the developers. Lastly, the public stakeholders can
view and comment on the published scenarios and results (i.e., they have one-directional
arrow in Figure 1).

Figure 1. The conceptual framework of EDSS as a service.
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2. Methods

The main principles that guide us in designing and constructing the EDSS as a service
are: (1) Supplying a low-cost solution and keeping it an open-source service that can be
changed and enhanced by future users; (2) Allowing the use of any cloud computing
provider, such as AWS, Google, Azure, or Alibaba.

2.1. Solution Architecture

In order to meet the goals above for developing an EDSS as a service, an architectural
design based on the latest available technology for SaaS is proposed. Figure 2 shows the
encapsulation of the different core layers, followed by a detailed description of each of the
core layers.

Figure 2. The different layers in the EDSS as a service design. Note: Grey represents layers that will
require changes between implementations of the EDSS. White represents the infrastructure layers
that do not require changes between different implementations.

Model—The CE-QUAL-W2 model is the heart of the EDSS, as it is used as a kernel
for decision making. The model was released only for Windows operating systems in
the last few years. Although it is possible to develop this kind of EDSS as a service in
a Windows environment [14], we prefer the Linux environment since it is more cloud-
environment-compatible and license-free. For that need, we created an open-source GitHub
project. This project holds the needed files and instructions to compile the CE-QUAL-W2
source code to be executed in a Linux environment [15]. Besides the model executable, this
layer also includes the user-specific input files of a calibrated model ready for simulations.
These input files are the template that the application layer changes according to the
algorithm requirements.

Algorithm—The layer of the algorithm is responsible for two primary operations:
(1) Deciding on the needed permutation for the model simulations and supplying the
different parameters needed for the model input files for each of these simulations; (2) An-

95



Water 2022, 14, 885

alyzing the results of the simulations according to the developed algorithm. A single
EDSS can hold multiple algorithms for the user. For example, an algorithm can conduct
a grid search for the best matching simulation output according to the user input targets,
while another algorithm can plot a specific model output parameter as recorded in all the
different simulations.

Application—This layer has five different responsibilities. The interactions of these
responsibilities are described in Figure 3: (1) Provide a simple web-based user interface
for the EDSS, allowing users to send requests to the service (Figure 4). An example of a
user request is shown later in Section 2.2.1; (2) Pass the user request to the algorithm layer
and receive a response from the algorithm to specify the needed simulation permutations
list; (3) Initiate parallel model execution requests according to the permutations; (4) Collect
all the model simulation results and send them back to the algorithm once the model
simulations are completed. (5) Obtain the analyzed results from the algorithm and display
them back in the web user interface.

Figure 3. Application layer interactions.

Docker—The Docker container layer was developed to allow the isolation and pack-
aging of the software together with all of its dependencies. A container is an executable
that can be run on any computing environment without worrying about the operating
system or the hardware infrastructure [14]. The Docker infrastructure is free for use and
holds the following benefits for the EDSS implementation: (1) No need to set up the infras-
tructure or the operating system; (2) It can run on cloud resources as well as on a single
computer. The Docker engine can be run on Windows, Linux, or Mac operating systems;
(3) Cloud providers supply a cost-effective and straightforward interface for setting up
your application using Docker. In this EDSS as a service, a single Docker container was
created. This container can be used either for running the application or running individual
model simulations in parallel across multiple model executions.

Kubernetes (K8s)—This is a layer developed after organizations started to adopt
the Docker solution and were looking for a way to streamline the scaling process and
coordinate multiple services encapsulated as Docker containers. Scaling involves initiating
more and more Docker containers according to the demand [16]. K8s is also open-source.
In this EDSS, K8s is leveraged to manage the runs of multiple Docker containers in parallel,
each running a different model simulation. This allows for the automatic scaling of the
cloud computing power when needed, allowing the user to benefit from the “pay as you
use” cloud computing model while all the simulations are performed in parallel.
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Figure 4. The web-based user interface of the EDSS.

Helm—This is a packaging manager for Kubernetes that was developed to simplify
the deployment of K8s applications according to a predefined configuration file [17]. It
is free to use and allows the easy and repeatable deployment of this EDSS to the cloud
computing environment. Deploying the EDSS to a cloud provider would require many
manual configurations without using Helm.

Cloud computing—This final layer allows the EDSS as a service to hold one unit
that runs only the user interface during the idle times and scale to multiple computer
units when model simulations are needed. To make it generic for any cloud computing
provider, the EDSS relies on basic computing building blocks used by all cloud computing
providers. However, it could have been easier to design the system for a specific cloud
computing provider. Where applicable, current industry standards and best practices
were applied to ensure that the APIs and interfaces between the layers will be supported
by various third-party tools to simplify the infrastructure layers’ deployment, scaling,
and management.

2.2. Interfaces

There are two different personas for this EDSS, and dedicated interfaces were created
to match their distinct needs. The first interface is for the user who wants to consult the
EDSS about a water quality issue. The second persona is the EDSS developer (algorithm
developer) who wants to introduce a new algorithm or enhance an existing algorithm.

2.2.1. User Interface

As displayed in Figure 4, the end-user interface is divided into three sections: (1) Initi-
ate the model—The model user sets the model that will be run and the input parameters
file for the algorithm. According to this input file, the algorithm determines the needed
permutations and analyzes the runs. The input file can be in any format that the algorithm
code can read. For the case study, we developed an algorithm that reads JSON format files
due to their ease of processing using any computer programming language [18], but CSV
or TXT could have been used as well. Once the input file is selected, the user can start the
run by pressing the “Execute” button; (2) Upload model—The model user uploads their
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CE-QUAL-W2 model input files (not the executable itself) based on their calibration. This
allows the user flexibility of usage without needing their CE-QUAL-W2 input files to be
part of the source code that is wrapped with the Docker image; (3) Results—These are
the results reported by the algorithm once all the model runs are finished and saved to a
downloadable zip file. There is also an option to view the results from previous runs, as
shown in Figure 4. In the EDSS GitHub repository, we provide a demo video tutorial with
instructions on using the EDSS.

2.2.2. Algorithm Developer Interface

An EDSS can use numerous algorithms to support decision making, depending on
the issue at hand. This current design of the EDSS as a service allows developing different
algorithms and embedding them in the infrastructure for different use cases. The algorithm
developer needs basic knowledge in Python programing language, working with Git source
code control, and a basic understanding of cloud computer infrastructure to test the code
change. The logic for each of the core modules is well isolated, and the linkages between the
layers (Application -> Docker -> K8s -> Helm -> Cloud Computer) are clearly defined. The
developer does not need to change the infrastructure layers to support a new algorithm.

For developing a new algorithm, the following steps need to be taken:

1. Fork the current GitHub project [19] to a new one;
2. Creating a Travis CI account [20]. The current GitHub project is configured to

use Travis CI for running the unit tests and pushing the created Docker images
to the Docker repository. The new Travis CI account needs to be configured in the
GitHub project;

3. Creating a Docker account [14] to hold the Docker images. All the mentioned accounts
(GitHub, Travis CI, and Docker) are free for open-source projects;

4. The “dss/scripts/build_and_push_to_docker_hub.sh” script needs to be updated to refer-
ence the new Docker repository. The Helm “dss/chart/wqdss/values.yaml” file needs to
be updated to retrieve the Docker images from the correct repository;

5. As described in Figure A1 (See Appendix A), the entry function of the algorithm is
“execute” under the “dss/src/wqdss/processing.py” Python module in the “Execution”
class (see EDSS GitHub repository [19]). This is where the code should be changed
for a new algorithm. In the case of several algorithms, the input file should include
the algorithm name and the applicable function according to the selected algorithm
that will be called from the “execute” function. In order to request multiple model
simulations, the “execute_run_async” function needs to be called. Once this function
returns, the results can be analyzed. This function can be called several times if needed.
In order to publish the results, the class member “self.result” should be updated before
exiting the “execute” function.

6. The changed code then needs to be pushed to the main GitHub branch in order for the
Travis CI to trigger the unit tests and publish the Docker image to the Docker repository;

7. Deploying the code using Helm and verifying the EDSS behavior.

2.3. Cloud Computing Resources Scaling

When using cloud resources with this EDSS, the scaling is performed in two levels:
(1) The horizontal pod autoscaling (HPA), which determines how many different Docker
pods (images) are brought up in order to receive a request for model execution. The Docker
images are configured to run a single model each. The Helm “values.yaml” file has an
“hpa” section with an option to configure the minimum and the maximum number of
pods brought up. In addition, the CPU target utilization percentage is also defined in this
section. Once the CPU usage crosses this limit, a new pod is created; (2) The cloud provider
K8s cluster auto-scaling. Once there are more CPU usage requests than cloud computing
provides, the cluster will automatically bring up additional computer resources to run the
pods according to the limits defined in the cluster settings.
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Multiple factors will affect the scaling efficiency, starting from the chosen type of
computer node that brings a different type of CPU generation. The run time of a single
model can be cut in half between the newest CPU generation and old CPU generations.
As mentioned above, different configurations of the K8s cluster and HPA will also have a
significant effect on optimizing the scaling, where optimized scaling is defined as running
all the model permutations in parallel. However, having optimized scaling comes with
having more cloud computing nodes ready for execution, which results in a higher idle
time cost since the user needs to pay for the running computing nodes even if almost no
CPU is utilized. Thus, having optimized scaling is not necessarily a primary goal.

Nonetheless, we want to benchmark an optimal scaling performance for reference.
The “Spokane river example” was used to demonstrate the scaling. This example is shipped
with the CE-QUAL-W2 version 4.1 package. We changed the simulation days from 200-205
to 200-300 to create a longer run and highlight the benefit of the scaling. The Google Cloud
provider was chosen to deploy the EDSS. The e2-standard-2 (2 vCPUs and 8GB memory)
were used for the computing nodes. To perform ten parallel simulations, both the HPA
and K8s cluster configurations were made such that all the needed computing nodes and
pods were already up and running at the beginning of the execution. That is ten pods and
five computing nodes. This run of ten model permutations took 26 min. Using the same
configuration, only changing the HPA to allow a single pod (i.e., ten serial runs without
parallelization) took 3 h and 50 min (23 × 10 = 230 min).

3. Case Study

Israel has thirteen different drainage and river authorities, each responsible for streams
and rivers in a different part of the country. Among their many duties, these authorities
are also responsible for rehabilitating the rivers and streams and adapting them for leisure
and recreational purposes [21]. Each authority is independent and relatively small (staffed
with less than ten people). One of these authorities is the Yarqon River Authority (YRA),
responsible for the Yarqon stream [22]. The Yarqon is a lowland coastal stream, about
28 km long, in central Israel that flows between a mix of agricultural fields and urban
areas, ending in an estuary connected to the Mediterranean Sea, as shown in Figure 5.
While the historical flow of the stream originated in natural springs, over the years, due
to over-exploitation of the aquifer, the natural springs dried out [23]. Today, there are two
different water sources for the stream: (1) Pumps supplying water from lower depths in
the aquifer for the upstream part instead of the springs that dried out; (2) There are three
different Wastewater Treatment Plants (WWTP) which discharge tertiary treated water in
two locations in the middle section of the stream [23]. In order to promote preservation
and recovery efforts, the YRA works with 18 different stakeholders [22], which poses a
significant obstacle to reaching a consensus on rehabilitation efforts. We set out to show
how a water quality EDSS as a service can serve as a solution for the YRA in its efforts to
rehabilitate the stream.

Figure 5. Study area map. (A) Source of the stream, from aquifer water pumps. (B) Discharge
points of two WWTP. (C) Discharge point of a third WWTP. Note: background map is adapted from
“Michelin maps”.
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3.1. Applying the CE-QUAL-W2

Water quality models are rarely used in Israel’s rivers and streams. Therefore, to
show the benefits of the EDSS, a CE-QUAL-W2 model had to be applied for the Yarqon
stream. However, the available data on flows, temperature, and water quality in the stream
were insufficient to calibrate the model. Therefore, for EDDS demonstration purposes, we
applied a non-calibrated model for the stream according to the best data that was available.
Although the EDSS cannot supply outputs for decision making under these conditions, we
can still demonstrate how the EDSS will assist the YRA if it invests in calibrating a model
for the stream.

3.2. The EDSS Algorithm

For demonstration purposes, the example implemented algorithm was a simple recur-
sive grid search, which used two types of inputs as shown in Figure A2 in the Appendix A:
(1) model_run that specified the parameters needed for the algorithm to set the different run
permutations; (2) model_analysis that specified the parameters for finding the best run. The
JSON format for the input file was chosen over other formats, such as CSV or TXT, due
to its flexibility. Under the model_run section, there is an option to define any number of
model input files that need to be changed in the input_files section. For each input file, the
user needs to define the following: (1) name—Name of the input file; (2) col_name—Name of
the CSV column that needs to be changed (the parameter that is changed); (3) min_val—The
minimum value of the parameter that is being changed; (4) max_val—The maximum value
of the parameter that is being changed; (5) steps—The increase interval in the parameter
value between the minimum and maximum definitions. This parameter can hold a list of
values. If more than one value is defined, a recursive run is conducted in smaller intervals
for further rounds of model simulations around the previous result that best matched
the target. Although the user can define the smallest interval in the first run and obtain
the same results faster, the recursive option was added to allow cloud computing cost
reduction by reducing the overall number of permutations without significantly impacting
the accuracy of the result. In the example shown in Figure A2, in the first pass of model
execution, nine different permutations will be executed as there are (2 − 1) / 0.5 + 1 = (34
− 30) / 2 + 1 = 3 different parameter values to set in each of the 2 input files. In the second
pass of model execution, the minimum and maximum range are set from the previous
round best-run parameter value +/− the previous step value divided by two. In this case,
there are another 0.5 / 0.05 + 1 = 2 / 0.2 + 1 = 11 different parameter values to set in each of
the 2 input files.

Under the model_analysis section, the model output file that needs to be analyzed is
defined in the output_file field. Under the section of parameters, any number of parameters
can be defined. Each parameter has the following definitions: (1) name—Column name
in the output csv file; (2) target—The target value of the parameter we want to reach;
(3) weight—This is a relative parameter that allows setting a priority between the different
defined parameters; (4) score_step—This is defined in order to unify the units of different
parameters. It is defined as the deviation from the target per unit score. For example, in
Figure A2, a deviation of 0.1 g/m3 in total nitrogen (TN) is considered 1 score, while a
deviation of 0.5 g/m3 in dissolved oxygen (DO) is considered 1 score. As such, dividing
the deviations by the corresponding score_step will facilitate summing the deviations of
different parameters in score units, as shown in Equation (1). Equation (1) defines what
score each model simulation will receive according to the distance from the target.

Score =
n

∑
i=1

( | target i − actual value | / score step
weight

)
(1)
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Since the score represents deviations from targets, we seek the model simulation that
minimizes the score. For example, for the run in Figure A2, we seek the model simulation
that minimizes the score defined in Equation (2).

Score =
( | 0.6 − Simulated TN | / 0.1

4

)
+

( | 11 − Simulated DO | / 0.6
2

)
(2)

3.3. Case Study Results

In order to demonstrate the abilities of the EDSS, we choose a decision-making problem
in which the decision maker needs to decide on the pump flow rate that supplies the
water from the aquifer in the most upstream section (point A in Figure 5) to achieve
the desired goal of water quality. More specifically, the algorithm needs to quantify
the impact of changes in the pump flow rate on the downstream section water quality,
given the additional inputs from WWTPs in the middle of the stream and the natural
processes occurring along the stream’s 28 km path (Figure 5). This decision-making problem
represents a constant debate among stakeholders on the amount of freshwater allocated to
the stream to meet water quality targets.

A scenario of excess ammonia (NH4-N) concentration downstream was simulated. As
shown in Figure A3 in Appendix A, the EDSS input file defines a possible range of pump
flows (col_name = q) between 0.2 m3/s (min_val) and 0.8 m3/s (max_val). The flow changes
as defined in the steps were set for two recursive runs, one with 0.1 m3/sec and the second
with 0.01 m3/s. The “qin_br1.csv” (name) is the input file that needs to be changed. The
NH4-N concentration target of 0.57 g/m3 (target) was set. The weight is not relevant in this
case, as only a single target parameter was used. The simulated NH4-N concentration is
extracted from the output file of “tsr_1_seg42.csv” (name). The defined score_step was set to
0.01 g/m3. The pump flow that minimizes the score was found by the EDSS as shown in
Figure A4 in Appendix A: (1) id—Each EDSS execution has a unique string; (2) status—This
field is changed from “RUNNING” to “COMPLETED” once the EDSS publishes the results;
(3) result—This shows the results of the best run. In this case, as two recursive runs were
defined, we can see two sets of results with different identification strings (best_run). The
first is for the search between 0.2 m3/s and 0.8 m3/s with 0.1 m3/s interval, in which a
flow of 0.6 m3/s (params) had the best relative score of 0.525 out of the seven runs. The
second results are for the run between 0.55 m3/sec and 0.65 m3/s with a 0.01 m3/s interval.
In this second search, the best score was 0.025, corresponding to a flow of 0.55 m3/s; (4) A
link to download the zip output files from the model executions is available, as shown in
Figure A4.

In this example, seven parallel simulations were conducted on cloud computing
resources in the first round. In the second round, eleven simulations were conducted in
parallel. Altogether, eighteen simulations were conducted in order to reach the result. A
more cloud-computing-expensive path could have been taken if a “step” of 0.01 m3/s was
solely defined with no recursive rounds. In that case, 61 simulations would have been
conducted, resulting in a shorter run time (in case these runs are performed in parallel),
but with more cloud computing charges.

4. Benefits from EDSS as a Service

The developed paradigm of a “Water Quality EDSS as a Service” holds multiple
benefits for environmental organizations working on preserving and recovering aquatic
ecosystems. This specific study implementation is beneficial to organizations or researchers
with a calibrated CE-QUAL-W2 model for the water bodies they manage since this remains
the highest cost in the EDSS. We can divide the direct users’ benefits into two categories:
(1) Benefits to the end-user who consults the EDSS; (2) Benefits to the developer looking to
introduce a new algorithm to the user.
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4.1. User Benefits

1. Ease of use—The simple web interface allows interaction with the system without the
need to understand the format of the CE-QUAL-W2 input files. There is also no need
to install any software on the user’s computer.

2. Reduce simulation time—As the different model simulations are in parallel, the user
can obtain the result within the time frame of a single model simulation.

3. Extensibility—A software developer can embed any algorithm in the service.
4. Low cost—All the software used in this solution is open source. The only needed

payments are for the “pay as you use cloud computer” and for a software developer
to adjust the needed algorithm to the organization’s needs and then bring up the
service for use. Next, we review the developer benefits, which also help maintain
a low development cost. An additional aspect is that the developed infrastructure
is generic and can support any cloud computing provider (such as AWS, Google,
Azure, or Alibaba), where some environmental organizations or researchers can
obtain grants for usage from one of the providers. Additional cost savings can also
be achieved if a prominent environmental organization maintains the service and
algorithms for smaller organizations. For example, in the YRA case, if the Israeli
water authority takes responsibility for developing the algorithms and maintaining
the service, all thirteen drainage authorities will benefit from it without each of the
thirteen developing their algorithms.

4.2. Developer Benefits

1. Ease of new algorithm implementation—The architecture of the different software
layers described in Figure 2 might look overwhelming. However, it isolates the
different core components from the infrastructure layers. Therefore, the algorithm
developer would only need to understand the interfaces between the application and
the algorithm, be familiar with the Python programming language, and have a basic
knowledge of deploying the service to the cloud provider.

2. Flexible user interface—The flexible design for the user input does not require having
any web development knowledge. It also allows the creation of an input file that is
clear and easily produced by the user.

In addition to the direct user’s benefits, the “EDSS as a Service” paradigm also enabled
the usage of legacy software in a modern service. Specifically, the CE-QUAL-W2 model
has been developed, fine-tuned, and stabilized over the past 40 years. As an open-source
project, it will be hard to finance the model redesign into a modern software design. This
“EDSS as a Service” allows users to leverage the benefits of a modern web service along with
its kernel of a well-established model. The developed infrastructure can also be used for
fine-tuning the model calibration. Today, the modeler calibrating the CE-QUAL-W2 model
needs to run the model multiple times while changing different tuning parameters. This is
conducted to find the best match to the historic observed results in the field. This process
is tedious and time-consuming, especially for long-running simulations. An algorithm
similar to the grid search algorithm implemented for the YRA can be utilized to perform a
parallel search for the best tuning parameters that maximize the goodness of fit between
the observed and simulated results.

5. Broader Policy Implications

Water quality management is inherently complex since it involves the interplay of
physical, chemical, hydrological, and biological parameters influenced by environmental,
socio-economic, and technical factors [24]. In recent decades, this has been compounded by
stricter legislation and increased public awareness around the world. As mentioned earlier,
EDSS as a service can assist policymakers in understanding these complexities by enabling
decision makers to gather, share, and interpret results for different planning and operation
scenarios on demand without paying for the necessary license, data storage, or technical
support. There are three main policy implications, which are highlighted below.
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5.1. Adaptive Management

By combining current water quality data with an EDSS, “what-if” scenario testing
can better inform management and policy decisions. However, it is often difficult for
decision makers to readily access model information and use models directly to evaluate
alternative scenarios [25]. This makes the use of predictive models cumbersome and costly,
reinforcing the need for EDSS as a service as a mainstream tool to assist deliberation. Such
an adaptive management approach can enable watershed managers to build a flexible,
accurate understanding of their system and refine and update management strategies [26].

5.2. Community Engagement

There is a growing recognition that citizens should be actively involved as key stake-
holders in the watershed planning process. By engaging communities, policymakers can
gain local knowledge, increase fairness and equity in decision making, and avoid failure due
to non-acceptance [7]. An effective EDSS can allow citizens to take a participatory approach
and highlight the various advantages and disadvantages of different scenarios [27].

5.3. Long-Term Resilience Planning

Growing urban populations, limited budgets, and the impact of climate change are
increasingly putting a strain on watershed management. Even a slight increase in tem-
perature can lead to general changes in the microbiological processes in lakes, rivers, and
streams [28]. Therefore, resilience planning is essential to cope with and recover from
disruption and anticipate trends and variability. For example, when a factory requests
permission to dump water that was part of the manufacturing process into a stream, an
EDSS can be used to understand the impact on the stream. This can be conducted by
plotting the water quality parameters under different flow and quality outputs from the
factory as predicted by the model in different points downstream. After such a plot is
created, the treatment level of the disposed water can be determined for the factory. In
another application using the same example, a government agency could find thresholds
related to the stream condition (e.g., flow, temperature, nutrients, etc.), where dumping of
water in a certain quality from the factory will not be allowed or the amount will be limited
below the regular output. In conclusion, EDSS as a service enables local communities and
national regulators alike to take a holistic approach to planning for the future.
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Appendix A

Figure A1. Code snippet for creating a new algorithm.

Figure A2. Example input file. Note: Two different model files are changed for the permutations,
and a single recursive step is defined. The algorithm analysis considers two output parameters with
different “weight” and “score_step” values.
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Figure A3. Case study input file.

Figure A4. The output of the EDSS. Note: In the first round of simulations (i.e., steps of 0.1 m3/s),
0.6 m3/s flow had the best score. In the second round of simulations (i.e., steps of 0.01 m3/s around
0.6 m3/s), 0.55 m3/s flow had the best score.
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Abstract: Clean water is an indispensable essential resource on which humans and other living
beings depend. Therefore, the establishment of a water quality prediction model to predict future
water quality conditions has a significant social and economic value. In this study, a model based on
an artificial neural network (ANN), discrete wavelet transform (DWT), and long short-term memory
(LSTM) was constructed to predict the water quality of the Jinjiang River. Firstly, a multi-layer
perceptron neural network was used to process the missing values based on the time series in the
water quality dataset used in this research. Secondly, the Daubechies 5 (Db5) wavelet was used to
divide the water quality data into low-frequency signals and high-frequency signals. Then, the signals
were used as the input of LSTM, and LSTM was used for training, testing, and prediction. Finally,
the prediction results were compared with the nonlinear auto regression (NAR) neural network
model, the ANN-LSTM model, the ARIMA model, multi-layer perceptron neural networks, the
LSTM model, and the CNN-LSTM model. The outcome indicated that the ANN-WT-LSTM model
proposed in this study performed better than previous models in many evaluation indices. Therefore,
the research methods of this study can provide technical support and practical reference for water
quality monitoring and the management of the Jinjiang River and other basins.

Keywords: water quality forecast; MLP neural network; Daubechies 5 wavelet; long short-term
memory network; hybrid model; decomposition-and-ensemble

1. Introduction

Water is one of the most essential natural resources on which all life depends. How-
ever, various economic activities have an indispensable impact on the environment through
different pathways [1]. Take China as an example: in recent years, along with high-speed
economic development and urbanization, China’s limited freshwater resources have been
drastically reduced and, at the same time, increasing water pollution poses a serious threat
to human survival and security and has become a significant obstacle to human health and
sustainable socio-economic development. From the perspective of China’s actual national
conditions, water resources are relatively scarce. In addition, as China is undergoing a pe-
riod of rapid socio-economic development, the demand for water resources is accelerating.
Although China has 2.8 trillion water resources [2], which seems to be very rich, the per
capita share of water resources is only 2400 cubic meters due to its large population [3], and
account for less than one-quarter of the world’s total per capita water resources. In addition,
the discharge of industrial wastewater and domestic sewage into water bodies without
treatment has led to the severe pollution of various water bodies, including rivers and lakes,
thus seriously damaging the ecological environment, biodiversity, and the ecological and
service functions of water bodies [4]. According to previous studies, only a small number
of rivers worldwide are not affected by water pollution [5]. At present, the pollution and
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eutrophication of rivers in China are severe. According to the 2019 statistics from China’s
State Environmental Protection Administration, the seven major water systems in China
in descending order of pollution level are listed as follows: the Liaohe River basin, the
Haihe River basin, the Huaihe River basin, the Yellow River basin, the Songhua River
basin, the Pearl River basin, and the Yangtze River basin, with more than 70% of the Liaohe,
Haihe, Huaihe, and Yellow River basins being polluted. Huang et al. [6] conducted an
analysis of water quality data from 2424 water quality observation stations in China from
2003–2018 and concluded that the quality of river water in China showed significant spatial
differences, with 17.2% of sampling sites in eastern China showing poor water quality
during the period of 2016–2018, compared to 4.6% in the western region. Moreover, 24.4%
of the sampling sites in coastal areas (buffer zone of 20 km from the coastline) showed
poor water quality. Although the Chinese government has invested a great deal of money
into the treatment and management of polluted water bodies, the pollution proportion of
water resources is still quite impressive, which has brought severe economic and social
costs to China’s water environment remediation [7]. Water quality prediction is a necessary
tool for water environment planning, management, and control; an important element of
water pollution research; and a fundamental part of water environmental protection and
management. Thus, it is vital to find a reasonable and effective water quality prediction
method. At the same time, predicting future water quality is a prerequisite for preventing
rapid changes in water quality and proposing countermeasures. Therefore, the accurate
prediction of water quality changes can not only effectively ensure the safety of people’s
drinking water, but can also have a positive impact on guiding fishery production and
protecting biodiversity.

Research into water quality prediction dates back to the 1920s. Streeter and Phelps
developed a coupled model based on biochemical oxygen demand and dissolved oxygen
when they studied pollution sources in the Ohio River. They proposed a one-dimensional
steady-state oxygen balance water quality model (the S-P model). Since then, many scholars
have supplemented and revised their theories [8–10]. At present, the research methods of
water quality prediction are mainly divided into two categories: one is to use theoretical
mathematical model and physical model to predict the development trend of water quality
mechanism [11], the other is a non-mechanistic prediction method that builds mathematical
statistical prediction models based on historical data. The mechanistic prediction method
analyses the physical, chemical, and biological changes of each factor in the water resource
cycle; establishes a mathematical model reflecting the relationship between the substances;
and solves the corresponding mathematical equations to predict the trend of water quality
changes. For example, Zhang et al. incorporated the operation rules of dams or sluices
into the reservoir regulation module, used an improved SWAT model to simulate the
water quantity and quality in the Huaihe River basin, and compared the results with those
of the original SWAT model. The results showed that the improved SWAT model was
more accurate in simulating the water quantity and quality in the Huaihe River basin [12].
Peng et al. used the Environmental Fluid Dynamics Code (EFDC) model coupled with
a geographic information system (GIS) model to simulate the water quality of the lower
Charles River, and the results showed that the accuracy of the model was improved
compared with the original EFDC model [13]. The mechanistic models of river water
quality tend to provide a more comprehensive description of water quality changes, as
they consider the effects of physical, chemical, and biological processes on the spatial and
temporal transport and transformation patterns of pollutants in river waters; however,
at the same time, most of these models are complex and require a great deal of basic
information and data (numerical model uses a large amount of water quality data as the
basis for calculation), and it is difficult to obtain a continuous distribution of water quality
in space and time. This has greatly limited the application of these models [14]. In addition,
the mechanics of many water environment systems are not fully understood by scholars;
hence, it is difficult to describe them accurately using exclusively mechanistic modelling.
In contrast, non-mechanical water quality modelling is a black-box approach to a particular
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water quality system, which is modelled by mathematical statistics or other mathematical
methods to make predictions about water quality. Commonly used non-mechanical water
quality simulation prediction methods include regression models, probability statistical
models, grey prediction models, time series models, etc.

In recent years, neural networks and other machine learning algorithms have been ap-
plied by many researchers in the field of water quality prediction and have achieved good
prediction results. The SOTA table of the progress of research based on water quality predic-
tion is shown in Table 1 (distinguishing between mechanistic and non-mechanistic models).

Table 1. Overview of water quality prediction research.

Water Quality Mechanical Prediction Methods

Research Scholars Research Subjects Model Name Model Characteristics

Lee et al. (2017) [15] Environmental Fluid
Dynamic Code

The Galing River in
Kuantan, Pahang,

Malaysia

The Environmental Fluid Dynamic Code (EFDC)
model considers the effects of temperature, humidity,
radiation, cloud cover, evaporation, wind direction,
and wind speed, which makes the simulation results
closer to the reality. The water quality (TOC, TN, TP)
in the upstream section is significantly improved, and
the prediction accuracy can be improved by about
37%; if the sewage from the tributary is at the same
location, it will increase by about 77%. A total of five
water quality management plans for improving the
water quality of the Galing River were evaluated
using EFDC.

Deus et al. (2013)
[16]

Two-dimensional
water quality model

The Tucuruí reservoir,
Pará, Brazil

The use of CE-QUAL-W2 to model hydrodynamics
and water quality can reproduce horizontal and
vertical gradients and their temporal changes. The
field data of temperature, nitrate, ammonia,
phosphorus, total suspended solids (TSS), and
dissolved oxygen and chlorophyll a are used to verify
the prediction effect of the model, and it has been
confirmed that it can be used to simulate the response
of water quality to the various management schemes
of the fish industry.

Al-Zubaidi and
Wells (2018) [17]

Three-dimensional
hydrodynamic model

Lake Chaplain,
Washington, DC, USA

The 3D hydrodynamic and water quality model is
developed by expanding the 2D fully implicit scheme
of CE-QUAL-W2 in three dimensions. The governing
equations include a continuity equation, free surface
equation, momentum equation, and transport
equation, and the momentum and transport equations
are solved by the time-splitting technique. The
hydrodynamic equation and water quality equation
are solved at the same time to realize the feedback
between water quality and hydrodynamics. The
results showed that the solution of the hydrodynamic
equation of the model was very consistent with the
field data.
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Table 1. Cont.

Water Quality Mechanical Prediction Methods

Research Scholars Research Subjects Model Name Model Characteristics

Yang et al. (2017) [18] Finite volume method Urban Lake in Tianjin,
China

The Navier Stokes equation is used to establish a
two-dimensional hydraulic model, the finite volume
method is used to calculate the parameters of the
two-dimensional uncertain eutrophication model, and
the Bayesian method is used to correct the model
parameters. The model reflects the interaction between
nutrients, phytoplankton, and zooplankton. It can be
used to simulate the changes of seasonal and regional
water quality indicators (DO, NH4

+, NO3
−, and

PO4
3−), and can calculate hydrodynamic information

and eutrophication dynamics with reasonable
accuracy (all relative errors are less than 11%).

Colton et al. (2022)
[19] Mass balance model the Laurentian Great

Lakes

The model calculates the mass balance and dynamic
simulation evaluation of some trace metal loads in the
Great Lakes basin, summarizes the loads of the
tributaries and connecting channels, and estimates the
atmospheric input and sedimentation. Among them,
the load of conservative elements (Na and Cl) is used
to calibrate the black box method. The mass balance of
these elements can be accurately reproduced to 90% in
a long-term trend.

Wang et al. (2018)
[20]

Soft-sensing method
based on WASP model

Taihu Lake and Beihai
Lake in China

The WASP model is employed as a soft-sensing
method and its unknown parameters are estimated by
the unscented Kalman filter. The results show that the
proposed soft sensing method can describe the
changes of relevant water quality indexes (DO, BOD,
TN, and Chl_a), and has improved accuracy compared
to the nonlinear least square method and traditional
trial and error method.

Yang et al. (2021) [21] MIKE 21 FM model
Dongshan Lake in

Guangdong Province
of China

By using the MIKE 21 FM model and considering
different flow arrangements, several model scenarios
were established to predict the impact of diversion on
selected water quality parameters. The results showed
that the inflow and outflow arrangement was the main
factor determining the flow field of the whole lake and
the change trend of NH3-N, and the increase in flow
showed an unequal influence in each region. Wind
was also shown to be important for the formation of
air circulation and the change of pollutants.

Water Quality Non-Mechanical Prediction Method

Research Scholars Research Subjects Model Name Methods andResults

Najafzadeh et al.
(2021) [22] None

SVM, GEP, MTree,
EPR, and MARS

models

The d-factor of the SVM model was 0.79 for the Kx
metric with 95% confidence space. The d-factor value
was 0.87 for the Ky metric, which is better than the
other models in terms of prediction accuracy.

Song et al. (2021) [23] Haihe River SWT-ISSA-LSTM

Based on the strong noise immunity of the
simultaneous wavelet transform, the simultaneous
wavelet transform is used to denoise the dataset,
followed by an improved sparrow search algorithm to
optimize the hyperparameters of the LSTM. The mean
absolute error (MAE) of the model for predicting the
water quality of Yongding River was 0.4727, which is
much lower than other models.
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Table 1. Cont.

Water Quality Mechanical Prediction Methods

Research Scholars Research Subjects Model Name Model Characteristics

Noori et al. (2013)
[24] Sefidrood River Basin ROANFIS

The Pearson correlation coefficient (R) and root mean
square error of the best-fit ROANFIS model were 0.96
and 7.12, respectively. In the test step of the selected
ROANFIS model, the uncertainty analysis showed
that the 95% confidence interval and the d-factor were
predicted as 94% and 0.83, respectively.

Noori et al. (2013)
[25] Sefidrood River Basin RONNM

The results showed that the best-fit RONNM had a
Pearson correlation coefficient (R) and root mean
square error of 0.94 and 7.75, respectively. In addition,
the accuracy analysis of the model outputs based on
the developed difference ratio statistics showed that
RONNM was more advantageous.

Noori et al. (2015)
[26] Sefidrood River basin SVM

The percentage of observed data included by the
bandwidth of 95% prediction uncertainty (95ppu) and
95% confidence interval (d-factor) was selected for
analysis. The results showed that the support vector
machine model was more sensitive to the capacity
parameter (C) than kernel parameter (gamma) and
fault tolerance (epsilon), and it had acceptable
uncertainty in BOD5 prediction.

Ahmed et al. (2019)
[27] Data from PCRWR Polynomial regression,

random forest, etc.

Multiple linear regression, polynomial regression,
random forest, and other machine learning regression
models were used to predict WQI separately. The
results show that the mean absolute error (MAE) of
polynomial regression was 2.7273, which bests the
other models in terms of performance.

Liu (2019) [28]
Guazhou automatic

water quality
monitoring station

LSTM

The mean interpolation and Pearson correlation
coefficient were first used to preprocess the dataset,
followed by LSTM to predict the PH and CODMn
metrics. The mean squared error (MSE) of the model
was 0.0017 for the DO dataset, which outperformed
the ARIMA and SVR models.

Hu et al. (2019) [29] None LSTM

Linear interpolation and Pearson correlation
coefficients were first used to preprocess the dataset,
followed by LSTM to predict PH, temperature, and
other indicators. The results indicated that in the
short-term prediction, the prediction accuracy of PH
and water temperature could reach 98.56% and
98.97%, and the prediction time lengths were 0.273 s
and 0.257 s, respectively. In the long-term prediction,
the prediction accuracy of pH and water temperature
could reach 95.76% and 96.88%, respectively.

Elias Eze et al. (2021)
[30] South Africa EEMD-DL-LSTM

model

Firstly, EEMD was used to decompose temperature
and PH into individual IMF components, and then
each IMF component was used as the input of LSTM
to train the neural network. The results showed that
the average absolute error of this hybrid model was
0.0375, which is much lower than that of the BPNN
and DL-LSTM models.

Archana et al. used the depth belief network in unsupervised learning to study the
PH, dissolved oxygen, turbidity, and other water quality parameters of the Chaskaman
reservoir for prediction and analysis [31]. The results show that this method performs
better than the classical method for prediction. Wang et al. introduced the Holt–Winters
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seasonal model based on the ARIMA model and predicted the total phosphorus and total
nitrogen in the reservoir. The results showed that the model had a prediction accuracy of
97.5% and had many advantages, such as fast learning speed [32]. Mohamed et al. analyzed
the irrigation water quality index in Egypt by means of an integrated evaluation method
and an artificial neural network model. In addition, the ARIMA model was developed
to predict IWQI in Bahr El-Baqar drain, Egypt [33]. Shi et al. proposed a combination of
the wavelet artificial neural network (WANN) model and the high-frequency alternative
measurement of water quality anomaly detection and early warning method [34]. Li et al.
proposed an EEMD-SVR water quality prediction model to predict the water quality of
Jialing River in China. The model first decomposes water quality indicators, such as DO,
into each IMF component by the EEMD algorithm, and then builds the SVR model based
on each IMF component. The results showed that the hybrid model outperformed the
standard SVR model and BPNN model in a variety of evaluation indicators [35]. Ewaid
et al. established a multiple linear regression model according to the specified weight and
predicted the water quality of the Euphrates River [36]. Xu combined wavelet transform
and BPNN to establish a short-term wavelet neural network water quality prediction model
and used the model to predict the water quality of intensive freshwater pearl culture ponds
in Duchang County, Jiangxi Province, China. The results showed that the RMSE of the
model was 3.822 in DO metrics, which was much lower than that of the BPNN and ELman
models, showing desirable performance [37]. Qin et al. developed a PSO-WSVR model
and used a particle swarm algorithm to optimize the parameters of the weighted support
vector regression machine to predict water quality in Yixing, China. The results showed
that the model reduced RMSE, MAE, MAPE, and MSE by 46.74%, 17.86%, 43.62%, and
67.84%, respectively, compared with the standard SVR model [38]. Tizro et al. used the
ARIMA model to study nine water quality parameters of Hor Rood River [39]. Faruk
established an ARIMA-ANN model with 108 months of water quality data from the Büyük
Menderes River in Turkey from 1996–2004. The model consisted of two parts: firstly, the
ARIMA model was used to model the linear part of the dataset, and then the artificial
neural network was used to model the nonlinear part of the water quality series based
on the fact that the ARIMA model could not solve the nonlinear part of the water quality
series well. The results showed that the correlation coefficients between the predicted
values of the hybrid model and the observed data for boron, dissolved oxygen, and water
temperature were 0.902, 0.893, and 0.909, respectively [40]. Zhang et al. developed an
ARIMA-RBFNN model to predict the total nitrogen (TN) and total phosphorus (TP) of
Chagan Lake. The results showed that the RMSE values of this hybrid model were 0.139
and 0.036 for TN and TP indicators, respectively, which were improved compared to the
ARIMA and RBFNN models [41]. Than et al. developed the LSTM-MA model, classified
the water quality of Dongnai River from 2012 to 2019, predicted the water quality in the
next two years, and proved that the LSTM-MA hybrid model has a quicker training time
and more precise prediction than ARIMA, NAR, NAR-MA, and LSTM models [42]. Jian
et al. first used an improved grey correlation (IGRA) to extract the features of water quality
information and subsequently used LSTM to predict the water quality of Taihu Lake and
Victoria Harbor; the results showed that the RMSE values of the model were 0.07 and
0.067, which were lower than those of the BPNN and ARIMA models, showing good
performance [43]. Hameed et al. used an RBF neural network (RBFNN) and BPNN model
to forecast and compare the water quality in Malaysia, respectively. The results showed
that the RMSE of BPNN was 0.867 and the RMSE of RBFNN was 0.0194, and the RBF neural
network outperformed the BP neural network model in terms of prediction accuracy [44].

In summary, although scholars have proposed a large number of research methods in
the field of water quality prediction, the prediction results of traditional statistical models
are not satisfactory for time series with large fluctuations and long-term trends. For example,
the regression analysis model is relatively simple, but its requirements for statistical data
are high, demanding a large sample and data with a good distribution pattern; the time
series model has a relatively sound theoretical basis, but its prediction accuracy is poor;
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the grey prediction model is suitable for the case of small and discontinuous historical
data, but the model is susceptible to the influence of unstable data, resulting in a large
prediction error; the support vector machine is suitable for small samples, but it is more
sensitive to the choice of parameters and kernel functions. In addition, traditional single
deep learning models, such as back Propagation neural network (BPNN) and RBFNN, lack
the memory ability for historical information. Moreover, most of the missing data filling
methods cannot effectively handle the time-series information in the dataset, resulting in
large errors in the estimation of missing values. Therefore, this study attempts to use an
artificial neural network to fill in the missing information of water quality, comprehensively
apply wavelet transform and the LSTM model to the field of water quality prediction,
and compare the prediction results with ANN-LSTM, ARIMA, NARNN, CNN-LSTM, and
DWT-CNN-LSTM models so as to prove the effectiveness of the proposed model.

This study is divided into the following parts: Section 2 introduces the artificial neural
network model, wavelet transform, long-short term memory network model, and error
evaluation index; Section 3 takes the Jinjiang River Basin as the research object, constructs
the ANN-WT-LSTM model for water quality prediction, and compares the prediction
results with the NAR neural network model, ANN-LSTM model, and ARIMA model; and
the conclusion and research prospects are presented in Section 5.

2. Materials and Methods

2.1. Study Area Description and Dataset Analysis

The Jinjiang River is 182 km long, with a watershed area of 5629 square kilometers,
an average slope of 0.19%, and an average annual runoff of 5.13 billion cubic meters. It is
the largest river in Quanzhou and the third largest river in Fujian Province. The following
Figure 1 shows the geographical location of the Jinjiang River.

Figure 1. Geographical overview of Jinjiang River basin.

The Jinjiang River is divided into two tributaries, the east stream and the west stream,
and the source of the Jinjiang River is the west stream, which is 153 km long with a
watershed area of 3101 square kilometers and an average annual runoff of 3.65 billion
cubic meters. The east stream of the Jinjiang River originates at the southern foot of
Xueshan Mountain in Jindou, Yongchun. The river is 120 km long, with a watershed
area of 1917 square kilometers and an average annual runoff of 1.4 billion cubic meters.
Quanzhou City, through which the Jinjiang River flows downstream, is one of the most
economically developed regions in Fujian Province. Quanzhou, located in the southeastern
part of Fujian Province, is one of the three central cities in Fujian Province, and its total
economic output has remained the first in Fujian Province for 22 consecutive years. In
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2020, the city’s population was over 7 million, ranking first in the province in terms of
population size. As the Jinjiang River basin covers 53.8% of Quanzhou’s land area, water
resources are very important for the city’s sustainable development. At the same time, there
has been a serious pollution problem in the Jinjiang River basin [45,46]. The traditional
industrial development model has caused great damage to local sustainable development,
the pressure on the water environment is increasing, pollution from some enterprises is
rebounding, the construction of environmental protection infrastructure is lagging behind,
and the proportion of domestic pollution sources is increasing day by day. Therefore, the
accurate prediction of water quality in the Jinjiang River basin will provide crucial decision
data support for future pollution control programs.

The dataset used in this study was selected from the weekly report of automatic
water quality monitoring at the Shilong section of Jinjiang River basin. Among the many
water quality evaluation indexes, we selected dissolved oxygen (DO), permanganate index
(CODMn), ammonia nitrogen (NH3-N), and TP (total phosphorus), which are the four
most representative indexes of the research object. The time of data collection was from
7 January 2013 to 21 June 2021. The data update cycle occurred once a week, with a total
of 443 groups of data. We used the first 421 groups of data as the training set and the last
22 groups as the test set. The images of the dataset are shown in Figure 2.
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Figure 2. The image of dataset. (a) Dissolved oxygen (DO); (b) CODMn; (c) NH3-N; (d) Total
phosphorus (TP).

Next, the dataset was analyzed and the missing values were found. The analysis
results are shown in Table 2.

Then, we used Pearson’s correlation coefficient to analyze the correlation of each
dataset. The results are shown in the Table 3. From the above correlation analysis table,
it can be seen that the DO dataset was negatively correlated with the CODMn, TP, and
NH3-N datasets; the CODMn dataset showed a weak positive correlation with the TP and
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a significant positive correlation with the NH3-N dataset; and the TP dataset showed a
significant positive correlation with the NH3-N dataset.

Table 2. Descriptive statistics of experimental dataset.

Index
Minimum

Value
Maximum

Value
Mean
Value

Standard
Deviation

Variance
Number of

Missing Values

DO 4.80 11.10 7.49 1.19 1.19 1

CODMn 1.10 5.30 2.64 0.74 0.74 1

TP 0.00 0.19 0.09 0.03 0.03 0

NH3-N 0.02 0.95 0.29 0.17 0.17 2

Table 3. Correlation coefficients for each dataset.

Correlation
Coefficient

DO CODMn TP NH3-N

DO 1 −0.024 −0.201 −0.136

CODMn - 1 0.031 0.087

TP - - 1 0.448

NH3-N - - - 1

2.2. The Framework of the Proposed Model

The single neural network model is susceptible to fluctuations in the water quality
time series during training, which affects the prediction accuracy. Therefore, this study
introduced the signal time and frequency decomposition method for water quality data
preprocessing and built a hybrid prediction model based on “decomposition- prediction-
reconstruction” to improve the overall prediction accuracy. The hybrid model is made up
of five components:

1. Data preprocessing: firstly make a descriptive analysis of the collected water quality
data, find the missing value, estimate the missing value by artificial neural network,
and then normalize it to eliminate the influence of dimension.

2. Discrete wavelet transform: The db5 wavelet technique is used to decompose the
water quality time series datasets.

3. Model training, detection: Split the high-frequency and low-frequency signals of each
dataset obtained from the db5 wavelet decomposition into a training set and a test set
according to a fixed ratio. In this study, we set the first 421 sets of each dataset as the
training set and the last 22 sets as the test set. Subsequently, we used LSTM to train
each training set and adjust the relevant parameters of LSTM, such as learning rate
and the maximum number of iterations.

4. The predictions obtained from the decomposed test set of each sub-series are super-
imposed to obtain the final prediction results.

5. Model evaluation: This study used four indicators—MSE, RMSE, MAE and MAPE—
to evaluate the model’s performance.

The whole algorithm flow chart is shown in Figure 3.

2.3. Data Normalization

Data normalization is a fundamental task for mining data in machine learning. In
practical research, different methods and evaluation metrics often have different scales
and units, which will produce diverse data analysis results. In order to reduce the relative
relationship between quantities and to eliminate the influence of the dimension between
indicators, the data must be normalized in order to achieve comparability between data
indicators and to achieve the expectation of data optimization. The original data are
normalized such that the indicators are in the same order of magnitude, which is convenient
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for comprehensive comparison and evaluation. Commonly used normalization methods
include min-max normalization [47] and Z-score normalization [48]. Minimum-maximum
normalization, also known as outlier normalization, is a linear transformation of the original
data such that the resulting values map to between 0 and 1. There are also some other
data normalization methods, such as the Z-score standardization method. However, the
Z-score application also has risks. Firstly, the estimation of the Z-score requires the overall
mean and variance, but this value is difficult to obtain in real analysis and mining. In most
cases, it is replaced by the sample mean and standard deviation. Secondly, Z-score has
certain requirements for data distribution, and normal distribution is the most conducive
to Z-score calculation. Therefore, we chose the min-max normalization method. It is more
suitable for use on data with relatively concentrated values. The transformation function of
the min-max normalization used in this study is as follows:

X′ = x − xmin

xmax − xmin
(1)

where xmax is the maximum value of the sample data and xmin is the minimum value of
the sample data.

Figure 3. Flow chart of water quality prediction model.

2.4. Artificial Neural Network (ANN)

During the collection of time-series data, the loss of single or multiple attributes of
some data in the final dataset or the loss of single or multiple records will be caused
by acquisition, storage, and human error. These data are called missing data. The lack
or incompleteness of data brings many difficulties to data mining, which will lead to
the deviation of the analysis results and mislead users’ decisions, resulting in adverse
consequences. Therefore, filling the missing data completely under certain conditions is of
great significance for macro data mining in big data scenarios. Nowadays, there are several
ways to deal with missing data, such as the deletion method [49,50], missing value filling
method based on a statistical model [51], or the method based on parameter estimation.
This method first judges the missing mechanism of the missing value and then establishes
a specific model to estimate the missing value. This method is widely used because it is
more flexible in application and can be applied to datasets with a large number of missing
values [52]. Common methods include the expectation maximization method, multiple
filling method [53–57], maximum likelihood estimation method, etc. Austin et al. used
multiple interpolations to estimate missing values in clinical medicine [58]. Chang et al.
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developed a distributed multiple filling method with communication efficiency to estimate
the missing data in distributed health data networks (DHDNs) [59].

In summary, research on interpolation methods for missing values of time series
has received increasing attention from scholars in various fields, and although some
scholars have considered the correlation characteristics of time series, most of these studies
have not quantified the correlation between the observed quantities. Although some
scholars consider the correlation characteristics of time series, most of the studies are
still based on traditional interpolation or regression analysis methods. Moreover, some
traditional models, such as piecewise linear interpolation [60], cannot estimate the missing
value well [61,62]. Therefore, with the development of machine learning, researchers can
gradually apply various machine learning algorithms to the field of missing value filling,
which can to some extent solve the problem of non-linearity that cannot be handled by
traditional methods. Machine learning methods for missing value estimation include the
KNN method [63], artificial neural network, etc.

Artificial neural network (ANN) is a classical fundamental technique in machine
learning. Compared with general multi-factor prediction methods, its prediction method
has the advantages of high fault tolerance, high reliability, and fast prediction speed. In
addition, ANN is a powerful interpolation tool [64–66]. Artificial neural networks generally
have more than three layers of multilayer neural networks, which generally include three-
layer structures of input, hidden, and output layers, as shown in Figure 4.

Figure 4. Topology of neural network structure.

The relationship between the input xi and output yi of neurons is yi = f (neti), where neti =

XW is the net activation, X = [x0, x1, · · · , xn] is the input vector, W = [wi0, wi1, · · · , win]
T

is the weight vector, and f (·) is the activation function, which represents the function of
mapping the net activation and output. Some commonly used activation functions include
y = kx + c, y = 1

1+e−ax , y = 2
1+e−ax − 1, etc.

A neural network can be divided into two states: learning state and working state. The
learning state is used to adjust the weight of the neural network to make the output close to
the actual value, while the working state uses the established network for classification and
prediction without changing the weight of the neural network. The learning mode of the
neural network is tutorial learning. The weight of the network is adjusted by the difference
between the actual output and expected output of the network to make the model adapt as
accurately as possible.

In this study, the MLP neural network was used to estimate the missing values from
the water quality data of the Jinjiang River. The activation function of the output layer is
constant. The single-layer perceptron is the simplest neural network, which is composed of
input and output layers, and the input and output layers are directly connected. The MLP
neural network contains an input layer, output layer, and several hidden layers, which is a
kind of multi-layer feed-forward neural network based on BP algorithm training. The input
signal is passed forward through the input layer to the hidden layer, and subsequently
the neurons in the hidden layer are computationally processed and then passed forward
to the output layer, which is a forward transmission process in which the output of the
MLP neural network depends only on the current input and not on past or future inputs;
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thus, the MLP neural network is also known as a multi-layer feed-forward neural network.
Among many neural network architectures, MLP neural networks are simple in structure,
easy to implement, and have good fault tolerance, robustness, and excellent nonlinear
mapping capability (Figure 5).

Figure 5. Topology of MLP neural network structure.

2.5. Basic Principle of Wavelet Transform

In the process of time-series data acquisition, there will be some noise in the time series
data due to observation error, systematic error, or other reasons, and the noise will seriously
affect the data processing results. Therefore, in the data preprocessing stage, different
methods should be selected to denoise the data according to the type of noise. Common
denoising methods include the Fourier transform [67], the wavelet transform [68], etc.

The Fourier transform is a widely used analysis method in the field of signal processing.
It converts a time domain signal into a frequency domain signal. Its basic idea is to
decompose the signal into the superposition of a series of continuous sine waves with
different frequencies. However, Fourier transform also has many disadvantages. The
traditional Fourier transform can only realize the overall transformation between the signal
time domain and the frequency domain and cannot distinguish time-domain information.
However, Fourier transform is only suitable for stable signals; most signals have variability,
which significantly limits the application of Fourier transform.

The basic idea of wavelet transform is to adaptively adjust the time-frequency window
according to the signal, decomposing the original signal into a series of sub-band signals
with different spatial resolutions, frequency characteristics, and directional characteristics
after stretching and translating. These sub-bands have good local characteristics in both the
time and frequency domains and can therefore be used to represent the local characteristics
of the original signal, thus enabling the localization of the signal in time and frequency.
This method can overcome the limitations of Fourier analysis in dealing with non-smooth
signals and complex images.

The mathematical definition of wavelet is as follows: let ψ ∈ L2(R) ∩ L(R), which

is almost always 0 on R and satisfies Cψ =
∫ +∞
−∞

∣∣∣∣∣
Λ

ψ(ω)

∣∣∣∣∣
|ω| dω, then ψ is the wavelet, where

Λ
ψ(ω) = 1√

2π

+∞∫
−∞

ψ(t)e−irdt is the Fourier transform of ψ. Wavelet transform is one order of

magnitude faster than fast Fourier transform. When the signal length is M, the computa-
tional complexity of Fourier transform is Of = Mlog2M and that of wavelet transform is
OM = M.

Wavelet transform can be divided into continuous wavelet transform (CWT) and
discrete wavelet transform (DWT).

The formula of continuous wavelet transform is:

Wf (a, b) =
1√
a

∫ +∞

−∞
f (t)ψ(

t − b
a

)dt (2)

118



Water 2022, 14, 610

where Wf(a,b) is the continuous wavelet coefficient, a is the scaling factor, b is the translation

factor, ψ( t−b
a ) is the conjugate function of ψ( t−b

a ), and f (t) represents the original data.
The scale of wavelet transform is controlled by adjusting the values of a and b to realize the
adaptive time-frequency signal analysis.

The discrete wavelet transform formula is:

Wf (j, k) =
∫ +∞

−∞
f (t)

ψ( t
a0

j − kb0)√
a0

j
dt (3)

where Wf(j,k) is the discrete wavelet coefficient and f (t) is the original data.
The dbn wavelet is the most common wavelet transform and is mainly used in discrete

wavelet transform. For wavelets of a finite length, when applied to fast wavelet transform,
there will be a sequence composed of two real numbers. One is the coefficient of the high-
pass filter, which is called the wavelet filter, and the other is the coefficient of the low-pass
filter, which is called the adjustment filter. Firstly, the wavelet transform decomposes the
original data into the low-frequency wavelet coefficient cAn and high-frequency wavelet
coefficient cD1, cD2, . . . , cDn by using the low-pass filter and high-pass filter, respectively.
Among them, the low-frequency wavelet coefficient can be further decomposed and iterated
several times until the maximum decomposition time is reached. Finally, the decomposed
wavelet low-frequency signal and high-frequency signal are added to realize wavelet
reconstruction. The formula is:

f (t) = cAnl(ψik(t)) +
n

∑
i=1

cDnh(ψik(t)) (4)

where f (t) is the restored signal; l(ψik(t)) and h(ψik(t)) are the low-pass filter and high pass
filter, respectively; cAn is low-frequency wavelet coefficient; and cDn is high-frequency
wavelet coefficient.

The calculation steps of wavelet transform are as follows:
Step 1. Elect the wavelet function and align it with the starting point of the analysis signal.
Step 2. Calculate the approximation degree between the signal to be analyzed and

the wavelet function at this time; that is, the wavelet transform’s coefficient C. The larger
the coefficient C, If the coefficient C is larger, the more similar the current signal is to the
waveform of the selected wavelet function.

Step 3. Move the wavelet function to the right one-unit time along the time axis, and
then repeat Steps 1 and 2 to calculate the transformation coefficient C until it covers the
whole signal length.

Step 4. Scale the selected wavelet function by one unit, and then repeat Steps 1–4.
Step 5. Repeat Steps 1–4 for all expansion scales.
The selection of the mother wavelet type and decomposition level are the two most

important problems in wavelet analysis. In this study, the db5 wavelet was used to
decompose the experimental sequence for the following two reasons:

(1) The db wavelets are more suitable for relatively stable sequences;
(2) db5 is also one of the most commonly used wavelets in the db wavelet family, which

is suitable for smoother datasets.

Because Jinjiang water quality data has obvious smoothing characteristics, the db5
wavelet analysis was the most suitable method for this study.

The maximum decomposition levels of wavelet can be calculated by the following
Equation (5):

L = ln(nd/(lw − 1)) (5)

where lw is the length of the wavelet decomposition low-pass filter and nd is the data length.
In this study, lw = 23 and nd = 443 were selected, and L was calculated such that the

number of wavelet decomposition layers was 3.
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2.6. Basic Principle of LSTM

RNN was first proposed in the 1980s. As a popular algorithm in deep learning,
compared with deep learning network (DNN), its circular network structure allows it to
take full advantage of the sequence information in the sequence data itself. Therefore, it
has many advantages in dealing with time series. Moreover, the ability to correct errors
is achieved through back-propagation and a gradient descent algorithm. However, there
are also many problems: as the time series grows, researchers have found that RNNs are
weak for long time series, which means that the long-term memory of RNNs is poor. At the
same time, as the length of the sequence increases, the depth of the model increases, and
the problem of gradient disappearance and gradient explosion cannot be avoided when
calculating the gradient. Therefore, Hochreiter et al. [69] proposed LSTM. The structure of
LSTM is shown in Figure 6 [70].

 

Figure 6. Long short-term memory network topology diagram.

The long-short term memory network is different from the traditional recurrent neural
network in rewriting memory at each time step. LSTM will save the important features
it has learned as long-term memory, and selectively retain, update, or forget the saved
long-term memory according to the learning. However, the features with small weight in
multiple iterations will be regarded as short-term memory and eventually forgotten by the
network. This mechanism allows the important feature information to be transmitted all
the time with the iteration so that the network has better performance in the classification
task with a long-time dependence of samples. LSTM has been widely applied in flood
sensitivity prediction [71], the prediction of key parameters of nuclear power plants [72],
wind speed prediction [73,74], financial price trends [75], language processing [76], etc. In
recent years, the LSTM model has made a series of improvements on the basis of RNN
neurons. These include the addition of a transmission unit state in the RNN hidden layer
controlled by three gating units: the forgetting gate, input gate, and output gate. Forgetting
gates are used to control the forgetting of information and the extent to which it is retained.
The calculation formula is:

Ft = σ(WF·[ht−1, Xt] + bF) (6)

where Xt is the current input information, ht−1 is the data information in the previous
hidden state, and the range of Ft is 0 to 1. When Ft = 1, it means that the information is com-
pletely retained, and when Ft = 0, it means that the information is completely abandoned.

The input gate is used to control how much input information at the current time is
saved to the unit state. The expression is written as:

It = σ(Wi·[ht−1, xt] + bi) (7)

where Wi is the weight matrix, bi is the offset term, and It is the input layer vector value.
The input unit status Ct is represented as:

Ct = Fi 
 Ct−1 + It 
 C̃t (8)
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C̃t = tanh(Wc·[ht−1, xt] + bc) (9)

where Wc is the weight matrix and bc is the offset term.
The output calculation formula of the output gate Ot is shown as:

Ot = σ(Wo·[ht−1, Xt] + bo) (10)

where bo is the offset value, Wo is the judgment matrix, and ht−1 is the hidden layer state at
time (t−1).

ht = Ot 
 tanh(Ct) (11)

In Equation (11), 
 is the Hadamard product and ht is the hidden layer state at time t.

2.7. Evaluation Index

In this study, mean square error (MSE), root mean square error (RMSE), mean absolute
error (MAE), and mean percentage error (MAPE) were selected as the basis for judging the
prediction effect of the model. The calculation formulae are as follows:

MSE =
1
N

N

∑
t=1

(yt − yt)
2 (12)

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − yt)
2 (13)

MAE =
1
N

N

∑
t=1

|(yt − yt)| (14)

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − yt

yt

∣∣∣∣ (15)

where N represents the total data volume, yt represents the real value, and yt represents
the predicted value.

MAE is used to measure the mean absolute error between the predicted and actual
values, RMSE is used to measure the deviation between the predicted and actual values
(which is sensitive to outliers), and MAPE is used to measure the average relative error
between the predicted and actual values.

3. Results

3.1. Artificial Neural Network Interpolation

In this study, we used MATLAB to construct a multilayer perceptron neural network
to fill in the missing data in each dataset. The parameters of MLP were set as follows: the
number of implied layers was two, the optimization algorithm was the conjugate scalar
gradient algorithm, and the minimum relative change in the training error rate was 0.001.
The artificial neural network training images for the DO, CODMn, and NH3-N datasets are
shown in the Figure 7.

As shown in Figure 7, the coefficient of determination was 0.99488 for the DO dataset,
0.99317 for the CODMn dataset, and 0.99525 for the NH3-N dataset. It is clear that the fit of
each dataset was good. Therefore, the model could be used to estimate the missing values
in the DO, CODMn, and NH3-N datasets.

3.2. Results of Wavelet Transform Model

Figure 8 shows the original images of DO, CODMn, TP and NH3-N and the images
after db5 wavelet decomposition.

However, after summing the data signals of each frequency band after wavelet recon-
struction into the original signal, there is a certain error between this reduced data and
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the original data that is determined by the characteristics of the computer and is an error
that cannot be eliminated. If this error value is too large, the experimental results will not
be credible. Therefore, in this research, in order to verify the experimental accuracy of
the model, the difference between the reduced data and the original data after wavelet
reconstruction of the four indicators in the experiment was calculated. The errors are shown
in Table 4.

Figure 7. Residual images of ANN training on DO, CODMn, and NH3-N datasets.

  

 

Figure 8. Original images and three-layer decomposition images of DO, CODMn, TP, and
NH3-N datasets.

From Table 4, it can be found that the error of CODMn was the largest (6.75 × 10−16)
and the error of DO was the smallest (9.1 × 10−16). An error value in this range interval has
a negligible effect on the experimental results, which proves the validity of the experiment.

3.3. Model Result Output

After wavelet transform of DO, CODMn, TP, and NH3-N data, the decomposed low-
frequency wavelet coefficient cA and high-frequency wavelet coefficient cD were used as
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the input of LSTM. Meanwhile, in order to verify that the ANN-WT-LSTM model had a
higher prediction accuracy than other models, we selected ANN-LSTM, ARIMA, and NAR
neural network models for comparison. The parameter settings of the other models are
shown in Table 5.

Table 4. Wavelet reconstruction error table for each parameter.

Parameters Error Value

DO 9.1 × 10−16

CODMn 6.75 × 10−16

NH3-N 8.13 × 10−16

TP 8.35 × 10−16

Table 5. Parameter settings of ANN-WT-LSTM and traditional LSTM models.

Model Parameters ANN-WT-LSTM ANN-LSTM

Data Type cA cD Data Interpolated by
Artificial Neural Network

Number of hidden layer units a 300 300 300

Learning rate (%) b 0.003 0.003 0.001

Forgetting rate (%) c 0.2 0.2 0.2

Gradient threshold d 1 1 1

Number of iterations e 250 250 250

Batch size f 32 32 32
a NAR neural network parameter settings: autoregressive coefficient lag = 3, number of hidden layer units = 300.
b Set to reduce the learning rate by multiplying by a factor of 0.2 after 125 rounds of training. c BPNN parameter
settings: number of hidden layer units = 300 and number of iterations = 250; d SSA-LSTM parameters: dim is
4, the range of learning rate is (0.001,1), the range of the maximum number of iterations is (10,500), number of
sparrows = 5, warning value ST = 0.6, proportion of discoverers PD = 0.6, proportion of sparrows aware of danger
SD = 0.2, and population size = 5; e ISSA-BPNN: based on the fact that the sparrow search algorithm tends to fall
into a local optimum, a tent mapping was used to initialize the population for the sparrow search algorithm. f The
parameters were set as follows: lower boundary (lb) of the weight threshold is −5 and upper boundary (ub) of
the weight queue is 5.

The results of the ANN-WT-LSTM model are shown in Figures 9–12.

Figure 9. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and
low-frequency parts of the Do verification set.

123



Water 2022, 14, 610

 

Figure 10. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and
low-frequency parts of the CODMN verification set.

Figure 11. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and
low-frequency parts of the TP verification set.

Figure 12. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and
low-frequency parts of the NH3-N verification set.

The prediction error images of the ANN-LSTM model on the test set data and the
comparisons with the original images are shown in Figures 13–16.

3.4. Comparison with Other Models

We aimed to compare the prediction results of the ANN-WT-LSTM model with other
existing models, compare the prediction accuracy of the different models, and analyze the
prediction efficiency of the models. The comparison results of the model predictions are
shown in Table 6.
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Figure 13. Prediction results of the ANN-LSTM model on the DO test set and comparison with the
original image.

 

Figure 14. Prediction results of the ANN-LSTM model on the CODMn test set and comparison with
the original image.

Figure 15. Prediction results of the ANN-LSTM model on the TP test set and comparison with the
original image.

 

Figure 16. Prediction results of the ANN-LSTM model on the NH3-N test set and comparison with
the original image.
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Table 6. Analysis and comparison of ANN-WT-LSTM model and other models on dataset.

Model

Parameter
DO CODMn TP NH3-N

ANN-W-
LSTM

MSE 8.3 × 10−25 0.0006 0.00068 0.006

RMSE 9.13 × 10−13 0.024 0.026 0.0776

MAPE 5.65 × 10−13 0.021 0.243 0.0232

MAE 4.39 × 10−12 0.014 0.014 0.011

ANN-LSTM

MSE 2.536 0.539 0.0009 0.03

RMSE 1.5927 0.7341 0.03 0.232

MAPE 0.106 0.178 0.355 2.88

MAE 0.94 0.52 0.02 0.181

NAR

MSE 2.2889 1.1353 0.0012 1.945

RMSE 1.5129 1.0655 0.0345 1.395

MAPE 0.1489 0.2593 0.563 13.639

MAE 1.2417 0.813 0.026 1.149

ARIMA

MSE 3.1659 0.9277 0.0013 0.0297

RMSE 1.7793 0.9632 0.0359 0.1723

MAPE 0.1711 0.1959 0.6434 2.1502

MAE 1.4999 0.7009 0.0306 0.1601

MLPNN

MSE 2.7947 0.728 0.0011 0.015

RMSE 1.67 0.853 0.033 0.122

MAPE 1.403 0.698 0.29 0.11

MAE 0.159 0.267 0.589 1.27

CNN-LSTM

MSE 2.35 0.25 0.018 0.008

RMSE 1.53 0.5 0.134 0.09

MAPE 0.015 0.15 0.96 0.28

MAE 1.17 0.4 0.11 0.02

BPNN

MSE 0.27 0.126 0.2 0.07

RMSE 0.52 0.35 0.45 0.26

MAPE 3.87 1.59 1.22 1.11

MAE 0.42 0.29 0.41 0.22

SSA-LSTM

MSE 1.4 0.27 0.02 0;009

RMSE 1.18 0.52 0.14 0.095

MAPE 0.14 0.16 0.12 0.44

MAE 1.16 0.42 0.11 0.024

ISSA-BPNN

MSE 0.14 0.062 0.12 0.05

RMSE 0.37 0.25 0.35 0.22

MAPE 5.13 1.3 0.92 2

MAE 0.29 0.2 0.31 0.18

SSA-BPNN

MSE 0.15 0.063 0.13 0.1

RMSE 0.38 0.251 0.36 0.32

MAPE 1.73 0.77 0.98 1.86

MAE 0.29 0.2 0.32 0.19
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Table 6. Cont.

Model

Parameter
DO CODMn TP NH3-N

DWT-CNN-
LSTM

MSE 0.24 0.04 0.002 0.03

RMSE 0.49 0.2 0.045 0.173

MAPE 0.05 0.05 0.5 1.62

MAE 0.39 0.15 0.043 0.13

EMD-LSTM

MSE 1.67 0.07 0.035 0.022

RMSE 1.3 0.26 0.19 0.15

MAPE 0.14 0.06 0.62 1.96

MAE 1.1 0.2 0.13 0.12

EEMD-
LSTM

MSE 1.12 0.07 0.037 0.016

RMSE 1.06 0.26 0.192 0.126

MAPE 0.11 0.07 0.62 1.64

MAE 0.89 0.20 0.13 0.105

4. Discussion

Water pollution is one of the biggest important environmental problems facing mankind,
and the harm caused by it is largely due to the lack of prediction and early warning and
emergency disposal capabilities. Therefore, the construction of an effective monitoring
and early warning system to achieve intelligent decision making and the management
of water quality is a key scientific and technological issue that needs to be addressed
urgently. However, because water quality indicators usually have the characteristics of
nonlinearity and non-smoothness, conventional statistical models often have difficulties
making accurate predictions [77]. In recent years, there has been a rapid development of
deep learning technology and wireless sensing technology. The model proposed in this
study can be applied in the following aspects:

(1) Existing monitoring systems cannot achieve online high-frequency monitoring of
all important pollutants, so the model proposed in this study can be used for soft
computing to improve the timeliness, coverage and frequency of online monitoring
and to form an effective early warning system for water quality management.

(2) According to real-time monitoring data for water quality change trend prediction and
water quality risk judgment. When the prediction results show that the water quality
situation has a deteriorating trend, the relevant management departments can make
the corresponding measures of pollution prevention and control at the first time, so as
to minimize the water quality losses caused by pollution incidents.

From the above results and error images, it can be seen that the accuracy of the ANN-
WT-LSTM model prediction on the DO dataset was substantially improved compared
with the MLPNN model, ANN-LSTM model, NAR neural network model, CNN-LSTM
model, SSA-LSTM, SSA-BPNN model, and ISSA-BPNN model. For the CODMn dataset,
the MAPE of the ANN-WT-LSTM model was 0.021, which was 0.157, 0.2383, 0.1749, 0.677,
0.129, 1.569, 0.139, 1.279, 0.749, 0.029, and 0.039 lower compared to the ANN-LSTM model,
NAR neural network model, ARIMA model, MLPNN model, CNN-LSTM model, BPNN
model, SSA-LSTM model, ISSA-BPNN model, SSA-BPNN model, DWT-CNN-LSTM model,
and EMD-LSTM model, respectively. For the TP dataset, the RMSE of the ANN-WT-LSTM
model was 0.026, which decreased by 0.004, 0.0085, 0.0099, 0.007, 0.108, 0.424, 0.114, 0.324,
0.334, 0.019, and 0.164, respectively, compared to the other models. For the NH3-N dataset,
the MSE of the ANN-WT-LSTM model was 0.006, which decreased by 0.024, 1.939, 0.0237,
0.009, 0.002, 0.064, 0.003, 0.044, 0.094, 0.024, and 0.016, respectively, when compared with
the other models.
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It is known that water quality prediction methods are divided into two main cate-
gories: mechanistic and non-mechanistic predictions. Mechanistic water quality models
are derived using system structure data based on constraints in the underlying physical,
biological, and chemical processes of the water environment system. A variety of water
quality models have been developed, such as QUAL, WASP, MIKE, EFDC, SWAT, SMS,
BASINS, etc., and have been widely used. However, these mechanistic water quality
models are very complex and require a large amount of basic data information (such as
simulation parameters, source and sink terms, etc.) to establish and solve the water quality
control equations. This makes the complexity of building water quality models high and
the parameters more difficult to determine, leading to limitations in the application of the
models in many water bodies [78,79]. Moreover, for many aquatic environmental systems,
the detailed mechanisms are not fully explained, and the evolutionary development of
water quality is influenced and disturbed by many variables, such as physics, chemistry,
biology, meteorology, and hydraulics, with strong non-linear characteristics. The existing
water quality prediction models based on mathematical expressions are unable to take
the influence of these factors into account, and it is difficult to accurately describe the
migration and dispersion of the water environment using mechanistic modelling; hence,
the predictions made on this basis have a “natural” bias. Furthermore, typical basin hy-
drological models, such as SWAT, HSPF and MIKE, have different scenarios that are able
to simulate the hydrological processes and the evolution of point and non-point sources
of pollution in large scale basins over long periods of time; however, they are not suitable
for predicting water quality in larger water bodies, such as lakes and reservoirs. Water
quality models such as CE-QUAL-W2, WASP, and EPD-RIV1 address the hydrodynamics
and water quality of larger water bodies, but not the hydrological problems that occur in
the basin.

In contrast, the ANN-WT-LSTM model proposed in this paper is based on the idea
of neural networks to analyze historical water quality data to predict future water qual-
ity changes, and is one of the non-mechanical water quality prediction methods. Non-
mechanical forecasting methods use the idea of statistics, through the water quality related
to the historical time series data mining analysis, to find its data behind the law of change,
and then deduce the trend of water quality changes. Compared with the mechanistic water
quality prediction methods, the advantages are obvious. First of all, the modelling cost
is lower as the modelling data requirements are not high. Therefore, the method can be
applied to water quality prediction in areas where a large amount of hydrological data is
missing. Secondly, the model prediction reliability is good, because the ANN-WT-LSTM
model has good applicability to the analysis and prediction of non-linear problems in
uncertain environment; thus, the water quality prediction accuracy has been improved
a great deal compared with previous models (Table 6). In addition, the ANN-WT-LSTM
model has good applicability. The model itself is a “black box” model analysis, which does
not need the hydrological data of pollution sources for analysis. Whether the study area is
the river basin environment or lakes, reservoirs or other large water bodies, it has wide
applicability and universality. In summary, our view is that the ANN-WT-LSTM model
proposed in this paper is not the only choice in water quality prediction models, but it still
has great potential for application compared to other competing methods (including 1D,
2D, and 3D numerical models) due to its reliability, efficiency, and accuracy.

The ANN-DWT-LSTM model proposed in this study still has several aspects that can
be improved.

(1) The model proposed in this paper only considers the historical data of water quality
indicators in the Jinjiang River basin, while changes in the external environment have
a greater impact on river water quality, which can interfere with the neural network
training process, thus affecting the accuracy of the model. There is still room for
further research into how to reduce the interference of external factors or consider the
influence of water quality factors in the model.
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(2) In this study, LSTM was used to predict water quality; however, there are numerous
improved versions of the LSTM model, including the Bi-LSTM (bi-directional long
short-term memory network) and the adaptive neuro-fuzzy inference system (ANFIS).
These methods can be used to compare with the model proposed in this study.

Based on the powerful parallel data processing capability and non-linear processing
ability of neural networks, we believe that the model proposed in this study can be com-
bined with big data technologies, such as IoT, which can process large-scale data quickly
and accurately and can meet the requirements of multi-sensor data fusion well.

5. Conclusions

To improve the accuracy of water quality prediction data, this study proposed the
ANN-WT-LSTM model based on an artificial neural network, wavelet transform, and long
short-term memory network, using the water quality data of the Jinjiang River basin in
China as the research object for prediction analysis. For missing water quality data caused
by instrument failure, this study used an artificial neural network to fill in the missing
values based on the time-series information of water quality data. Then, we used wavelet
transform to decompose and reconstruct the water quality time series, in order to remove
the impact of short-term random disturbance noise, improve the prediction accuracy of the
model on out-of-sample data, and the ability to predict future dynamic trends, so that it
can more effectively predict the short-term as well as long-term dynamic trends in water
quality time-series data. Subsequently, compared with the ANN-LSTM model and the NAR
neural network model, the results show that the ANN-WT-LSTM proposed in this study is
better than other models in all evaluation indexes, and the model effectively improves the
accuracy of water quality prediction, which is significant for water environment protection.
The study not only provides vital data support for water quality safety management
decisions, but also has important theoretical and practical significance for safeguarding the
sustainable development of the riverine areas and water environmental protection in the
reservoir area.

This study predicts the possible future situation of reservoir water quality through
the study of time series. However, due to the limitation of monitoring conditions, it can
only predict the water quality at one point of the reservoir, which cannot reflect the overall
spatial change of water quality. Therefore, in order to establish a more perfect reservoir
early warning system, we suggest that water quality monitoring points be set up in many
places to monitor the water quality in different directions of the reservoir to combine water
quality prediction with GIS technology. In this way, we not only study the development
trend of water quality in time, but also study the change of water quality in space, so as to
combine time and space prediction and lay a good foundation for establishing a perfect
water quality early warning system.
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Abstract: The classification of stream waters using parameters such as fecal coliforms into the classes
of body contact and recreation, fishing and boating, domestic utilization, and danger itself is a
significant practical problem of water quality prediction worldwide. Various statistical and causal
approaches are used routinely to solve the problem from a causal modeling perspective. However, a
transparent process in the form of Decision Trees is used to shed more light on the structure of input
variables such as climate and land use in predicting the stream water quality in the current paper.
The Decision Tree algorithms such as classification and regression tree (CART), iterative dichotomiser
(ID3), random forest (RF), and ensemble methods such as bagging and boosting are applied to predict
and classify the unknown stream water quality behavior from the input variables. The variants of
bagging and boosting have also been looked at for more effective modeling results. Although the
Random Forest, Gradient Boosting, and Extremely Randomized Tree models have been found to
yield consistent classification results, DTs with Adaptive Boosting and Bagging gave the best testing
accuracies out of all the attempted modeling approaches for the classification of Fecal Coliforms in
the Upper Green River watershed, Kentucky, USA. Separately, a discussion of the Decision Support
System (DSS) that uses Decision Tree Classifier (DTC) is provided.

Keywords: stream water quality; CART; ID3; random forest; bagging; boosting; extremely random
trees; Gradient Boosting; land use factor; Decision Support System

1. Introduction

Water is a life-sustaining element that determines the establishment and survival
of civilizations. The availability of innocuous and valuable quality water for household
and industrial activities is essential for economic prosperity. Organizations worldwide,
such as the World Health Organization (WHO), have specified quality standards for each
natural source of this vital element. In the United States of America, the United States
Environmental Protection Agency (USEPA) establishes standards for water quality and
undertakes quality control measures. Due to the sporadic nature of rainfall globally, several
countries are dependent on their rivers to be a primary source of water. Massive dams
are constructed, and the water held is used for variegated purposes, including irrigation,
electricity generation, domestic activities, etc. Over the past decade, industrial and human
fecal waste deposition into the rivers, owing to burgeoning urbanization, had substantially
exacerbated water contamination levels. Human interferences in nature have caused
imbalances in nature, which, if not regulated, are deleterious and threaten humankind’s
very existence. Therefore, it is essential to monitor the damages that we have caused.

Water quality assessment is an integral part of environmental engineering. It includes
the evaluation of the chemical, biological, and physical characteristics of water. Factors
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that determine water quality are (i) Physical: temperature, turbidity, suspended solids,
color, taste, (ii) Chemical: pH, dissolved oxygen, Total Dissolved Solids (TDS), alkalinity,
hardness, and (iii) Biological/Microbiological: Pathogens, coliforms. Fecal coliform is a
bacterium that originates from the intestines of humans and other warm-blooded animals.
The presence of this bacteria itself in a water body poses no direct harm, but it acts as an
indicator of the existence of pathogens that may be harmful. Hence, tests and experiments
are performed to measure fecal coliform concentration, which helps us determine the water
sample’s quality. Water quality determination is a tedious, lab-intensive process.

Moreover, current monitoring methods cannot provide real-time results because of
testing time requirements. There is a need for practical, cost, and labor-efficient methods to
indicate bacterial concentration on a real-time basis. The fecal coliform presence is mea-
sured by the number of colonies per 100 mL of sampled water. In general, the sources of
fecal coliform loads in freshwater systems are due to wastewater treatment plant effluents,
failed septic systems, human and animal manure [1]. High loads of bacterial contamination
are found in rural or agricultural watersheds and urban watersheds streams. The farm
cattle waste and failed septic systems of rural watersheds are replaced by domestic pets
manure and failed sanitary sewers in urban watersheds. The current USEPA stipulations
are as follows for four classes of freshwater systems: (i) Less than one colony/100 mL
for drinking water standards, (ii) fewer than 200 colonies/100 mL for body contact recre-
ation, (iii) fewer than 1000 colonies/100 mL for fishing and boating, and (iv) fewer than
2000 colonies/100 mL for domestic water supply. The fecal coliform present in the human
and animal waste goes down the drain in houses and businesses from septic systems,
overland plane areas through illegal and leaky sanitary sewer pipes to freshwater streams
and rivers. It gets transported within the streams due to advection, diffusion, adsorption,
and dispersion further down to the outlets. Due to the high affinity of bacteria to the soil,
high sediment loads also contain high concentrations or loads of bacteria. High runoff
events or storm runoff also known to contain higher levels of bacterial concentrations
for the above reasons. The management actions usually include steps such as (i) routine
maintenance of septic tanks, (ii) repair of broken field lines, (iii) elimination of straight
pipes and failing septic systems, and (iv) isolation of cattle from streams [1].

In recent years, the Artificial Intelligence has been extensively used in the field of envi-
ronmental engineering across several applications. Researchers have implemented various
Machine Learning algorithms for water quality assessment.D’Agostino [2], Gaus [3], and
Arslan [4] used Geographical Information System (GIS) to assess water quality parameters.
Ahn & Chon [5] used thematic maps of pH, electrical conductivity, nitrate, and sulfate to
create maps to utilize water for drinking purposes. Bae [6] used Classification and Regres-
sion Trees (CART) for prediction of indicator bacterial concentration in coastal Californian
waters. Dissolved oxygen was found to be the most important parameter for the prediction
of total and fecal coliforms, while the turbidity was found to be important for enterococci
(ENT) using CART decision tree analysis. The pH, temperature, and streamflow were
found to be less important for prediction of indicator bacteria. It was possible to predict the
indicator bacterial concentrations in real time using CART, saving huge monitoring costs
for the state of California. Liao & Sun [7] analyzed the water quality of Chao Lake in China
using Improved Decision Tree Learning (IDTL) models that use the feedforward neural net-
work model for preclassification. This model was found to be comparably successful with
that of pure neural network models or pure decision tree models such as C4.5. This model
was recommended for practitioners as it is faster and uses fewer decision rules. Nikoo [8]
developed an integrated water quantity and quality model using the M5P decision tree
algorithm for Total Dissolved Solids (TDS) as the water quality indicator. A comparison
was made between optimization, support vector regression (SVR), and M5P models. It
was found that the M5P model yields explicit relationships between inputs and output
such as TDS, which are useful for a decision maker or a practitioner. Azam [9] classified
the water quality data using Decision Trees (DTs), Logistic Regression (LR), and Linear
Discriminant Analysis (LDA) for two cities. Maier and Keller [10] developed the Random
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Forest (RF), Multivariate Adaptive Regression Splines (MARS), Extreme Gradient Boosting
(XGB) regression models in conjunction with hyperspectral data to estimate water quality
parameters for inland waters. Jerves Cobo [11] used Decision Tree models for assessment of
microbial pollution in rivers by studying the presence of macroinvertebrates as indicators.
This was needed to set up the pathogen pollution standards and to review the aquatic
ecosystem health. Geetha Jenifel and Jemila Rose [12] have used recursive partitioning
with decision trees and regression trees to predict water quality parameters and have found
better results than the other models such as linear and support vector machine (SVM) mod-
els. They have found the decision tree models to be more accurate, practical, reasonable,
and acceptable. Ho [13] used the ID3 decision tree model to predict the Water Quality
Index (WQI) class for one of Malaysia’s most polluted rivers. Sepahvand [14] compared
the performances of the M5P model tree and its bagging, Random Forest (RF), and group
method for data handling (GMDH) in the estimation of sodium absorption ratio (SAR).
Out of all the models they have tried out, bagging M5P model was found to be the most
accurate in estimating SAR. This was based on the indices such as correlation coefficient
(CC), root mean square error (RMSE), and mean absolute error (MAE). The uncertainty
analysis also revealed the accuracy of bagging M5P model compared to other models.
Lu and Ma [15] used various hybrid Decision Tree methods and ensemble techniques
such as Random Forest (RF), CEEMDAN, XGBoost, LSSVM, RBFNN, LSTM, etc and their
combinations for the prediction of water quality parameters of the Tualatin river of Oregon,
USA. Shin [16] predicted cholorophyll-a concentrations in the Nakdong River, Korea using
various machine learning (ML) models and found the best results using recurrent neural
networks (RNNs). The RNNs performed best when time-lagged memory terms are built
into the model for predictions. Mosavi [17] compared the performance of two ensemble
decision tree models- boosted regression trees (BRT) and random forest (RF) to predict
hardness of groundwater quality. More recently, Naloufi [18] used six machine learning
(ML) models, including Decision Trees, to predict E. Coli concentrations in Marne River in
France. They found the Random Forest model to be the most accurate compared to other
models. Using the results, they were able to come up with the best ML model for sampling
optimization. The other recent discussions and applications of Decision Trees in the context
of water quality modeling in rivers include that of studies [19–27].

In light of the above literature, the objectives of the current study are: (i) to study
the potential and applicability of various Decision Tree (DTs) algorithms in prediction of
Fecal Coliform from causal parameters such as climate (precipitation, and temperature),
and land use parameters, (ii) to apply CART, ID3, RF and ensemble methods such as
bagging and boosting specifically, and (iii) to suggest a Decision Support System (DSS)
based on Decision Tree Classifier (DTC) for water quality management. The paper has
been organized as follows. Section 2 describes the study area and the data considered
for the present work. Section 3 details the methodology including GIS land use analysis,
briefing of Decision Trees for classification, measures of attribute selection and their relation
with the Decision Trees, and ensemble methods of bagging and boosting. The results are
provided and discussed in the next Section 4. In the same section, a detailed discussion of
Decision Tree Classifier based Decision Support System (DTCDSS) is provided. In the last
section, i.e., Section 5, a concise summary of findings is provided.

2. Description of Study Area and Data

2.1. Study Area

The watershed under study is situated in the lower southwestern part of Kentucky in
the USA. The watershed is called the Upper Green River watershed as the main stem of
Green River, and its tributaries flow through it. The watershed consists of Russell, Adair,
Taylor, Metcalfe, Green, Barren, Hart, and Edmonson counties. Although the watershed
contains various land uses such as deciduous, evergreen, mixed forest, transitional, low
and high intensity residential, commercial, industrial/transportation, open water, pasture
or hay, emergent herbaceous wetlands, row crops, woody wetlands, they can be primarily
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grouped into three types of land using: urban, forest, and agricultural. The Green River
flows through Edmonson, Hart, Green, and Taylor counties and joins the Ohio river
downstream of the watershed. Extensive underground karst formations and springs exist
between the tributaries of the main stem Green River. The watershed primarily consists
of flat-lying limestones, sandstones, and shales forming the karst topography that passes
all the surface water through caves and smaller underground passages below the ground
surface [28]. The watershed is rated as the fourth most crucial watershed in the United
States by the Nature Conservancy and the Natural Heritage Program. It is also the most
critical watershed in Kentucky to protect fish and mussel species.

In this watershed, many rural households are not connected to wastewater treatment
plants, and the untreated wastewater is directly discharged to streams and creeks, onto
overland plains and soils, or into empty spaces of underground. This form of release is
known as “straight pipe” discharge. Due to such discharges and failed septic systems,
increased fecal coliform bacteria concentrations are found in various portions of the water-
shed and have essentially impacted the water quality of the Upper Green River basin [28].
The increased concentration of bacteria is so high that the streams are unsafe for fishing,
swimming, and body contact. The storage and carefully timed application of animal ma-
nure as a fertilizer has been shown to reduce bacteria entering ground water and reduce
the need for expensive chemical fertilizers.

2.2. Data

The minimum and maximum elevation levels of the watershed are at 123.14 m and
497.74 m. The minimum and maximum temperatures in a year are around 10.3 ◦C and
28.9 ◦C. The average annual precipitation is found to vary between 1041 mm to 1346 mm.
The stream water quality sampling stations are located between the latitudes 36.94◦ and
37.43◦ and longitudes −86.04◦ and −85.16◦. The water quality data is obtained by measur-
ing samples collected from nearly 42 locations along the Green river monthly from May
2002 to October 2002. The stream network with sampling stations is shown in Figure 1, and
the land use map of the watershed is shown in Figure 2. The climate parameters precipita-
tion and temperature are obtained from Kentucky Climate Center. The two-day cumulative
precipitation at each sampling location is computed by inverse distance weighted average
procedure. The two-day cumulative precipitation, temperature at each sampling station
are used along with the land use as inputs into the Decision Tree Classifier model. The
six-month period includes a few rainy months and a few non-rainy months.

Figure 1. The stream networkand the sampling stations in the Upper Green River watershed.
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Figure 2. Land Use Map of Upper Green River Watershed.

3. Methodology

3.1. GIS Landuse Analysis

The land use factors developed using GIS analysis [29] essentially indicate the per-
centage contribution of each land use to the total catchment area or watershed area. The
three dominant land use factors are ULUF (urban land use factor), FLUF (forest land use
factor), and ALUF (agricultural land use factor). They are given by

ULUF = sin−1
√

urban area/ watershed area (1)

FLUF = sin−1
√

f orest area/ watershed area (2)

ALUF = sin−1
√

agricultural area/ watershed area (3)

Moreover, the above definitions have several advantages as compared to the land uses
by simple fractions. The arcsine transformation helps in making the land use distribution
near-normal or Gaussian. This transformation gives the values in radians proportional to
the angle subtended at the center on a pie chart of land uses [25]. The transformation is
known to stabilize the variance and scales the proportional data [30–33].

3.2. Decision Trees

The decision tree algorithm falls in the category of supervised learning methods [34].
The goal of a decision tree algorithm is to use the appropriate property of the input data
(Information Gain, Gain Ratio, or Gini Index) depending on the type of decision tree
selected with learning rules to cause splits in the input parameters and give output values
as close to the target as possible. Various decision tree models have been devised, which
differ in their data splitting methods. Each subsequent model is an improvement over the
previous one. A decision tree classifies the input data based on these rules in a top-down
fashion. The top node that is assigned all the data is called a root node. The leaf node
contains data points that belong to one class or have one specific value, which demarcates
the end of a decision tree branch. Further division of the data according to the rules,
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as mentioned earlier will not be possible. Suppose a node contains heterogeneous data
belonging to two or more classes or has two different output values. In that case, that
node can be further split to classify data in their respective categories. Such nodes that can
be further split are called decision nodes. It is the decision node that takes decisions and
propagates the tree to give relevant outputs.

Tree-structured regression methods form a hierarchical structure with the input data
being split at the nodes creating smaller subsets till maximum homogeneity is obtained.
For example, Y can first be split into {Y | y1 < 35} and {Y | y1 ≥ 35} engender two
nodes with greater homogeneity than the first node. These two nodes can further be split
into {Y | y4 ≥ 27} and {Y | y4 < 27} as shown in Figure 3.

Figure 3. A simple tree at classification.

Consequently, similar splitting at each node will result in a tree structure with multiple
branches. Selecting a particular attribute and the value of that particular attribute that
determines the splitting of data is the basis for nuances in different decision tree models.
Classification and Regression Trees (CART), CHAID, ID3, C4.5, and Random Forest are a
few to name. For training and testing purposes, the six-month data set covering forty-two
locations spread over the stream network is randomly divided into 70% for training and
30% for testing using the scikitlearn library of python programming language. The same
training set and testing set are used to examine their classification accuracy for all the
decision tree models.

3.3. Attribute Selection Measures
3.3.1. Entropy

Entropy indicates the degree of randomness in a given input set. A branch with 0
entropy is chosen to be the leaf node. If the entropy is not equal to zero, the branch is
further split. The Entropy, E(S), measured in “bits” is given by

E(S) = ∑K
i=1 −pilog2 pi (4)

where pi is the percentage of class i in the node or the probability, and index i runs from 1
to K number of classes or attributes. The process of splitting an attribute is continued until
the entropy of resulting subsets is less than the previous input or training set, eventually
leading to leaf nodes of zero entropy. Minimization of entropy is desired as it reduces the
number of rules of the Decision Trees. The lowering of entropy essentially leads to Decision
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Trees with fewer branches. The entropy is defined as an information-theoretic measure of
the ‘uncertainty’ present in the dataset due to multiple classes [35].

3.3.2. Information Gain

The information gain of an input attribute gives its relation with the target output.
A higher information gain suggests that the parameter can separate the training data
following the target output to a greater extent. Information gain is inversely proportional to
the entropy. The higher the randomness in a set of inputs, the lower will be the information
gain. The ID3 model [36] uses Information Gain as the method for classification.

In f ormation Gain = Entropy(be f ore)−
K

∑
j=1

Entropy(j, a f ter) (5)

where the index j runs from 1 to K possible classes. Maximizing the information gain
essentially leads to minimization of entropy for that particular attribute. In the above
Equation (5), the first term on the right-hand side is fixed or it is the entropy at the
beginning. The attribute is selected for splitting first for which we obtain the minimal
second term on the right-hand side resulting in maximization of information gain for that
particular attribute.

3.3.3. Gini Index

It is obtained by the sum of squares of individual probabilities of each class from one.
A Higher Gini index value indicates higher homogeneity. The CART algorithm uses the
Gini Index to create splits in data [37]. The equation gives Gini index at a node

Gini = 1 − ∑K
i=1(Pi)

2 (6)

where pi is the percentage of class i in the node, and the index i runs from 1 to K number
of classes. It measures the “impurity” of a dataset. It takes a minimal value of zero to a
maximal value of (1-1/K). In the attribute selection process of Decision Tree modeling, that
particular attribute is selected for which there is a largest reduction in the value of Gini
index. It turns out the reduction of Gini index essentially is accompanied by lowering
of entropy.

3.3.4. Gain Ratio

C4.5, an improvised version of ID3, uses gain ratio to create splits in the input data.
The Gain ratio removes the bias that exists in calculating the information gain of an input
parameter. Information gain prefers the parameter with a large number of input values. To
neutralize this, the Gain Ratio divides the Information Gain by the number of branches
that would result from the split.

Gain Ratio =
In f ormation Gain
Split In f ormation

=
Entropy(be f ore)− ∑K

j=1 Entropy(j, a f ter)

∑K
j=1 −wjlog2wj

(7)

where the index j runs from 1 to K possible number of nonempty classes, and wj is the
percentage of class i in the node or the probability. The lower the Split Information, the
higher the value of Gain Ratio. The Information Gain is essentially modified by the diversity
and distribution of attribute values into the quantity known as Gain Ratio.

3.4. Bagging and Boosting

Bagging, or Bootstrap aggregation, proposed by [38], is a technique used with regres-
sion methods to decrease the variance and improve prediction accuracy. It is a simple
technique where several bootstrap samples are drawn from the input data, and prediction
is made following the same prediction method for each sample. The results are merged
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by averaging (regression) or simple voting (classification) that adumbrate the input data
results subjected to the same prediction method as the bootstrap samples but with reduced
variance. All the bootstrap samples have the same size as the original data. The sampling is
done with replacement, because of which, a few instances/samples are repeated, and a few
are omitted. The stability of base classifier of each bootstrap sample essentially determines
the performance of bagging. Since all the samples are equally likely to get aggregated,
bagging does not suffer from issues of overfitting and works well with noisy data. Thus,
the focus on a specific sample of training data is removed.

Boosting, similar to bagging, is a sample-based approach to improve classification
and regression models’ accuracy; however, unlike bagging, which uses a direct averaging
of individual sample results, boosting uses a weighted average method to reduce the
overall prediction variance. All the samples are initialized with equal weights, then the
weights are updated with each boosting classification round. The weights of samples that
are harder to classify are increased, and the weights are decreased for the samples that
are correctly classified. This ensures the boosting algorithm to focus on samples that are
harder to classify with increase in iterations. All the base classifiers of each boosting round
are aggregated to obtain the final ensemble boosting classification. The fundamentals of
bagging and boosting could be found in [39].

4. Results and Discussion

4.1. Overview

Results obtained using decision trees are discussed in this section. A preliminary
statistical analysis is first performed to study the statistics of the experimental data. The
results from the initial statistical analysis are given in Table 1.

Table 1. Statistics of Water Quality Parameter and inputs.

Water Quality Parameter Variable Sum Average
Standard
Deviation

Input/Output

Precipitation (in cm) P 817.0 3.6 4.21 Input

Temperature (◦C) T 4250.7 18.9 4.36 Input

Urban land-use factor U 35.3 0.16 0.12 Input

Forest land-use factor F 165.2 0.73 0.12 Input

Agricultural land-use factor A 178.0 0.79 0.11 Input

Fecal Coliform
(#colonies/100 mL) FC 453,889 2017.3 3454 Output

The correlation structure of all the input water sample parameters and the fecal
coliform is given by the correlation heatmap shown in Figure 4.

The agriculture land-use factor (ALUF or a) is highly and negatively correlated with
the forest land use factor (FLUF or f ). FLUF also has a strong negative correlation with
urban land use factor (ULUF or u). An exciting inference from the correlation heatmap is
the heavy positive correlation between precipitation and fecal coliform (please see Figure 4).
A few scatter plots that reveal the relation between the input variables and the fecal coliform
individually essentially display the results of the correlation map, i.e., Figure 4, and are not
reproduced here. This makes precipitation the most significant variable in determining our
output using the decision tree method, and this is evident from the CART and ID3 diagrams
given a little later. The precipitation values are obtained at each sampling locations by
interpolating the two-day cumulative precipitations at all the gauges in the watershed.
The rainfall causes the surface water flow over the watershed’s overland planes consisting
of land uses (predominantly urban, forest, and agricultural) and eventually joining the
tributaries and mainstem of the Green River. The various parts of the overland planes of
the watershed contribute as surface water flows, which enters tributaries first and then the
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main stem of Green River before reaching the watershed outlet tip. Based on watershed
characteristics and time of concentration studies, the two-day cumulative and interpolated
precipitation values are most suitable drivers of fecal coliform concentrations than other
precipitation measures at all the sampling sites [29]. The positive correlation of microbial
indicators such as fecal coliform bacteria and precipitation/rainfall/wet weather conditions
is in agreement with the other studies such as that of [40–44] for rivers and bays and [45,46]
for lakes. The DTs are best suited for large datasets; however, an attempt is made in the
current study because of the multi-dimensional feature space (five independent variables)
for monthly instances of data of forty-two locations collected for the six-month period. The
DTs are expected to work better for shorter data sets and fewer features as the intrinsic
data complexities are reduced. In the present scenario, data limitations on the time frame
are offset by the multi-dimensional feature space for varied spatial locations. The reduction
of input dimension has been looked into for the same dataset using principal component
analysis (PCA), canonical correlation analysis (CCA), and artificial neural networks (ANNs)
elsewhere [47]. The authors have found comprehensive predictions using all the spatial
parameters such as land uses, and temporal climate parameters. The histogram of fecal
coliform is given in Figure 5. The variability of fecal coliform is large as is evident from the
high standard deviation and the histogram.

Figure 4. Correlation Heatmap.

Figure 5. Histogram of Fecal Coliform (FC).
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4.2. Results from Decision Tree Models

The precipitation, temperature, land use data, and experimentally measured fecal
coliform values are used to formulate decision tree models. Several different decision tree
models are developed for fecal coliform analysis. All input parameters (precipitation or P,
temperature or T, ULUF or u, FLUF or f, ALUF or a) are used to create decision tree models
with different data split methods. Precipitation was the single most crucial hydrological
input parameter to determine fecal coliform. The correlation values obtained earlier also
indicate similar results. 70% of the dataset is used as the training set, and the remaining
30% is used as the testing set. For CART, an accuracy of 63.05% was obtained in the training
phase, and 60.29 was obtained in the testing phase. An accuracy of 62.22% was obtained on
the entire data set. In CART decision tree modeling, the data is split based on the attribute
with the lowest Gini index at the root node in a top-down process with the subsequent
splitting of data of attributes of increasing Gini indices till we reach leaf nodes. In this
way, the impurity or the uncertainty in the data is minimized with recursive portioning
of the data [37]. Similar results were obtained for the ID3 model. Accuracies of 61.78%,
61.76%, and 61.77% were obtained in the training phase, testing phase, and the entire data
set, respectively. In the ID3 model, the feature with maximum information gain or smallest
entropy is used to split the data at the root node first and then the subsequent nodes till we
reach leaf nodes. The least entropy corresponds to the features with the least uncertainty or
randomness in the data [36]. Both DTs, CART, and ID3, belong to the family of Top-Down
Induction Decision Trees (TDIDT). CART performs slightly better in training than ID3, and
ID3 performs slightly better in testing than CART. However, the overall performance of
CART is slightly better than ID3. CART and ID3 models were improved by augmenting
the simple models with bagging and boosting methods. The highest test set accuracy was
obtained for the CART model with adaptive boosting—the accuracy of 81.53%, 72.06%, and
78.67% was obtained in the training phase, testing phase, and entire dataset, respectively.
The bagging and adaptive boosting of CART and ID3 perform much better than simple
(without bagging and adaptive boosting) CART and ID3 models. Though bagging of ID3
results in largest training accuracy among simple and ensemble models of CART and ID3,
the adaptive boosting of CART gives the largest testing accuracy among the same models.
However, the overall accuracy of bagging of ID3 model is the highest among simple and
ensemble models of CART and ID3 models. Apart from CART and ID3 models, Random
Forest was also implemented on the experimental dataset to predict the fecal coliform
density or concentration.

The Random Forest model gives an accuracy of 98.7% on the training set, 64.7% on the
testing set, and 88.4% on the overall dataset. The Random Forest model is built by creating
an ensemble of a large number of decision trees for classification and then predicting
the mode or average/mean of all the individual decision tree classification results. The
more uncorrelated the individual decision trees are, the better the final prediction or
outcome [48]. The individual trees or sub-samples are drawn randomly from the original
tree with replacement. The trees are grown to the largest extent possible for classification
without pruning of the trees. The features selected in sub-sample trees need to be useful for
the effectiveness of the Random Forest model than being pure, random guessing features
in classification. The Random forest model outperforms decision trees such as CART, ID3
but its testing accuracy is slightly lower than gradient trees, extremely randomized trees,
and DTs with bagging and adaptive boosting. A few other models, such as extremely
randomized trees, were also implemented, and the accuracy results of all models are
summarized in Table 2 below:
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Table 2. Accuracies of various DT models in the prediction of FC.

Model Training (%) Testing (%) Overall (%)

CART (Adaptive Boosting) 81.53 72.06 78.67

ID3-Bagg 86.62 70.58 81.78

ID3-AB 85.98 70.58 81.33

CART (Bagging) 80.25 70.58 77.33

Gradient Boosting (GBM) 98.19 69.12 89.33

Extremely Randomized Trees (ERT) 98.72 66.17 88.89

Random Forest (RF) 98.70 64.70 88.40

ID3 61.78 61.76 61.77

CART 63.05 60.29 62.22

Where ID3-Bagg is ID3 with Bagging, and ID3-AB is ID3 with adaptive boosting.
The extremely randomized trees (also known as “Extra Trees”) give a fourth-best testing
accuracy of 66.17% and a second-best overall accuracy of 88.89% of all the models. While
the Random Forest model uses subsamples with replacement, the extremely randomized
trees use the whole input sample. Also, while Random Forest opts for optimum split to
select cut points, the extremely randomized trees go for random cut points. The extremely
randomized trees are faster and have both features of reducing bias and variance due to
usage of original input sample and random split points [49]. Gradient boosting model
(GBM) gives third-best testing accuracy of 69.12% and best overall accuracy of 89.33% of all
the models. In the Gradient Boosting model, a loss function such as mean square error is
minimized with the help of gradient descent principle and an ensemble of weak learners to
eventually make correct predictions and become a strong learner tree [50]. The GBM, ERT,
and RF perform better than simple and ensemble models of CART, and ID3 in training,
and overall accuracies; the ensemble models of CART, and ID3 are slightly better in testing
accuracies. This could also be due to possible overtraining of the Decision Tree models in
the case of GBM, ERT, and RF. Further, optimal cutting down of trees may result in higher
Training, Testing, and Overall accuracies of GBM, ERT, and RF than simple and ensemble
models of CART, and ID3. The accuracy of a decision tree model is given by the number of
correct predictions made divided by the total number of predictions. Here, the prediction
is the class to which the water sample belongs. These results are presented in Figure 6.

We have used various decision tree algorithms to classify data rather than regression
on our current data set. For classification, the target variable, i.e., fecal coliform (FC), was
divided into four classes following the United States Environmental Protection Agency
(USEPA) recommendations (given in Table 3).

Table 3. Fecal Coliform and its Class.

Class Fecal Coliform (FC) Range (cfu/100 mL)

Body contact and recreation (BCR) 0 < FC ≤ 200

Fishing and boating 200 < FC ≤ 1000

Domestic utilization 1000 < FC ≤ 2000

Dangerous FC > 2000
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Figure 6. Bar graph of training, testing, and overall accuracies of different DT models.

The classified results into four classes or categories, namely- body contact and recre-
ation, fishing and boating, domestic utilization, dangerous for all decision tree algorithms,
are presented in Figure 7. The number of samples in each class is also shown in the same
Figure. From Figure 6, we can see that high values of precision, recall, and F1-score are
obtained for Random Forest, CART with adaptive boosting, ID3 with adaptive boosting,
and Extremely randomized trees for the supports shown for all of the four classes. The
definitions of accuracy, precision, recall, F1-score are given by:

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1score = 2 × Precision × Recall
Precision + Recall

(11)

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative, and
support is the number of occurrences of each class in ground truth (correct) target values.

This means that the above four algorithms can correctly classify the positive samples
from negative samples for each of the respective class, able to recall all of its positive
samples and that both of these abilities are equally important in the classification. Then
the best values of precision, recall, and F1-score are obtained for CART with bagging and
ID3 with bagging algorithms. Simple CART and ID3 yielded lower precision, recall, and
F1-score than the rest of the above algorithms discussed in their respective classifications
for each support class. Although not presented here, accuracies were also highest for
Extremely randomized trees and Random Forest algorithms, slightly lower for CART and
ID3 with bagging and boosting, and lowest for simple CART and ID3 algorithms.
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(a) Random Forest 

 

(b) CART 

 
(c) CART (Adaptive Boosting) 

 

(d) CART (Bagging) 

 
(e) ID3 

 

(f) ID3 (Adaptive Boosting) 

 
(g) ID3 Boosting 

 

(h) Extremely Randomized Trees

 

Figure 7. Classification reports of the entire dataset using different DT models.

4.3. CART with Bagging and Adaptive Boosting

The CART algorithm uses Gini impurity to split data and form a binary classification
tree. Implementation of the CART algorithm on our data set results in a tree with four
levels (please see Figure 8).

Level 1 has the root node. Level 2 and level 3 contain the decision nodes, and level 4
has the leaf nodes with data split into classes. The tree’s root node containing all 225 data
points of our data set has been split based on the precipitation input variable (p) since p is
the variable of the highest significance. The decision nodes at level 2 are split using the
forest land use factor (f) and the temperature (t) input variables since these nodes represent
points of highest Gini impurity. At level 3, we get our first leaf node of class “Dangerous”
with eight samples falling in this category (p ≤ 0.308, f ≥ 0.763). The final level contains
the leaf nodes that classify the data into the specified classes. The class with the highest
number of samples is fishing (156 samples), followed by BCR (51 samples). The classes
“Domestic” and “Dangerous” have 5 and 13 samples, respectively, giving us a total of
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225 samples in our data set. The CART algorithm is a moderately accurate method to
classify our data set, giving an accuracy of 63.05% on the training set and 62.22% on the
entire data set. However, improving our model using bagging and boosting methods yield
even higher accuracies. From Table 2, CART with adaptive boosting gives the best testing
accuracy out of all the decision trees. The adaptive boosting method enables to combine
several weak classifiers into a strong classifier through an iterative decision tree modeling.
The weak classifiers are weighted highly and trained with a few low-weighted strong
classifiers to produce a strong ensemble classifier at the end [51]. From Table 2, we can also
see that CART with bagging yields second-best testing accuracy. Bagging simply means
“bootstrap aggregating.” The implementation of CART with bagging results in creating
many random sub-samples with replacement and training CART model on each sample.
Then the average prediction is made on all the samples [38]. We can see that the ensemble
predictions of bagging and boosting of the CART model are better than the simple CART
model results.

Figure 8. The Decision Tree developed using the CART algorithm.
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4.4. ID3 with Bagging and Adaptive Boosting

Like the CART algorithm that uses Gini impurity to form splits in the data set, the
ID3 decision tree utilizes the information gain and entropy. Implementation of the ID3
algorithm on our data set also yields a tree with four levels (please see Figure 9).

 

Figure 9. The Decision Tree developed using the ID3 algorithm.

Again, since “p” is the most significant variable, the root node is split using the
“Precipitation” input variable. The decision nodes in level 3 and level 4 are split to maintain
lower Information Gain and Entropy uncertainty. Level 4 of the ID3 decision tree has the
dataset classified into four pre-defined classes. Similar to the CART algorithm results, the
class with the highest number of samples is “Fishing” followed by “BCR,” “Dangerous”
and “Domestic.” The accuracies obtained for the training data set and overall dataset
are 61.78% and 61.77% respectively, which is slightly lower than that obtained by the
CART algorithm. From Table 2, we can see that ID3 with adaptive boosting comparable
results to that of CART with adaptive boosting. Adaboost is an iterative procedure with
no replacement. It generates a strong ensemble classifier by putting high weights on the
mis-classifiers and low weights on the correctly classified trees to reduce bias and variance
in the model. For this reason, it is called the “best out-of-the-box classifier” usually. The
second-best testing accuracy is obtained using this method with ID3 in all attempted
decision tree models. ID3 with bagging results can also be seen from Table 2, which creates
many independent bootstrap aggregation models and associates weak learner with each
model to finally aggregate them to produce average or ensemble prediction that has a
lower variance. This method also yields the second best testing accuracy of all the decision
tree models. We can see that the bagging and boosting ensemble methods improve the
testing accuracy compared to simple ID3.

4.5. Decision Tree Classifier Based Decision Support System (DTCDSS)

A Decision Support System (DSS) can be built from the above results of decision tree
models, as shown in Figure 10.
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Figure 10. Decision Tree Classifier based Decision Support System (DTCDSS).

The input parameters and the sample water quality observations come from the
input databases, as shown in the decision tree classifier (DTC). The above-discussed
decision tree models help classify the water quality data based on input parameters and
respective decision tree algorithms. The results are shown in the output database in “water
quality predictions/formulae/bounds”. The outputs are put into and as per classes of
US EPA water usage classification. From the output classifications, one could figure out
the under/over reporting issues, and check for maximum contamination levels (MCLs).
In this process, the US EPA data warehouse system will help compare the output water
quality parameters with stipulated MCLs. The inner working of any of the above-discussed
decision tree classifiers is shown in the flow chart Figure 11.

Firstly, the DTC classifier receives the input data from the input databases such as
climate, land use data, and water quality data. The entropy or information gain, gain
ratio, and Gini index are computed based on the particular model chosen of the decision
tree in the DTC classifier. For example, if the decision tree in the DTC classifier is ID3,
then entropy or information gain is computed. If the decision tree in the DTC classifier
is CART, then the gain ratio is computed. Similarly, if the decision tree is C4.5, then the
Gini index is computed. The input parameters and the output parameters of a data sample
are presented at the root node first. Then the tree is split based on the decision of the
“if-else” statement minimizing the heterogeneity of data or increasing the homogeneity.
The tree branches keep increasing with the addition of new data samples at the root node,
and slowly, the leaf nodes get formed. At every level node of the tree, the entropy or
information gain, gain ratio, Gini index are computed so that the data could be split easily
and the data get traversed to the leaf nodes. Thus, the DTC classifier helps us classify the
data or make a decision into four classes of output, namely, body contact and recreation,
fishing and boating, domestic utilization, and dangerous at the leaf nodes. The model
performance can be computed using the metrics such as accuracy, precision, recall, and
F1-score. The particular DT model in the classifier can be any one of the CART, ID3, C4.5
with bagging and boosting variants, Random Forest, and Extremely Randomized Trees.
The output performance of the DSS can be specific to the DT model chosen and could
also be data sensitive. The best DT model for the DSS can be fixed only by experimenting
with above-stated decision tree models for the data of several watersheds consisting of
stream networks of varied conditions. Suppose we replace the DTC classifier with Decsion
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Tree Regressor (DTR). In that case, we will be able to predict the output parameter such
as fecal coliform, from the input parameters such as climate and land use. The output
parameter predictions can also be further generalized or recasted using the regression
formulae obtained of DTR and the output parameter bounds. The current Decision Support
System is an improvised version of the DSS discussed in [29]. The Artificial Neural Network
(ANN) model is replaced by DTC to suit the current problem of classification stream waters
into four classes. The performances of DSS using DTR, the comparison of DTR and ANN
models are out of the scope of the current work and are pursued elsewhere as separate
research studies. Comparing output parameter predictions with respective MCLs within
the DSS framework ensures the suitability of stream waters broadly into “safe” or “unsafe,”
thus making a helpful decision.

Figure 11. Flow Chart of a Decision Tree Classifier Model.
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5. Conclusions

The classification abilities of Decision Trees such as CART, ID3, RF, and ensemble
methods such as bagging and boosting are utilized for the classification and prediction of
Fecal Coliform (FC) into four classes in this study. The variable with maximum information
gain and gain ratio in the case of ID3 model, and the variable with maximum Gini Index
in the case of CART model are selected at the root node, and such criteria used further
down the tree till the leaf nodes, using DT algorithms for best classification in terms of
maximum accuracy. The algorithms perform comparably well with each other, Random
Forests being the most consistent in the classification of Fecal Coliform for the Upper
Green River watershed overall. It performs better than CART and ID3 in all the phases,
i.e., training, testing, and overall. Gradient Boosting and Extremely Randomized Trees
are the other DT algorithms that show comparable accuracies as that of Random Forest
in training and testing phases. The CART decision tree with Adaptive Boosting yielded
the best testing accuracy. In contrast, the CART with Bagging and ID3 with Bagging and
Adaptive Boosting yielded the comparable second-best testing accuracies respectively out
of all the decision tree modeling attempts. There is no proof of exactly the same feature
or attribute will be chosen for each node of the resulting tree for various DT algorithms.
There is also no guarantee that accuracy of classification will be higher for the proposed
classifier as it needs to be tested for a variety of water quality parameters of different
watersheds under climate changes. Also, being greedy at each step/node may not ensure
overall minimization of entropy or global optimization of the classification process. In the
present work, the authors have focused on only the classification capabilities of the Decision
Trees for this particular watershed/dataset. The present work explores the classification
capabilities in training and testing phases only. The size of the data was one limitation
because of which, the authors could not go for cross-validation. However, the depth of the
successful trees is essentially governed by maximizing the information gain or minimizing
the entropy, i.e., randomness at every level. It is generally found that the shorter trees are
prone to better classification capabilities than the more extended trees [52] (Mitchell, 1997).
This is due to lesser overtraining of the trees, leading to more successful generalization or
predictions. From the above discussion of results, the following salient conclusions can be
made as follows:

(i) The Decision Trees of Gradient Boosting (GB), Extremely Randomized Trees (ERT),
and RF perform better than simple (without bagging and boosting) ID3, and CART
models in training, testing, and overall.

(ii) The bagging and adaptive boosting Decision Trees of CART, and ID3 significantly
improve the performance over simple (without bagging and boosting) CART, and
ID3 models.

(iii) The performances of bagging and adaptive boosting Decision Trees of CART, and ID3
are slightly better than GB, ERT, and RF in testing. However, the training and overall
accuracies of GB, ERT, and RF are better than all the models (including bagging and
adaptive boosting) of CART and ID3.

(iv) The Decision Tree models of GB, ERT, and RF are more consistent than other models
in training, testing, and overall accuracies.

(v) Overtraining the trees increases training accuracy at the expense of testing accuracy.
A judicious choice need to be made in cutting down the trees, so that an optimal
performance of training, testing, and overall accuracies is obtained.
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Abstract: Model selection for water quality forecasting depends on many factors including analyst
expertise and cost, stakeholder involvement and expected performance. Water quality forecasting
in arid river basins is especially challenging given the importance of protecting beneficial uses in
these environments and the livelihood of agricultural communities. In the agriculture-dominated San
Joaquin River Basin of California, real-time salinity management (RTSM) is a state-sanctioned program
that helps to maximize allowable salt export while protecting existing basin beneficial uses of water
supply. The RTSM strategy supplants the federal total maximum daily load (TMDL) approach that
could impose fines associated with exceedances of monthly and annual salt load allocations of up
to $1 million per year based on average year hydrology and salt load export limits. The essential
components of the current program include the establishment of telemetered sensor networks, a web-
based information system for sharing data, a basin-scale salt load assimilative capacity forecasting model
and institutional entities tasked with performing weekly forecasts of river salt assimilative capacity and
scheduling west-side drainage export of salt loads. Web-based information portals have been developed
to share model input data and salt assimilative capacity forecasts together with increasing stakeholder
awareness and involvement in water quality resource management activities in the river basin. Two
modeling approaches have been developed simultaneously. The first relies on a statistical analysis of the
relationship between flow and salt concentration at three compliance monitoring sites and the use of
these regression relationships for forecasting. The second salt load forecasting approach is a customized
application of the Watershed Analysis Risk Management Framework (WARMF), a watershed water
quality simulation model that has been configured to estimate daily river salt assimilative capacity
and to provide decision support for real-time salinity management at the watershed level. Analysis of
the results from both model-based forecasting approaches over a period of five years shows that the
regression-based forecasting model, run daily Monday to Friday each week, provided marginally better
performance. However, the regression-based forecasting model assumes the same general relationship
between flow and salinity which breaks down during extreme weather events such as droughts when
water allocation cutbacks among stakeholders are not evenly distributed across the basin. A recent test
case shows the utility of both models in dealing with an exceedance event at one compliance monitoring
site recently introduced in 2020.

Keywords: water quality forecasting; decision support; WARMF; regression model; salinity;
irrigated agriculture; stakeholder involvement

1. Introduction

Water quality forecasting in arid river basins is especially challenging given the impor-
tance of protecting beneficial uses in these environments and the livelihood of agricultural
communities. Model selection for water quality forecasting depends on many factors
including analyst expertise and cost, stakeholder involvement and expected performance.

Water 2021, 13, 2661. https://doi.org/10.3390/w13192661 https://www.mdpi.com/journal/water
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An American Society of Civil Engineers (ASCE) Task Committee was convened within
the Environmental Water Research Institute (ASCE, 2021) to document the state of the
practice in the use of water quality models that addresses selection, data collection and
organization, calibration, and independent testing to define uncertainty and to envisage
both the state of the art and future development. This paper draws on this effort focusing
specifically on two distinctly different approaches to involving stakeholders in salinity
management in a highly regulated river basin in California, dominated by agricultural and
managed wetland return flows.

Management of salinity in the United States and around the world is typically per-
formed through environmental regulation. In the United States, the federal Environmental
Protection Agency (USEPA) uses the concept of a total maximum daily load (TMDL) to es-
tablish safe and sustainable pollutant concentrations in receiving waters and pollutant load
assimilative capacity to help guide stakeholders in determining pollutant load reduction
strategies. The TMDL goal for salt loading to impaired waterbody [1,2] can be defined as:

TMDL = ∑ WLA + ∑ LA + MOS + RC (1)

where WLA is the waste load allocation for each point source of salt load, LA is the salt load
allocation for non-point sources and MOS is the margin of safety selected that accounts
for measurement and analytical uncertainty. The RC is a reserve capacity that is seldom
used in California applications but that could be used to account for future anticipated
loading from both point sources and non-point sources. Possible examples are future
climate change, population growth, land use and land cover changes, sea-level rise and
environmental policy initiatives.

Models are commonly used in the development of TMDLs and to assess their im-
pact under a range of environmental conditions [2–8]. Models can range in complexity
from simple salinity mass balances, that may use simple regression equations to relate
salinity to flow and other water quality parameters, to comprehensive, physically-based
hydrologic and water quality models [3,9] that attempt to simulate important processes.
These models may be used at various phases of TMDL development and implementation
including (a) the assessment of the level of impairment and the impacts of existing best
management practices on the water quality; (b) the evaluation and comparison of load
reduction strategies; (c) the computation of TMDL uncertainty and margin of safety [10];
(d) as decision support tools [11–13]; and (e) for real-time or near-real-time forecasting after
implementing a TMDL [14–16]. This paper compares the performance of two modeling
techniques used in near-real-time forecasting of compliance with salinity objectives in the
San Joaquin River Basin in California.

2. Background

The San Joaquin River (SJR) drains approximately 8.7 million acres (4 million ha) of
California’s San Joaquin Valley including 1.4 million acres (0.64 million ha) of agricultural
land (Figure 1). The San Joaquin River Basin (SJRB) watershed is bounded by the Sierra
Nevada mountains on the east, the Coast Range mountains on the west, the Sacramento–
San Joaquin Delta to the north, and the closed Tulare Lake Basin on the south. The Coast
Range mountains are relatively recent in geologic history and formed of an uplifted seabed
whose sedimentary constitution is naturally high in salinity including trace elements such
as selenium, boron and molybdenum. [17–19]. Additional salt is imported to the basin
from large state and federal water pumping facilities in the Sacramento–San Joaquin Delta.
These facilities replace water supply that was diverted from the SJR to irrigate farmland in
the southern part of the San Joaquin Valley in the 1960s [17] and constitute more than 47%
of the salts imported to the basin. For this reason, as the main purveyor of irrigation water
supply, the federal government is considered a stakeholder in actions to manage salinity
impairments in the SJR.
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Since the 1940s, mean annual salinity concentrations in the SJR measured at the
Vernalis monitoring station, the most downstream station not impacted by tidal flows
in the Delta, have more than doubled. West-side SJRB sources that include agricultural
surface and subsurface drainage and surface drainage from seasonally managed wetlands
that comprise the 140,000 acres (64,000 ha) Grasslands Ecological Area discharge through
Mud and Salt Sloughs and accounted for more than 37% of the salt loading to the SJR for
the period 2000–2009 (Figure 1). Several smaller, ephemeral streams including Hospital,
Ingram, Del Puerto, Orestimba and Los Banos Creeks contribute an additional 30% to SJR
salt loads [13]. The major tributaries to the SJR, the Stanislaus, Tuolumne, and Merced
Rivers, drain the east side of the basin and are the major source of dilution flow and salt
load assimilative capacity to the SJR (Figure 1).

Water quality data collected by the Central Valley Regional Water Quality Control
Board (CVRWQCB) staff since 1985 indicate that the 30 day running average electrical
conductivity (EC) water quality objectives of 1000 μS/cm in the non-irrigation season and
700 μS/cm in the irrigation season (1 April–31 August) have been routinely exceeded at the
Vernalis compliance monitoring station, especially prior to 2005 [12,13]. The non-irrigation
season salinity objective was exceeded 11 percent of the time and the irrigation season
salinity objective was exceeded 49 percent of the time during the period 1986–1998 [13].
This rate of exceedance occurred even though releases were made from New Melones
Reservoir on the Stanislaus River to help meet salinity objectives at Vernalis [12].

The SJR TMDL for salinity had several objectives, namely (a) to identify and quantify
the sources of salt loading to the SJR; (b) determine the load reductions necessary to achieve
attainment of applicable water quality objectives in order to protect beneficial uses of
SJR water supply; and (c) to allocate salt loads to the various sources and source areas
within the watershed which, once implemented, would result in attainment of applicable
water quality objectives [13,14]. Figure 1 shows the seven source areas identified by the
CVRWQCB that each were assigned annual and monthly salinity load objectives, modified
to account for wet, normal, dry and critically dry water year classifications. However.
realization of these objectives using a 10% low flow hydrology to account for critically
low-flow conditions over a 73 year historical flow record, in lieu of the standard MOS,
produced a TMDL where the base load allocations were overly conservative.

The TMDL already recognized a consumptive use allocation to account for irrigation
evapotranspiration of applied water, a Delta Mendota Canal supply relaxation load for salt
imported with water supply deliveries to the west side of the basin, a SJR supply water
relaxation for salts diverted from the SJR and an allocation to the federal agency for actions
related to mitigation of salts imported by the agency in irrigation water supply. The USBR
was assigned responsibility for 47 percent of the salt load discharged to the SJR [13].

Analysis conducted by CVRWQCB staff showed that stakeholder adherence to these
salt load limits would result in salt accumulation in the watershed and long term of both
degradation of ground and surface waters. Continuation of existing drainage practices
could result in average annual fines of over $300,000 in each of the subareas (Table 1)
assuming a fine schedule of $5000 per day for each month the load allocation for each
subarea was exceeded [20]. These fines would be borne largely by agricultural water
district stakeholders, some of whom are those adversely impacted by elevated EC in
the SJR primarily along Reach 83 (Figure 1). Agriculture is the primary beneficial use
impaired by salinity in the SJR Basin recognized in the SJR Basin plan [13,14]. To overcome
the constraints imposed by the conservative nature of the strict TMDL formulation, the
CVRWQCB made provision for an additional real-time salt load allocation in lieu of the
fixed base load allocation to maximize salt export from the LSJR Basin while still meeting
water quality objectives [14]. The real-time load allocation would apply any time salt load
assimilative capacity was available in the SJR.
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Figure 1. Major subareas within the SJR Basin that drain to the SJR as defined in the salinity TMDL [13]. Reach 83 shown in
the figure is the reach for which water quality (salinity) is regulated through the recognition of three compliance monitoring
stations at Crows Landing, Maze Road Bridge and Vernalis. The most salient feature of the SJR Basin is that drainage from
sources to the west of the SJR are elevated in salinity by virtue of native salts in alluvial sediments deposited from the coastal
range mountains west of the Valley floor and the importation of irrigation water supply from the Sacramento-San Joaquin
Delta that is also salt impacted. Tributary inflow from land areas to the east of the SJR are of high quality, derived from
snowmelt from the Sierra Nevada mountains. Real-time management is essentially a scheduling activity—coordinating salt
load assimilative capacity consumed by west-side saline drainage with salt load assimilative capacity supplied by east-side
reservoir releases along the major tributaries.
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Table 1. Hypothetical SJR daily salt discharge exceedance fees by subarea (10-year period 2001–2012) using an assumed
$5000/day fine for exceedance of the 30-day running average mean EC objective [20].

LSJR Salt Discharge Exceedence Fees by TMDL Subarea for a 10 Year Period 2001–2012

Northwest Side Grasslands Upstream San Joaquin River East Valley Floor

da
ys

ex
ce

ed
ed

by
pe

ri
od

Oct 0 0 0 0

Nov 90 60 0 0

Dec 124 248 0 0

Jan 186 0 310 0

Feb 28 196 0 0

Mar 0 279 0 0

Apr 28 56 42 14

VAMP 0 0 30 30

May 0 0 51 17

Jun 30 30 210 90

Jul 0 0 248 91

Aug 0 0 248 31

Sep 0 0 0 0

Total days of exceedences 486 869 1139 273

$5000 per day penalty $5000 $5000 $5000 $5000

Total penalties $2,430,000 $4,345,000 $5,695,000 $1,365,000

Years calculated 8 10 10 3

Average penalty per year $303,750 $434,500 $569,500 $455,000

Acres of agriculture 118,000 353,000 187,000 201,000

Average penalty per acre $2.57 $1.23 $3.05 $2.26

3. Real-Time Salinity Management

The USBR provides water to west-side agricultural and wetland resource contractors
via the Delta-Mendota Canal (DMC). The USBR’s water rights under which the USBR
delivers water to the SJR Basin were amended to require that the USBR meet the 1995 Bay
Delta Plan Salinity objectives at Vernalis, which are equivalent to the numeric targets estab-
lished by the salinity TMDL [13]. Upstream salinity objectives at the Crows Landing Bridge
compliance monitoring site was ratified in 2017 to protect riparian diverters downstream
of Crows Landing and upstream of the Vernalis compliance monitoring site [21]. The
control program requires the USBR to meet DMC salt load allocations or provide dilution
flows to create additional assimilative capacity for salt in the LSJR equivalent to DMC
salt loads in excess of their allocation. Thec program includes an innovative provision
that provides relief from the restrictive salinity load restrictions imposed by the salinity
TMDL and codified in the Basin Water Quality Control Plan. This provision states that
“Participation in a Regional Board approved real-time management program (RTMP) and
attainment of salinity and boron water quality objectives will constitute compliance with
this control program” [21]. Participation in the RTMP was designed to promote cooperation
and data sharing between entities, effectively replacing a costly salt load-based regulatory
program with a more cost-effective, stakeholder-driven program that permitted full use of
the river’s assimilative capacity for salt [14,15,21]. Participation in the RTMP also included
the development and use of a water quality forecasting model to provide stakeholder
decision support and allow stakeholders sufficient time to address anticipated violations
of the 30 day running average EC at compliance monitoring stations along the SJR [14].
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The WARMF model was chosen for this task [22–24]. Compliance became the collective
responsibility of SJRB stakeholders including the USBR.

The RTMP strategy increases potential management flexibility for agricultural, wet-
land and municipal dischargers to the SJR and provides an opportunity to maximize salt
load export from the basin without exceeding environmental objectives. However, it as-
sumes a level of coordination and cooperation amongst stakeholders that does not currently
exist. The core elements of this program have led to: (a) the development of a basin-scale,
sensor network to collect real-time monitoring of flow and salinity data; (b) an information
dissemination system for effective sharing of data among basin stakeholders; (c) a need
for continual calibration of the WARMF hydrology and salinity model of in the SJR and its
contributing watersheds to improve the accuracy of forecasting and daily assessment of
river assimilative capacity; (d) the creation and funding of stakeholder institutional entities
responsible for coordinating salinity management actions and ensuring compliance with
SJR salinity objectives; and € continued oversight and sanction of the CVRWQCB [14–16].

3.1. WARMF Water Quality Simulation Model

The San Joaquin River Basin application of the public-domain, Watershed Analysis
Risk Management Framework (WARMF) model [14,24] was developed in 2004 by Systech
Water Resources Inc. as a TMDL decision support tool. The first application of the model
was to assess options for control of dissolved oxygen sag in the SJR Deep Water Ship
Channel [23–25]. The SJRB WARMF model application is a physically-based, data-intensive
watershed model that simulates the hydrologic, chemical, and physical processes in the
river and contributing waterbodies (Figure 2). The model was derived from the San Joaquin
River Input–Output (SJRIO) model [26,27]. The model was updated and reconfigured as
a salinity forecasting tool in 2014 [14,24] as the USBR’s contribution to stakeholder-led
real-time salinity management activities. The WARMF model application simulates flow
and water quality in surface water diversions, groundwater pumping, and irrigation water
supply, while keeping track of crop evapotranspiration, seepage, and irrigation surface and
subsurface return flows [25]. Delineation of land catchments in WARMF conforms to both
irrigation and drainage district boundaries and natural catchments, allowing the model to
track salt loads from their points of diversion in delivery canals back to the river [25].

The data-intensive WARMF model is supplied with daily meteorology, diversion
flows, and measured flow and electric conductivity (EC) at the upstream model bound-
aries [23,25]. The current upstream model boundaries are at gages where flow and EC are
measured continuously in the SJR and along its major tributaries including the Merced
River, Tuolumne River and Stanislaus River. Real-time data, tributary reservoir release
forecasts, and meteorology forecasts are collected and imported into WARMF using an
automated process consisting of custom scripts and web scraping tools that interact with
agency web portals for hydrology and water quality monitoring [25,28]. WARMF model
data acquisition accesses seven agency web portals and is accomplished as a separate data
acquisition and pre-processing routine.

The combination of real-time monitoring, simulation modeling and forecasting of SJR
assimilative capacity has the potential to optimize use of available river salt assimilative
capacity, generated by releases of high quality Sierran water, which provides dilution to
saline west-side agricultural and managed wetland return flows. However, there needs to
be coordination and sufficient lead time to allow entities being asked to charge drainage
practices or alter reservoir release patterns to be able to respond. Agricultural return flows
and salt loads are highest during the summer irrigation season whereas return flows and
salt loads from seasonally managed wetlands are highest during the spring months of
March and April, when most seasonal wetland ponds are drained to promote establishment
of moist soil plants and habitat for waterfowl [15]. These anticipated hydrologic patterns
help to screen the array of practices on both the east and west sides of the basin that will be
most effective at managing salinity.
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Figure 2. Map of the SJR Basin represented as major contributing watersheds within the WARMF
model. The WARMF model allows further disaggregation of these watersheds into small contributing
subareas and allows the substitution of available data at the major outlets of these subareas for model-
derived flow and water quality estimates.

Given the uncertainty associated with estimates of salt assimilative capacity, the need
for adequate lead time for stakeholders to adjust tributary inflow and drainage return
flow schedules and the fact that most weather forecasts provided by news organizations
rarely extend beyond two weeks—a two-week forecast period and a one-week hindcast
period was chosen for the real-time salinity management program. The one-week hindcast
refers to the technique of beginning the simulation one week in arrears so that the first
week of the forecast can be compared to observed flow and electrical conductivity (EC)
data [14,16,22]. Model parameters affecting river and tributary inflow and water quality
such as the partitioning coefficients that allocate watershed runoff and deep percolation
to groundwater can be adjusted to recalibrate the model during periods when model
output and river observations diverge. This activity is infrequently performed due to the
significant effort involved and the fact that the WARMF model has exhibited excellent
performance for simulation of flow EC and EC along Reach 83 of the SJR. Simulated flow
and EC are compared to measured data along the SJR for model calibration including
drainage return flows from east- and west-side catchments and direct diversions from the
SJR to riparian water districts. Although agricultural and managed wetland stakeholders
have yet to fully embrace the model as a decision support tool both have concurred that
the suggested two-week forecast and one-week hindcast periods are a good compromise
balancing the utility and credibility of the forecasts with the time stakeholders might need
to adjust water management and drainage discharge operations.

The SJR WARMF model has a number of customized output visualization options
designed to enhance user understanding of salinity fate and transport in the SJR Basin
and the use of salt load assimilative capacity by river mile along the mainstem of the
SJR [28]. The output visualization also allows users to estimate if and when the salinity
concentration at the compliance monitoring sites will approach or exceed objectives. The
model is also capable of showing the impact of potential salinity management changes in
the watershed designed to comply with regulatory limits (Figure 3). For example, the SJR
WARMF model can simulate the effect of increased irrigation water diversions from the
river into riparian water districts, lowering salt loading in the river, which may help to
improve compliance with salinity concentration objectives [28].
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Figure 3. A unique feature of the WARMF model is the availability of customized model outputs such as the “Gowdy” output
(named after its developer) shown here. This depicts a Lagrangian view of the SJR at any point in time showing the major
inflow to and diversions from the river approximately every 1

2 mile (800 m) along its main reach as well as the incremental flow
and EC concentration from the origin at Lander Avenue to the EC compliance monitoring station at Vernalis [23,25].

The SJR WARMF model has been improved and customized over the past 15 years
with the USBR and research grant support as a watershed-based simulation tool for flow
and salinity forecasting in the SJR [14,25]. Updating time series data inputs and maintaining
model calibration are expensive and time consuming. This constraint has restricted the
stakeholders’ pool and agency individuals able to run the model on a regular basis and
has been an impediment for stakeholder entities such as the San Joaquin Valley Drainage
Authority (SJDVA) to take over operation and maintenance of the model as a decision
support tool. As a result, the USBR evaluated other approaches for providing flow and
salinity forecasts of SJR at Vernalis and Crows Landing, the two salinity concentration
compliance points for the TMDL. Although the WARMF model has been used for various
decision support activities in the SJR for over 15 years, other less data-intensive and more
easily understood approaches may be better received by stakeholders [28].

3.2. ANN-Based Statistical Models

The USBR developed a statistical approach as an alternative to the physically-based
SJR WARMF model for flow and salinity forecasting in the SJR. This approach was limited
to the Vernalis, Crows Landing and Maze Road Bridge compliance monitoring stations
(Figure 1) [29]. Two Artificial Neural Networks (ANN) based models a Recurrent ANN
and an Autoregressive ANN were identified as potential alternatives [30]. The most
salient features of these ANN alternatives were that the underlying basis should be easy to
understand and independent of having a deep understanding of basin hydrology [29,30].
ANN and regression-based approaches have the advantage of ready automation and have
the advantage that daily flow forecasts are available online from the National Oceanic and
Atmospheric Administration (NOAA) California River Forecast Center (RFC) providing
the basis for river EC forecasts at the compliance monitoring stations. The significance of
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this work is that daily bulletins from dam operators along the three major tributaries to the
SJR are recognized in these forecasts.

Under normal basin hydrologic conditions, there is sufficient salt load assimilative
capacity in the river when defined as the 30 day running average EC. Only in rare circum-
stances such as a prolonged drought is action required to limit salt loading during certain
months to the SJR. During these periods, the more comprehensive WARMF model could
be called upon to assist stakeholder management entities to determine appropriate salt
loading reduction by subarea within the basin to avoid fines.

Recurrent ANN models are statistical learning models that are used in machine learn-
ing, inspired by biological neural networks such as in the human brain [30]. A number of
ANN and recurrent neural network architectures with both short- and long-term mem-
ory were developed and applied to the Vernalis compliance monitoring station using
existing flow and salinity data resources. None of the ANN architectures or network hyper-
parameters performed sufficiently well due to time series water quality data limitations
and the impact of random anthropogenic factors that can affect reservoir operations [29].
In conducting the analysis, less than 5000 observations were available, whereas most appli-
cations of this method typically require well over a million observations to be successful.
An additional ANN-based model was investigated using the MATLAB machine learning
toolbox using an embedded machine learning application called Autoregressive ANN that
accommodated external inputs. Although the Autoregressive ANN approach performed
better in salinity forecasts compared to the Recurrent ANN model, the model salinity
forecast performance was unsatisfactory [29]. Future work in the application of neural
networks to flow and EC time series forecasting on the SJR may find more success in the
use of Bayesian neural networks for capturing water quality forecast uncertainty.

3.3. Simple Regression Model

Water agency analysts have long recognized the inverse relationship between flow and
EC. This relationship was utilized for many years in applications of the previous USBR water
supply allocation models for the federal service area within the San Joaquin Valley to estimate
New Melones reservoir releases for water quality. However, the poor performance of these
models for estimating EC at low-flow conditions, based on simple regression relationships,
was one of the reasons a data-driven flow and salinity mass balance approach was adopted
for the state-federal California (Water Allocation) Simulation Model (CALSIM) model that
replaced the previous models. A re-examination of the flow–EC relationship [29] suggested
a new approach using the rate of change of salinity that was found to be approximately
proportional to the rate of change (or gradient) of the measured flow in the SJR. This new
algorithm was not as susceptible to low-flow conditions as the prior approach.

The flow gradient was calculated as follows:

Qgrad = (Qt − Q(t−1))/Q(t−1)

where Qt is the flow at time t, and Q(t−1) is the flow at the previous time step.
A The salinity gradient was calculated in a similar fashion. Further analysis of daily

flow and salinity data of the SJR at Vernalis for the period 2000–2018 showed that a
clear linear regression relationship exists between flow and salinity gradients. After
removing one percent of the outliers from the plot of flow and salinity gradients using
daily data for the 2000–2018 time period, the resulting regression equation of flow and
salinity relationship at Vernalis became (Lu et al., 2019):

ECgrad = −0.5396 × Qgrad + 0.0038

or
[(EC)t −[EC(t−1))/[EC)(t−1)] = −0.5396 × Qt − Q(t−1))/Q(t−1) + 0.0038
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Using this relationship, the salinity forecast (measured as EC) at time step t can be
determined as follows:

[EC]t = [EC] (t−1) − [0.5396 × (Qt − Q(t−1))/Q(t−1) + 0.0038] × [EC](t−1)

This equation was initially applied to daily Vernalis flow and salinity data (Figure 4)
for the period 2000–2018 to generate six-day model-based forecasts that were compared
to historical data. The correlation coefficients for the relationship between the six-day
forecasted salinity and observed flow ranged from 0.8780 to 0.9787. The same regres-
sion method was then applied to the upstream Crows Landing compliance monitoring
station, resulting in the following equation for forecasting the SJR salinity concentration
downstream of that location.

[EC]t = [EC](t−1) + [−0.4413 × (Qt − Q(t−1))/Q(t−1) + 0.0036] × [EC](t−1)

The correlation coefficients of the relationship of observed flow and the six-day fore-
casted salinity concentration ranged from 0.9831 to 0.9154.

Figure 4. Flow and EC observations at Vernalis compliance monitoring station on the SJR for the period 2000–2018.

4. Comparison of the SJR WARMF and Regression Model Applications

A comparison of the SJR WARMF and Regression models was undertaken to evaluate
the performance of the models for water quality forecasting. This evaluation initially
compared differences between forecasted and observed water quality measured as EC at
the monitoring station located at Vernalis (Figure 4). Similar analyses were performed in
Excel using an algorithm that computed the difference (Δ) between the daily forecasted
(FC) and observed (OBS) EC (Δ = FC − OBS) starting on the forecast day (FC Day + 0) and
each consecutive day within the lead forecast time of 14 days (FC Day + 14). The analyses
were conducted with observations and forecasts made between 22 February 2018 and
22 May 2020. During this period, a total of 820 EC observations were measured. However,
for all the forecast lead times considerably fewer forecasts were actually made. In the case
of the Regression model, the number of forecasts ranged from 399 for forecasts of less
than 6 days (FC Day + 6) down to 347 forecasts for lead times of 7 days or more (FC + 7
to FC + 14). Forecasts were made only on regular workdays and were not conducted on
certain days due to personnel availability and periods of downtime in the monitoring
system. Forecasts for days 11 through 15 were simply repeats of the FC + 10 forecast given
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that the California River Forecast Center (RFC) does not extend its daily forecasts, used by
the WARMF and Regression models, past 10 days.

In the case of the WARMF model, there were even fewer forecasts throughout the
evaluation period. The greater personnel time commitment to make WARMF model
forecasts limited the forecast frequency to once per week, usually on a Monday. There
were 131 forecasts for lead times from FC + 0 to FC + 7 and fewer forecasts for greater lead
times. Table 2 presents the frequency count and statistics (mean and standard deviation)
for the observations and model forecasts in the initial comparison of results produced by
the Regression and WARMF models. Table 2 confirms that the Regression model forecasts
were made approximately 3 times more often than those for the WARMF model.

In general, the Regression model forecasts had mean EC predictions that are approxi-
mately equal to the mean EC of the observations but increased to above the observation’s
mean EC after FC Day + 5 through the end of the forecast period. The WARMF model
had slightly lower mean forecast EC values until FC Day + 4 after which they increased
throughout the remainder of the forecast period. The observed EC, Regression and WARMF
forecast mean EC values were compared in Figure 5 at each of the forecast lead times.

Figure 5. Means of the observed (OBS) EC and Forecast (FC) EC for the Regression and WARMF
models for all forecast lead times between 22 February 2018 and 22 May 2020.
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Table 2. Statistics of observed (OBS) and forecasted (FC) EC (μS/cm) for the Regression and WARMF models made between
22 February 2018 and 22 May 2020 by lead time.

Regression Model EC Data WARMF Model EC Data

Count Mean Std Dev Count Mean Std Dev

OBS Day + 0
399

397 224 OBS Day + 0
131

401 235

FC Day + 0 397 223 FC Day + 0 384 192

OBS Day + 1
399

395 224 OBS Day + 1
131

383 214

FC Day + 1 397 225 FC Day + 1 381 182

OBS Day + 2
399

393 224 OBS Day + 2
131

376 211

FC Day + 2 394 225 FC Day + 2 375 178

OBS Day + 3
399

393 225 OBS Day + 3
131

377 208

FC Day + 3 393 225 FC Day + 3 374 182

OBS Day + 4
399

394 223 OBS Day + 4
131

374 209

FC Day + 4 393 226 FC Day + 4 372 183

OBS Day + 5
399

393 222 OBS Day + 5
131

370 207

FC Day + 5 394 224 FC Day + 5 375 187

OBS Day + 6
398

391 219 OBS Day + 6
131

371 201

FC Day + 6 395 222 FC Day + 6 380 190

OBS Day + 7
347

394 218 OBS Day + 7
131

373 204

FC Day + 7 400 218 FC Day + 7 387 194

OBS Day + 8
347

393 217 OBS Day + 8
129

370 203

FC Day + 8 402 220 FC Day + 8 390 200

OBS Day + 9
347

392 218 OBS Day + 9
129

366 202

FC Day + 9 405 223 FC Day + 9 391 204

OBS Day + 10
347

395 222 OBS Day + 10
128

366 204

FC Day + 10 408 225 FC Day + 10 393 208

OBS Day + 11
347

398 224 OBS Day + 11
128

366 207

FC Day + 11 408 225 FC Day + 11 393 211

OBS Day + 12
347

397 223 OBS Day + 12
126

363 203

FC Day + 12 408 225 FC Day + 12 395 213

OBS Day + 13 347 397 225 OBS Day + 13
126

363 204

FC Day + 13 408 225 FC Day + 13 395 214

OBS Day + 14
347

398 229 OBS Day + 14
124

370 209

FC Day + 14 408 224 FC Day + 14 399 214

A comparison of the mean of differences between forecasted EC and observed EC for
both Regression and WARMF models is shown in Table 3. For both models, the mean of
the differences between forecasted EC minus observed EC was computed for the period
between 22 February 2018 and 22 May 2020. For the Regression model, the differences
were small (≤+5) for until Δ Day + 6. The mean EC differences increase to maximum of
15 μS/cm at Δ Day + 9. From Δ Day + 10 to the end of the forecast period, the mean EC
differences decrease slightly to a value of 12 μS/cm. For the WARMF model, the mean of
the EC differences were small, decreasing from +1 to −3 at Δ Day + 3. From Δ Day + 4 to
Δ Day + 12, the mean of the EC differences increases consistently reaching a peak value of
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+33 μS/cm at Δ Day + 12 after which there is a slight decrease to 30 μS/cm at the end of
the forecast period. These results are illustrated in Figure 6.

Table 3. Comparison of mean differences (Δ) between forecasted EC and observed EC (μS/cm) for all model forecasts made
between 22 February 2018 and 22 May 2020.

Regression Model EC Differences WARMF Model EC Differences

Count Mean Δ Std Dev Δ Count Mean Δ Std Dev Δ

Δ Day + 0 398 0 14 Δ Day + 0 131 1 78

Δ Day + 1 397 2 37 Δ Day + 1 131 −2 85

Δ Day + 2 396 2 48 Δ Day + 2 131 −1 92

Δ Day + 3 395 1 57 Δ Day + 3 131 −3 86

Δ Day + 4 394 1 69 Δ Day + 4 130 −2 100

Δ Day + 5 394 3 80 Δ Day + 5 130 5 105

Δ Day + 6 393 5 86 Δ Day + 6 130 9 108

Δ Day + 7 341 7 91 Δ Day + 7 130 14 115

Δ Day + 8 340 12 103 Δ Day + 8 128 20 122

Δ Day + 9 339 15 116 Δ Day + 9 128 25 134

Δ Day + 10 338 15 131 Δ Day + 10 127 27 142

Δ Day + 11 337 13 144 Δ Day + 11 126 27 151

Δ Day + 12 337 14 153 Δ Day + 12 124 33 164

Δ Day + 13 337 14 163 Δ Day + 13 124 33 173

Δ Day + 14 336 12 171 Δ Day + 14 122 30 179

Figure 6. Comparison of mean differences in forecasted EC and observed EC for the Regression and
WARMF models for the period between 22 February 2018 and 22 May 2020.

The forecast standard deviation is a measure of the dispersion of the forecast EC
predictions around the mean EC value. Larger standard deviations imply a wider range of
forecast predictions of EC and/or differences between forecasted EC values and observed
EC. Figure 7 presents the standard deviations of the EC observations and EC forecasts for
both models (Figure 7a) as well as the standard deviations of the EC differences between
the forecasts minus observations (Figure 7b) over the forecast period. As illustrated, the
standard deviations of the Regression model EC forecasts closely approximate the standard
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deviations of the EC observations at all lead times. In contrast, the standard deviations
of the WARMF model EC forecasts are consistently less than standard deviations of the
EC observations until lead time day 8 as shown in Figure 7a. The maximum difference
(33 μS/cm) between forecast and observation standard deviations occurs at lead time day
2. In Figure 7b, the standard deviation of the differences between the EC forecasts minus
EC observations for both models increase consistently with lead time indicating increasing
uncertainty in the EC forecasts. Additionally, the WARMF model has consistently greater
standard deviations in EC differences relative to the Regression model.

Figure 7. (a,b). Comparison of the standard deviations of forecasted EC and observed EC and
standard deviations of differences between EC forecasts and EC observations for the Regression and
WARMF models by lead time in the period between 22 February 2018 and 22 May 2020.

An additional evaluation was performed to determine the extent to which model bias
affects the mean of differences between the forecasts and observations. For example, the
models could forecast values significantly greater than the observations. However, a few
large underestimates could potentially offset the positive bias and make the model appear
to show better performance. In order to examine this effect, forecasts which were greater
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than the corresponding observations were examined separately from those in which the
forecasts were less than the corresponding observations. After this sorting into positive
(forecast >= observation) and negative (forecast < observation) bias groups, the means of
the EC differences (forecast–observation) over the study period were calculated for each
forecast lead time.

Figures 8 and 9 illustrate comparisons of the Regression and WARMF models for
the positive and negative bias results, respectively. For the positive bias differences, the
Regression model has lower differences at all lead times than the WARMF model.

Figure 8. Comparison of means of forecasted EC and observed EC for the Regression and WARMF
models for the period between 22 February 2018 and 22 May 2020. Data censored to include only
over (positive) predictions.

Figure 9. Comparison of means of forecasted and observed EC for the Regression and WARMF
models for the period between 22 February 2018 and 22 May 2020. Data censored to include only
under (negative)-predictions.
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For the negative bias differences, the Regression model has lower negative mean
differences than the WARMF model from Δ Day + 0 to Δ Day + 11 after which both models
have nearly equal EC differences.

Another aspect of the potential bias introduced by these forecasting methods is how
frequently do the overpredictions (positive) or underpredictions (negative) of mean differ-
ences in EC occur as a function of forecast lead times. For instance, the mean EC forecast
bias could be overly influenced by a small number of very large EC discrepancies—either
positive or negative. Figure 10 compares the percentages of positive bias differences in EC
for both models.

Figure 10. Comparison of the percentages of higher (positive bias) EC forecasts for the Regression
and WARMF models for the period between 22 February 2018 and 22 May 2020.

As illustrated above, both the Regression and WARMF models exhibit a slight positive
EC forecast bias. The Regression model exhibits a higher frequency (65%) of positive
EC forecast bias differences on Δ Day + 0 for the period between 22 February 2018 and
22 May 2020. From Δ Day + 1 to Δ Day + 4, the Regression model has a neutral EC forecast
bias frequency of approximately 50%. From Δ Day + 5 to Δ Day + 8, the Regression model
EC forecast bias becomes increasingly positive reaching a maximum of 60% before declining
gradually to 55% by Δ Day + 14. The WARMF model exhibits a gradually increasing
positive EC forecast bias from 53% on Δ Day + 0 to 58% on Δ Day + 6. Subsequently, the
EC forecast bias declines slightly to Δ Day + 9.

In summary, the results of the model comparison analyses indicate that the Regression
model EC forecasts were closer to the overall mean of the EC observations than the WARMF
model forecasted EC (Figure 5). As illustrated by Figure 6, the Regression model provided
EC forecasts with mean differences of less than or equal to 5 μS/cm for the first 7 days
(Δ Day + 0 to Δ Day + 6). In comparison, the WARMF model provided EC forecasts with
mean differences of less than or equal to 5 μS/cm for only 5 days (Δ Day + 0 to Δ Day + 4).
Based on these measures of performance, the Regression model provided EC forecasts with
reduced error relative to the WARMF model especially for the period from Δ Day + 4 to
Δ Day + 6.

The standard deviations of Regression model EC forecasts closely approximated the
standard deviations EC observations at all lead times. In contrast, the standard deviations
of the WARMF model EC forecasts were consistently less than the corresponding standard
deviations of the EC observations at lead time less than day (Figure 7a). For both models,
the standard deviation of EC forecast differences steadily increased with forecast lead time,
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as expected, while the WARMF model had higher standard deviations of EC than the
Regression model throughout the forecast period (Figure 7b).

When the EC forecasts were separated into those with overestimate (positive) and
underestimate (negative) biases, the mean differences between the EC forecasts and obser-
vations were seen to increase predictably with forecast lead times. For both the positive
and negative forecast EC mean differences, the Regression model performed better than
the WARMF model for lead times from Δ Day + 0 to Δ Day + 10. From Δ Day + 12 to
Δ Day + 14, the performance of both models was approximately the same.

As illustrated in Figure 10, both models have slightly positive EC forecast biases. With
the exception of the high overprediction (positive) bias (65%) for the Regression model
EC on Δ Day + 0, the Regression model predictions were relatively unbiased between
Δ Day + 1 to Δ Day + 4 and subsequently remained slightly positively biased throughout
the remainder of the forecast period. The WARMF model made consistently greater
overpredictions (positive biases in EC) than the Regression model.

It is also important to note that the Regression model EC and WARMF model EC
results were originally based on different forecasted flows. Up until mid-2020, the WARMF
model used prior water year operations forecast for the 14 day flow forecast along the three
major east-side tributaries. From July 2020 onward, the WARMF model has been using
the same flow forecasts as the Regression model which come directly from the NOAA
California-Nevada River Forecast Center. The analyst who makes these daily forecasts is
in regular communication with reservoir operators at Modesto Irrigation District, Merced
Irrigation District and the USBR Central Valley Operations Office who control releases and
provide regular bulletins of changes in release schedules. Hence, any differences between
the models are no longer a function of the flow release forecasts but rather the WARMF
model’s watershed simulation and prior knowledge of diversions and drainage inflow
along each tributary research and along the mainstem of the SJR.

5. Time Series Comparisons of the WARMF and Regression Models

The preceding analysis focused on comparisons of mean EC values and differences
between model-predicted EC and observations for the Regression and WARMF models for
various forecast lead times. In this section, time series comparisons of the EC predicted
by each model compared to EC observations for the same time period were made for
selected lead times. As shown in Figure 11, both models have relatively small mean EC
differences at forecast lead times of less Δ Day + 4. From Δ Day + 5 to Δ Day + 8, mean
differences increased. After Δ Day + 9, the EC predictions of both models reached a
relatively constant plateau. Figure 12 also shows a comparison of Regression model EC
forecasts and observations at Δ Day + 4, Δ Day + 8 and Δ Day + 12. As illustrated, there
was a good match between observations and forecasts. However, as the forecast lead time
increased the differences between model forecast of EC and observations also increased.
This relationship between model EC forecasts and observations can be quantified using the
root mean square error (RMSE) statistic which increases from 69.4 at Δ Day + 4 to 103 at
Δ Day + 8 to 154 at Δ Day + 12. Figure 12 shows a similar relationship between model EC
forecasts and observations for the WARMF model. In this case, the RMSE increases from
99.8 at Δ Day + 4 to 123 at Δ Day + 8 to 166 at Δ Day + 12. As illustrated by the figures and
RMSE values, the Regression model performed somewhat better than the WARMF model
in predicting EC for similar lead times.
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Figure 11. Comparison of Regression model forecasts and observations of EC at various lead times for the period between
22 February 2018 and 22 May 2020.
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Figure 12. Comparison of WARMF model forecasts and observations of EC at various lead times for the period between 22
February 2018 and 22 May 2020.
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6. Statistical Analyses

The prior analysis focused on comparisons between model EC forecasts for the regression
and WARMF models and how the differences between model predictions and observations
change over time for forecast lead times ranging from Δ Day + 0 to Δ Day + 14. Correspon-
dence between model EC forecasts and EC observations exhibited significant variability. In
general, as expected, the differences between model predictions of EC and observations
increase with forecast lead time. Consequently, the question arises up to what lead time
can the model forecasts of EC be considered reasonably reliable. In this section, a statistical
approach to comparing the means of the observations and model EC forecasts is described.

The application of statistical testing methods for comparing the two models requires
that careful consideration be given to the underlying assumptions made in the analysis.
A preliminary decision is what statistical property should be tested. For the statistical
analysis, a comparison of observation and forecast means was selected following the prior
analysis based on the fact that mean salinity load, the product of the mean concentration
(EC) and the mean flow, is the parameter of primary interest.

In general, most environmental data do not follow a normal distribution, as will be
demonstrated for the observed EC monitoring data presented in this study. This fact has
important impacts on the statistical tests that can be employed to test the equivalence of
the observation and forecast EC mean values. The classical t-test statistic assumes the
data are normally distributed. If they are not normally distributed, it might be possible
to transform the data (e.g., using logarithmic transformations) so that, when plotted,
they appear normally distributed. Such transformations can sometimes complicate the
interpretation of the results. Non-parametric methods, that do not assume the data are
normally distributed, are tests on the median values of the sampled data and therefore
are not appropriate for this study. Another approach is the use of a permutation test.
This method employs large numbers of stochastically generated realizations based on the
underlying data to obtain a reasonably normal distribution of values. This is the statistical
analysis approach chosen for this study.

The application of these methods was accomplished with the use of the R-commander
software platform (R version 3.5.3). R is public domain software available under the “Great
Truth” Copyright (C) 2019 The R Foundation for Statistical Computing. Additionally em-
ployed in the analysis were several R scripts developed by Practical Statistics Inc. and made
available through their Applied Environmental Statistics courses. The statistical methods
deployed in the analysis that follows were chosen based on their relative accessibility and
the perception that these could be easily explained to program participants and interested
stakeholders. Given the differences in the ways each of the models has been deployed for
forecasting (one run daily and the other weekly), it was thought necessary to address these
potential biases through the use of standard, well recognized methods. These included

1. Visual examination of the observed EC data and Regression and WARMF model EC
forecasts at selected forecast lead times using boxplot graphical output.

2. Statistical testing of the normality of the observed EC data and model EC forecasts
using the Shapiro–Wilks test at selected forecast lead times.

3. Statistical testing to determine whether the observed EC data and model EC forecasts
have similar variances using the Fligner–Killeen test at selected forecast lead times.

4. Scatterplots of the output from the Regression and WARMF model forecasts data at
selected forecast lead times.

5. Developing linear models using a forecast response variable and observation ex-
planatory variable and computing the adjusted R-squared as an indicator of model
goodness of fit at selected forecast lead times.

6. Matched pair permutation testing to evaluate the whether the means of the observed
EC and model forecast EC are statistically significant at the selected forecast lead times.
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The results of these analyses are presented for selected lead times of Δ Day + 12
representing the late forecast period. The boxplots showing the results of the Regression
(Figure 13a) and WARMF (Figure 13b) model forecast EC comparisons with the observed
data EC. Boxplots are visual tools that can be used to indicate whether the data are normally
distributed. If the distribution is normal, the boxplot would be divided into equal (blue)
areas by the median (black line) and the data range represented by the dashed line would
have equal lengths on the top and bottom of the box. As illustrated, these conditions are
not met by the EC observations and EC forecasts for either model. The Shapiro–Wilks test
is a statistical test used to evaluate whether data are normally distributed. Commonly, a
p-value of less than 0.05 is considered indicative of a non-normal distribution. As shown in
Figure 13, the p-values are considerably less than 0.05 confirming the boxplot interpretation.
At forecast lead time Δ Day + 12, the boxplots in Figure 13 suggest that neither the observed
EC or model forecast EC are normally distributed but have similar variances.

Figure 13. (a,b). Boxplots of observed EC and forecast EC by the Regression (a) and WARMF (b) models are shown for forecast
lead time Δ Day + 12. Fligner–Killeen variance p values are 0.6244 and 0.2703 for the Regression and WARMF models, respectively.

Scatterplots of observed EC data and both Regression and WARMF model models
EC forecasts are shown in Figure 14a,b, respectively, with their linear regression plots
superimposed. The Regression model EC forecasts shows slightly less scatter around the
“best fit” regression line than the WARMF model EC forecasts. However, neither model
shows a high R-squared coefficient indicating poor fit.

Figure 14. (a,b). Calculated linear regression relationship (solid blue line) for the Regression (a) and WARMF (b) models
together with a scatterplot of the underlying observed EC data and model forecast EC for lead time Δ Day + 12.
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Figure 15 shows the histograms and p-values associated with the matched pair permu-
tation test for both Regression (15a) and WARMF (15b) model EC forecasts for forecast lead
time Δ Day + 12. The results of the matched pair permutation test indicate that neither the
Regression model nor WARMF model EC forecasts are good representations of the observed
EC values at lead day Δ Day + 12. The Regression model EC has a p-value of slightly greater
than 0.05 (0.1021) while the WARMF model EC has a p-value is slightly less than 0.05 (0.0283).

Figure 15. (a,b). Histograms of the mean differences between observed EC and model forecast EC for the Regression (a) and
WARMF (b) models for model forecast lead time Δ Day + 12.
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In addition to the selected lead times presented above, adjusted R-squared and
matched pair permutation tests were computed for EC predictions from both Regres-
sion and WARMF models for all EC forecast lead times from Δ Day + 0 to Δ Day + 14.
Figure 15a,b shows the adjusted R-squared values for both models. As illustrated, the Re-
gression model has higher adjusted R-squared values than the WARMF model throughout
the forecast period indicating a better goodness of fit. However, it is also worth noting
that the adjusted R-squared values for both models decline progressively over the forecast
period indicating a declining goodness of fit at longer lead times.

The results of the matched pair permutation tests comparing the mean of the observed
EC and forecast EC for both regression and WARMF models are shown in Figure 16.

Figure 16. Adjusted R-squared values for the Regression and WARMF models for all EC forecast lead times.

The results of the statistical analyses are summarized as follows:

• Visual analysis and statistical tests indicate that although both observed EC and model
forecast EC are not normally distributed their variance are sufficiently similar to
validate the use of the matched pair permutation test to test whether the mean of the
EC observations and model EC forecasts are statistically similar.

• The Regression model has consistently higher adjusted R-squared values than the
WARMF model at all lead times indicating it has a relatively better goodness of fit.

• The matched pair permutation testing suggests that both models can make reasonably
good EC forecasts out to approximately 7 days.

Discussion of Model Evaluations

Qualitative and quantitative comparisons of the performance of the WARMF and
Regression models for forecasting EC at the compliance monitoring station at Vernalis were
made to assess the utility of both models. The simple evaluation of the Regression and
WARMF forecasting models comparing the differences between the observed salinity and
the model-based forecasts of EC at the Vernalis compliance monitoring station between
22 February 2018 and 22 May 2020 suggested that the Regression model EC forecasts
were generally closer to the overall mean of the observations than the WARMF model EC
forecasts (previously shown in Figure 5). Although there were a total of 820 EC observations
made at the Vernalis monitoring station fewer forecasts were made due to personnel
availability and occasionally data validity issues. The WARMF model EC forecasts were
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made on the Monday of each week owing to the greater amount of time required to
assemble model time series input data and complete each forecast and associated personnel
constraints—hence forecasting frequency was roughly three times higher in the case of the
Regression model (previously shown in Table 2).

The results of the model performance comparison as was shown in Figure 7, the
Regression model provides EC forecasts with mean differences of less than or equal to
5 μS/cm for the first 7 days (Δ Day + 0 to Δ Day + 6). Alternately, the WARMF model
provides EC forecasts with mean differences of less than or equal to 5 μS/cm for only
5 days (Δ Day + 0 to Δ Day + 4). Based on these measures of performance, the Regression
model provides EC forecasts with reduced error relative to the WARMF model for the
period from Δ Day + 4 to Δ Day + 6.

Forecast EC standard deviation, a measure of the dispersion of the EC forecasts or EC
forecast differences around the mean EC value, showed that Regression model EC forecasts
closely approximated of the EC observations at all lead times. The standard deviations
of the WARMF model EC forecasts were consistently less than standard deviations of
the EC observations until lead time day + 8. The standard deviation of forecast EC
differences steadily increased with forecast lead time for both models with the WARMF
model EC forecasts exhibiting greater values of standard deviation than the Regression
model throughout the forecast period (previously shown in Figure 2).

To examine the effect where individual model bias affected the mean of differences
between the observed EC and the model forecasted EC, EC forecast values that were
higher than the measured EC were examined separately from those for which the EC
forecast values were lower than the corresponding EC observations. Figures 8 and 9
showed comparisons of the positive and negative bias EC results for the Regression and
WARMF models, respectively. For the positive bias differences in EC, the Regression model
had smaller differences at all lead times than the WARMF model. For the negative bias
differences in EC, the Regression model had smaller negative mean differences than the
WARMF model. For both the positive and negative bias forecast mean differences in EC, the
Regression model performed better than the WARMF model for lead times from Δ Day + 0
to Δ Day + 10. From Δ Day + 12 to Δ Day + 14, the performance of both model EC forecasts
was approximately the same.

Visual inspection of the forecast EC time series results did not reveal any particular
seasonal influence on the results. The RMSE between the observed EC data and model EC
forecasts was also calculated as a function of forecast EC lead time. These results revealed
that RMSE increased with EC forecast lead time indicating a decrease in the reliability of
model forecasts. The Regression model showed consistently lower RMSE values compared
to the WARMF model. The California Nevada River Forecast Center has typically run
its published forecasts out only 10 days. As previously discussed, fourteen days has
been considered by technical analysts associated with the real-time salinity management
program to be a minimum period that would reasonably allow agricultural and wetland
managers time to make adjustments to salt load export to the SJR.

Visual analysis and statistical tests suggested that neither the observed EC data or
the model EC forecasts were normally distributed whereas the variances were sufficiently
similar to validate the use of the matched pair permutation test, used to test whether the
mean of the observed EC and model EC forecasts are statistically similar. The Regression
model showed better goodness of fit relative to the WARMF model (Figure 16) as assessed
by the R-squared coefficient The matched pair permutation tests indicated that both Regres-
sion and WARMF models provided reasonable forecasts extending out to approximately
7 days—not quite long enough to satisfy the goal of 14 days suggested for agricultural and
wetlands stakeholder operations.

The prior analyses were based on using the full data set of all available daily obser-
vation EC data–model forecast EC paired values for both the Regression and WARMF
models. However, the Regression model EC forecasts were made approximately three
times more frequently than the WARMF model EC forecasts over the past 2 years (Table 3).
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Comparisons of the concurrent day EC forecast results with those made with the full data
set suggested that the results of the analysis were similar. For both cases, the WARMF
model EC forecasts were consistently lower than those the Regression model and also
lower than the observed data (comparing Figure 1 with Figure 17). The standard deviations
of differences between forecasts and observations for the WARMF model EC forecasts for
both the full and concurrent data sets were greater than those for the Regression model at
all forecast lead times.

In general, the Regression model performed better than the WARMF model for fore-
casting EC for up to one week into the future.

7. Case Study: Forecasts of EC Exceedances during Spring 2021

During February 2021, an opportunity arose to compare the forecasting capability
of both models in real-time during a time period where the trend in the 30 day running
average EC at two of the three SJR compliance monitoring stations suggested potential
future exceedance of EC objectives. California is in the second year of a severe drought
and water shortages in the State’s reservoirs have resulted in severe curtailment of surface
deliveries to some farmers. Federal contractors with junior water rights in the SJR Basin,
south of the Delta, may receive no surface water deliveries at all during the 2021 irrigation
season. The central premise of the real-time salinity management program remains that
coordinated actions on the part of stakeholders can optimize the use of SJR assimilative
capacity preventing violations of water quality objectives.

The real-time water quality management program was initiated during a time when
Vernalis was the only compliance monitoring station for salinity on the SJR. During 2020,
two additional water quality stations were added for salinity management in the lower
SJR—Reach 83. This action, that was subsequently introduced as an amendment to the
Basin Water Quality Control Plan, ostensibly places limits on the degradation of water
quality (EC) of riparian diversions into the Patterson and West Stanislaus Irrigation Districts.
Although it is unclear what enforcement actions might follow non-compliance with the
new 1550 μS/cm salinity objective for Reach 83, the current WARMF model and the USBR’s
Regression model were extended to supply 14 day forecasts of EC and salt load assimilative
capacity at these stations. The basin Plan amendment provided some compliance relief for
various sequences of wet, dry and critically dry years where the 30 day running average EC
limit was raised using a weighting schema. Unfortunately, the formula does not provide
any means to avoid the EC objective for the current water year.

The USBR’s obligation under a Management Agency Agreement (MAA) signed with
the CRWQCB (the State regulator) is to meet the 30 day rolling average EC objectives at
the Vernalis, Crows Landing and Maze Road Bridge, the current compliance monitoring
sites for EC. These objectives are ostensibly to provide suitable water quality for riparian
agricultural diversions along the mainstem of the SJR and in the Delta. The premise was
that stakeholders would help to sustain water quality improvements in the SJR with the
help of the USBR-funded cyberinfrastructure by scheduling drainage salt loads from west-
side sources to coincide with dilution flows generated from east-side sources so as not to
exceed the salt load assimilative capacity of the SJR, estimated at each of these stations.

In late February 2021, as watershed inflow to the SJR subsided after a series of rainfall
events, both the WARMF and Regression forecasting models suggested a slowly increasing
trend in the daily and 30 day running average EC (Figures 17 and 18) that might exceed the
various compliance monitoring station EC objectives at Crows Landing and Maze Road (EC
30 day running average objectives of 1550 μS/cm) and at Vernalis which was transitioning
from the winter 30 day running average EC objective of 1000 uS/cm to the irrigation season
objective of 700 μS/cm. Note that the irrigation season objective applies after April 30
(when 30 days have elapsed). The weekly WARMF model forecast (green background)
suggested on 22 February 2021 that the 30 day running average EC threshold of 1550 μS/cm
at Crows Landing could be exceeded on 6 March 2021 (Figure 18a) whereas the Vernalis
site still showed salt load assimilative capacity (Figure 17a). The USBR had been making
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regular adjustments of New Melones reservoir releases to maintain compliance with EC
objectives at Vernalis as required under the MAA. The Regression model (blue background)
that was run on the same Monday February 22 (Figure 18b) suggested an occurrence of the
same exceedance event although the date of the exceedance was predicted one day earlier.
In order to lower the 30 day running average EC at Crows Landing, west-side return flows
upstream of Crows Landing would need to fall below the 1550 μS/cm criterion.

WARMF and Regression model forecasts made on April 26 were much closer in their
predictions (Figure 18c,d) and neither suggested that 30 day running average would drop
below the zero line—indicating continuing exceedance and lack of SJR SLAC (Figure 18e,f).
The forecasts made by the models on 1 June 2021 show that the daily mean EC dropped
below the objective on 19 May 2021 and continued to drive the 30 day rolling average
downward until it dropped below the 1550 μS/cm objective and transitioned into positive
territory on 28 May 2021 (Figure 19a,b).

Figure 17. Comparison of daily WARMF and Regression model forecasts for EC at the Crows Landing
compliance monitoring station on 22 February 2021 (a,b); 26 April 2021 (c,d,e,f); and 1 June 2021 (g,h).
Graphs (e,f) show the 30-day running average EC forecast on 26 April 2021 relative to the the 30-day
running average EC compliance objective. Conversion of flow in cfs to m3/s: 100 cfs = 2.83 m3/s.
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Figure 18. Comparison of daily WARMF and Regression model forecasts for EC at the Crows Land-ing
compliance monitoring station on 22 February 2021 (a,b); 26 April 2021 (c,d,e,f); and 1 June 2021 (g,h).
Graphs (e,f) show the 30-day running average EC forecast on 26 April 2021 relative to the the 30-day
running average EC compliance objective. Conversion of flow in cfs to m3/s: 100 cfs = 2.83 m3/s.

This transition is also shown in Figure 19. Figure 19c, which was produced on
1 June 2021, correctly predicted the transition to positive salt load assimilative capacity
on 26 May 2021. This plot also shows the proportion of the salt load contributed by the
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combination of Mud and Salt Slough relative to the total salt load measured at the Crows
Landing compliance monitoring station. At this time of year, the majority of the salt load
in these Sloughs is seasonal wetland drainage, which typically has an EC in excess of
1500 μS/cm.

Figure 19. Comparison of daily WARMF and Regression model forecasts for EC at the Crows Landing
compliance monitoring station on 1 June 2021. Figures (a,b) show the 30 day running average EC
and forecast for 1 June 2021. Figure (c) shows the SLAC at the Crows landing station. By early May
wetland drainage no longer dominates Mud and Salt Sloughs and daily SLAC in the river increases.
The 30 day running average SLAC crosses the zero line around 28 May 2021. Breaks in the plot are
the result of temporary EC sensor malfunction at the Crows Landing station. Conversion of flow in
cfs to m3/s: 100 cfs = 2.83 m3/s.

8. Stakeholder Response and Coordination

As previously noted, this event has provided the USBR with an opportunity to demon-
strate the agency’s commitment to its obligations under the MAA, reminded stakeholders
of their role in the real-time program and exposed deficiencies in real-time response to
periods of water quality exceedance. During the second week of February, when it became
clear through the use of the forecast models that the salinity at both Vernalis and Crows
Landing stations was trending towards potential exceedance of the 30 day running average
EC stakeholders were notified directly. The likely date of exceedance was estimated to
be March 5 from WARMF and Regression model forecasts made on 23 February 2021. In
order to provide stakeholders adequate time to perform remedial actions, we decided to
directly engage with stakeholders in the SJRB rather than rely on the USBR’s normal weekly
posting of flow, EC and 30 day running average EC at the three compliance monitoring
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stations. Communication with stakeholders was primarily by e-mail to east- and west-side
agricultural stakeholder coalitions, directly impacted water district, and representatives of
the private, state and federal wetland entities. the San Joaquin Valley Drainage Author-
ity, Grassland Water District, Los Banos Wildlife Management Area, Patterson and West
Stanislaus Irrigation Districts, on the east-side Modesto and Turlock irrigation districts
and the East SJR Water Quality Coalition. A similar e-mail was sent to the Regional Water
Quality Control Board, the basin regulator, that has the power to set fines for water quality
objective exceedances.

In retrospect, the timing of the stakeholder outreach was timely and prescient. Al-
though anticipated, programmatic fish migration flows from east-side reservoirs, that
started in mid-April, were able to drive down the EC at Vernalis below the 700 μS/cm
limit that came into effect on April 30. The Merced River is the only tributary to the SJR
upstream of Crows landing and supplemental flows for fish migration were insufficient
to prevent the EC at Crows landing from exceeding objectives. During the period of
exceedance at the Crows Landing compliance monitoring, there were opportunities to
address the excess salt loading to the SJR. During the initial period of exceedance, raising
the board elevation at the San Luis Drain outlet (a previously used conveyance facility
that carries only subsurface agricultural drainage) and storing drainage return flows in
the drain for later release would have reduced salt loading by 100 tons (91 tonnes) per
day and eliminated the deficit in SLAC. Most drainage return flows into the drain are
from seepage from adjacent agricultural land and wetland and with an average salinity of
2500 μS/cm. However, after the first days of exceedance, the daily EC remained elevated
above 1550 μS/cm and the 30 day running average SLAC deficit climbed to a steady state
load of approximately negative 1000 tons (907 tonnes) per day.

The exceedance of the Crows Landing EC objective occurred during the wetland draw-
down period when the Grassland Water District and adjacent State and Federal refuges
are draining ponded surface water to allow germination of swamp timothy, smartweed
and water grass food crops that serve overwintering waterfowl. Since the timing of this
drawdown is critical for swamp timothy production and the waterfowl that prefer this food
source, asking wetlands to curtail drawdown during this period was viewed as unrealistic
by wetland resource managers.

Procurement of additional dilution flow from the Merced Irrigation District was
also unrealistic given the prevailing drought conditions and anticipated water shortages
during the summer of 2021. In addition, some entity would have had to foot the bill for
procurement of any additional supply if supply were available.

The Regional Board has taken a “wait and see” approach to this first test of the
real-time water quality management system and the newly promulgated upstream EC
objectives at Crows Landing and Maze Road compliance monitoring stations. There has
been no discussion of fines or allocation of penalties across subareas contributing salt
load to the SJR from the Regional Board. There is also the fact to consider that riparian
diverters along the northwest-side subarea is the river reach that the upstream objective
was promulgated to protect. Fining stakeholders who are being harmed by the elevated
EC along this reach of the SJR would be problematic.

At the time of writing, the severe drought conditions in the basin have reduced
forecasted flow for 10 June 2021 at the Crows landing compliance monitoring station to
under 100 cfs and daily EC is once again over the 1550 threshold EC. The 30 day running
average EC is climbing once again and may remain above the objective for the remainder
of the irrigation season while drought mitigation actions are in force.

9. Summary and Conclusions

Real-time salinity management is a stakeholder- and water agency-sanctioned pro-
gram that helps to maximize allowable salt export from the agriculture-dominated SJR
Basin. The essential components of the current program that are now in place include the
establishment of telemetered sensor networks, a web-based information system for shar-
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ing data, a basin-scale salt load assimilative capacity forecasting model and institutional
entities tasked with performing weekly forecasts of river SLAC and using these forecasts
to improve scheduling of west-side drainage salt load export and the dilution provided by
east-side reservoir releases. Two modeling approaches were developed simultaneously,
in part to see if a higher level of automation could be introduced in developing SLAC
forecasts and if the frequency of these forecasts could be moved from weekly using the
WARMF numerical simulation model to a simpler flow-based regression modeling ap-
proach run daily. The Regression model relies on a comprehensive statistical analysis of
the relationship between flow and salt concentration at three compliance monitoring sites.
The WARMF watershed water quality simulation model provided the conventional SLAC
forecasting approach. The model is data driven and although model data acquisition is
almost fully automated, there is still a need for user involvement for simulation times that
may take an hour or more. The results from both models are migrated manually to Excel
spreadsheets that are used to produce graphics that are posted to the web daily in the case
of the Regression model and weekly for the WARMF model.

The first part of this paper has provided a comprehensive analysis of the model results
when used to make 14 day EC forecasts (daily and 30 day running average EC) and an
estimate of 14 day river SLAC. Analysis of the results from both model-based forecasting
approaches over a period of five years shows that the regression-based forecasting model,
run daily Monday to Friday each week, provided marginally better performance. However,
the regression-based forecasting model assumes the same general relationship between flow
and salinity which breaks down during extreme weather events such as droughts when
water allocation cutbacks among stakeholders are not evenly distributed across the basin.
A recent test case was used to demonstrate the potential utility of both models in dealing
with an exceedance event at the Crows Landing compliance monitoring station. This year
is providing an opportunity to test the robustness and reliability of the flow-EC relationship
that the regression model relies upon since contract water delivery to USBR contractors is
scaled back unequally during times of shortage in association with District water rights.
The major lesson learned from the project to date is that a dual modeling approach of using
a simple Regression model for daily automated forecasting with weekly simulation model
runs using the WARMF model appears to be a good compromise at present that provides
sufficient frequency of forecasts to allow stakeholders to make timely decisions (Regression
model) while using stakeholder data to eliminate model inconsistencies during periods of
unusual or extreme basin hydrology. The use of the WARMF model in this dual modeling
approach provides modelers with a tool to more fully understand the current state of the
system and to investigate unusual occurrences in basin hydrology and water quality that
are only possible with a mechanistic model like the WARMF model.

In the future, it would be desirable that the Regression and WARMF models are
both run daily which would eliminate some of the model comparison questions that were
addressed in this study. Further automation of WARMF model data pre-processing steps
could be combined with similarly automated real-time data quality assurance routines—
perhaps enhanced with machine learning procedures to eliminate data gaps, remove
sensor drift and data spikes to improve model performance. The lack of a robust and
customizable, public domain real-time data quality assurance software tool remains the
biggest remaining impediment to water quality forecasting capabilities and if addressed
could enhance stakeholder confidence in this instance of model-based environmental
decision support.
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Abstract: This work presents updated reconstructions of watershed runoff to San Francisco Estuary
from tree-ring data to AD 903, coupled with models relating runoff to freshwater flow to the estuary
and salinity intrusion. We characterize pre-development freshwater flow and salinity conditions
in the estuary over the past millennium and compare this characterization with contemporary
conditions to better understand the magnitude and seasonality of changes over this time. This work
shows that the instrumented flow record spans the range of runoff patterns over the past millennium
(averaged over 5, 10, 20 and 100 years), and thus serves as a reasonable basis for planning-level
evaluations of historical hydrologic conditions in the estuary. Over annual timescales we show that,
although median freshwater flow to the estuary has not changed significantly, it has been more
variable over the past century compared to pre-development flow conditions. We further show that
the contemporary period is generally associated with greater spring salinity intrusion and lesser
summer–fall salinity intrusion relative to the pre-development period. Thus, salinity intrusion in
summer and fall months was a common occurrence under pre-development conditions and has been
moderated in the contemporary period due to the operations of upstream reservoirs, which were
designed to hold winter and spring runoff for release in summer and fall. This work also confirms a
dramatic decadal-scale hydrologic shift in the watershed from very wet to very dry conditions during
the late 19th and early 20th centuries; while not unprecedented, these shifts have been seen only a few
times in the past millennium. This shift resulted in an increase in salinity intrusion in the first three
decades of the 20th century, as documented through early records. Population growth and extensive
watershed modification during this period exacerbated this underlying hydrologic shift. Putting
this shift in the context of other anthropogenic drivers is important in understanding the historical
response of the estuary and in setting salinity targets for estuarine restoration. By characterizing
the long-term behavior of San Francisco Estuary, this work supports decision-making in the State of
California related to flow and salinity management for restoration of the estuarine ecosystem.

Keywords: tree-ring; flow reconstruction; pre-development; estuarine salinity; salinity intrusion

1. Introduction

Populated estuarine regions worldwide have been subject to a variety of stressors, in-
cluding the introduction of invasive species, loss of tidal habitat, anthropogenic alterations
to the natural hydrologic cycle (including freshwater diversions), impacts to sediment
transport resulting from upstream watershed land use modifications, and other water
quality impairments [1]. These stressors can adversely affect the estuarine habitat for
resident and anadromous aquatic species. Today, there is growing interest in many parts
of the world to restore estuaries to more pre-development or natural conditions [2–5].
Although restoration planning must account for multiple interacting stressors, for estuaries
subjected to significant hydrologic alterations, restoration of a more natural hydrology and
salinity regime is key. To support such restoration planning, pre-development reference

Water 2021, 13, 2139. https://doi.org/10.3390/w13152139 https://www.mdpi.com/journal/water
187



Water 2021, 13, 2139

conditions may need to be defined, although no formal methodology is proposed in current
U.S. regulations. Directly observed data representing reference conditions in a developed
estuary are difficult to obtain, especially when the development has occurred over centuries.
However, some pre-development characteristics can be inferred from proxy data, notably
estimates of precipitation in the estuary watershed through tree-ring measurements of
long-lived tree species.

This work seeks to support restoration planning in the San Francisco Estuary, the
largest estuary on the Pacific coasts of North and South America, by characterizing the
region’s pre-development hydrologic and salinity conditions over the past millennium. The
estuarine region includes a series of interconnected embayments, rivers, sloughs, marshes
as well as the delta formed by the Sacramento and San Joaquin Rivers (hereafter referred
to as the “Delta”), which together drain a watershed of 75,000 square miles, more than
40% of the area bounded by the state of California [6,7]. Following European settlement of
California in the mid-18th century and the subsequent Gold Rush (circa 1850), the estuary
and its watershed have been subject to extensive changes, including land-use conversion
to agriculture and urbanization, construction of water storage and diversion facilities on
major rivers, channelization and modification of riparian and tidal habitats, and out-of-
basin exports of water [7–9]. The estuary is currently the focus of much scientific attention
because of its importance to aquatic ecosystems and because large parts of the state’s urban
and agricultural economies are dependent on water supplies from the Delta [7,10,11].

Freshwater flow to the estuary (termed “Delta outflow”) has been identified as a vital
planning component for regional sustainability. Delta outflow and salinity have been man-
aged for several decades through the regulation of upstream reservoirs and out-of-basin
exports. Maximum salinity levels are prescribed at various locations in the Delta; the
broader salinity regime is regulated as the position of the 2 parts per thousand bottom
isohaline from Golden Gate (measured in km), commonly referred to as X2 [12–14]; see
Figure 1 for isohaline positions). Despite ongoing regulatory efforts, the abundance of
many Delta fish species continues to decline from the first formally recorded levels in the
1960s [7,15–17]. In response to these declines, additional freshwater flow and salinity regu-
lations are being considered for future implementation [18]. An improved understanding
of the estuary’s hydrology and salinity characteristics prior to development, and differences
from contemporary conditions, will support decisions related to its future management.

The broader region delimited by the San Francisco Estuary and its upstream Central
Valley watershed benefits from the availability of extensive data to reconstruct past flow
and salinity conditions. These data include flow and salinity measurements, over a century
or more, that represent the intensification of development in the region (e.g., [14]). These
data also include tree-ring measurements to characterize watershed precipitation over
the past two millennia (e.g., [19–21]). The specific research objectives of this work are to
refine and update tree-ring-based reconstructions of Central Valley runoff over the past
millennium and reconstruct Delta outflow and salinity over similar millennial timeframes
using our runoff estimates within a modeling framework informed by previously pub-
lished work. This integrated evaluation provides a time-resolved characterization of the
estuary’s flow–salinity behavior that allows comparison between pre-development and
contemporary conditions.

This work builds on previous research that either (i) relies on a contemporary hydro-
logic sequence to estimate outflow and salinity changes using different modeled repre-
sentations of the region’s level of development [22] or (ii) relies on contemporary salinity
data to estimate salinity changes using a tree-ring based hydrologic sequence [23]. By
using a tree-ring based hydrologic sequence in conjunction with a modeling approach that
estimates pre-development estuarine flow and salinity responses, this work attempts to
represent the actual range of flow and salinity conditions over long time horizons and is
expected to better support regulatory decision making by providing a baseline to inform
future flow regulations and restoration actions in the estuary. Furthermore, this work places
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the wet and dry flow patterns recorded in the estuary over the past 150 years in the context
of flow variations estimated over the past millennium from the tree-ring proxy record.

Figure 1. Study location map showing the locations of tree ring sites used in the analysis. Circles
mark sites contributing to the short (60 sites) and long (13 sites) reconstructions. Circles sized
proportional to percentage of variance explained in regression models for single site reconstructions
(SSRs). Sites contributing to long reconstruction marked with green; those as well sites marked with
red contribute to the short reconstructions. Nine sites (gray) were screened out and not used in later
reconstruction steps.

2. Background

To provide background for this work, we present a brief overview of the study
region’s geographic setting followed by a review of the region’s hydrologic and salinity
conditions over the past millennia. This review differentiates between three periods: a “pre-
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development” period, a “contemporary” period, and an “early development” period that
bridges the pre-development and contemporary periods. We define the terminus of the
pre-development period as water year (WY) 1850, which roughly aligns with the California
Gold Rush and follows previous work [24–26] California water years run from 1 October
through 30 September. Furthermore, we define the start of the contemporary period as
WY 1912, a date that aligns with availability of Delta outflow estimates [27] but pre-dates
the availability of systematic estuarine salinity measurements by about a decade [14]. By
default, the intervening early development period spans six decades between WYs 1851
and 1911.

2.1. Geographic Setting

The geographic focus of this paper is the upper portion of the San Francisco Estuary,
including Suisun Bay, the Delta, and the Central Valley watershed upstream of the estuary
(Figure 1). The Delta is the entry point of over 90% of the freshwater flow to the estu-
ary [28] and drains the Sierra Nevada mountain range and Central Valley—a watershed of
approximately 75,000 square miles. The configuration of the estuary formed approximately
5000 years ago when sea level rise stabilized [29]. Sea level rise maintained an average rate
of 1.0–1.3 mm/yr [30] through the late Holocene until the late 19th century when it shifted
to an average rate of 2 mm/yr [31].

2.2. Pre-Development Conditions

Prior to development of the Central Valley and the San Francisco Estuary, the Sacra-
mento, San Joaquin, and other rivers that drain the region had insufficient capacity to carry
peak wet season flows generated by precipitation and snowmelt runoff. Rivers overflowed
their natural levees in most years and discharged into adjacent low-lying basins, thus
attenuating runoff to the Delta. As these flood flows receded, the low-lying basins would
partially drain back to the rivers through smaller channels and sloughs; however, the
basins typically remained inundated through late summer [32,33] Seasonal overtopping of
the pre-development levees supported inland marshes [24,34–36], while riparian forests
existed on natural riverbanks [37] and grasslands interwoven with vernal pools and valley
oaks extended from the floodplains to the tree-covered foothills [38–40]. Water use by
natural vegetation [41], in combination with the annual cycle of flooding, reduced the
amount of precipitation and snowmelt runoff that reached the Delta. As natural levees
were raised and wetlands and riparian forests were drained and cleared, water use by
agriculture replaced water use by native vegetation in the Central Valley and the Delta.
Fox et al. [24] estimated that annual water use from the natural landscape was similar to
that of the highly altered contemporary landscape, such that freshwater flow reaching the
estuary (i.e., Delta outflow) was minimally changed. In contrast to the Central Valley and
Delta, land use changes in the surrounding foothill and mountain watersheds have been
relatively minor [24]. The remainder of this section reviews previous efforts to characterize
pre-development conditions using tree-ring data and flow–salinity modeling approaches.

2.2.1. Estimates of Pre-Development Central Valley Runoff from Tree-Ring Data

Annually resolved variations in hydroclimate before the start of instrumented weather
records can be inferred from tree-ring records. For some tree species and climate regimes,
tree growth is limited by drought stress, such that tree-ring chronologies, or standardized
indices of ring width closely track the occurrence of wet and dry years [42–44]. A drought
atlas from 835 tree-ring chronologies in North America, which covers two millennia,
underscores the shortcomings of a relatively short instrumented record for characterizing
extremes of hydroclimate [45]. An expanded network of 1285 chronologies identifies
unmatched severe, widespread, persistent Southwest droughts in the medieval period [46],
and independent tree-ring evidence from exposed stumps in lakes and rivers suggests that
two such droughts in the Sierra Nevada may have lasted more than two centuries [47].
Paleo-simulations of Mono Lake from tree-ring data independently corroborate the timing

190



Water 2021, 13, 2139

and magnitude of Stine’s drought-induced low stands and suggest centennial-average
precipitation and river runoff in the central Sierra Nevada as low as 75% of the 20th century
values during the medieval period [48].

Most relevant to our characterization of pre-development San Francisco Estuary
hydrology are quantitative tree-ring reconstructions of annual discharge or runoff for
the Sacramento and San Joaquin Rivers. Streamflow reconstructions from tree-rings are
generally done by linear regression, in which a time series of unimpaired runoff is cal-
ibrated with time series from a network of indices of annual tree-ring width. Regres-
sion approaches, which can vary greatly from one study to another, are reviewed else-
where [49,50]. Reconstructions for many basins in the western United States are available at
https://www.treeflow.info/ (accessed on 9 July 2021). The first such reconstruction, which
estimated flow in the Sacramento River at Bend Bridge (see Figure 1), utilized a network of
17 tree-ring chronologies that dated back to 1560. This reconstruction indicated that the
wettest (1854–1916) and driest (1917–1950) periods overlapped with the historical period
for which gaged flows are available in Earle [51].

The accuracy of Sacramento River runoff reconstructions over the past 500 years was
improved by a network of blue oak (Quercus douglasii) chronologies whose collection began
in the mid-1990s [52]. These blue oak chronologies, along with new collections of western
Juniper (Juniperus occidentalis), were utilized with other tree-ring chronologies to reconstruct
Sacramento River runoff back to 869; this work showed that the instrumented flow record
was deficient in representing long duration (e.g., decadal and longer) droughts and wet
periods [53]. A more recent effort reconstructed annual runoff for the Sacramento and
San Joaquin Rivers and their major tributaries for the interval 900–2012 [20]. In contrast
to Earle [51], these reconstructions indicated that, while the instrumented record does
not reflect the extreme single-year Central Valley droughts, it does include multi-year
droughts of similar magnitude to the most extreme droughts of the long-term record. The
reconstructions further indicated exceptionally long multi-decadal swings between wet
and dry conditions in the medieval period. More recent work applying the Sacramento
River reconstruction [20] underscores the spatial extent of medieval drought: multi-basin
coverage of hydrologic drought during the 1100s in the Sierra Nevada as well as the
Colorado Rockies [54].

2.2.2. Estimates of Pre-Development San Francisco Estuary Salinity from Tree-Ring Data

As discussed above, tree-ring data have been widely used to extend the instrumented
time series of river flow and runoff. Tree-ring data have also been used to extend time
series of measured salinity in the estuary, recognizing cause–effect relationships between
precipitation, runoff, river flows and estuarine salinity.

Extending an earlier reconstruction [52], Stahle [55] used three blue oak tree-ring
chronologies to reconstruct salinity in San Francisco Bay over the 673-year period from
1333 to 2005. The reconstruction was calibrated with near surface salinity (January through
July averages) at a stationary location measured near Golden Gate at Fort Point over the
period WYs 1922–1952. Based on their salinity reconstruction, the authors concluded
that the droughts of 1977 and 1986–1991 were among the most severe in the 673-year
record. They observed that their reconstruction systematically underestimated the salinity
during most of the verification period WYs 1952–2005, citing anthropogenic changes to
Delta outflow through increased water use in the watershed and Delta diversions. Fox
et al. [56], in a study of San Francisco Estuary salinity trends, provided an alternative
explanation for the fixed location salinity behavior examined by Stahle [52]. Noting that
salinity at locations near the ocean are subject to additional drivers besides Delta outflow,
Fox et al. [56] concluded that trends at Fort Point (referring to the location as “Presidio”)
since 1946 were primarily affected by trends in coastal conditions rather than trends in
Delta outflow.

Stahle et al. [23] also applied Blue oak tree-ring chronologies to directly reconstruct the
longitudinal position of the X2 isohaline in San Francisco for the 625-year period from 1379
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to 2003. The reconstruction was calibrated with spring X2 data (February through June
averages) that were estimated from instrumented salinity gages over the period 1956–2003.
Reporting correlations between reconstructed X2 position, sea surface temperature and
atmospheric circulation regimes over the north Pacific, they concluded that X2 minima
tended to occur during very strong El Niño events but X2 maxima did not appear to occur
during La Niña events. This salinity reconstruction does not represent pre-development X2
conditions; rather, it represents how X2 may have fluctuated under the climatic variability
of the past six centuries given a behavior similar to the contemporary estuary.

2.2.3. Models of Pre-Development Central Valley Hydrology and Delta Hydrodynamics

Pre-development Central Valley hydrology and Delta outflow were characterized
by the California Department of Water Resources (CDWR) [25] utilizing two models to
simulate watershed hydrology. They used the Soil Water Assessment Tool (SWAT) [57] to
model precipitation–runoff characteristics of the upper elevation Central Valley watersheds
and the (California) Central Valley Simulation Model, or C2VSim [58], an integrated
hydrologic model, to simulate groundwater and surface water hydrology on the pre-
development Central Valley floor. Land use was based on prior characterizations of natural
vegetation [24,59]. Potential evapotranspiration from natural vegetation was estimated
using reference evapotranspiration from Orang et al. [60] and vegetation coefficients from
Howes et al. [41]. CDWR [25] estimated a long-term annual average pre-development Delta
outflow of 23.9 billion cubic meters (BCM) assuming a repeat of a 93-year contemporary
climate sequence spanning WYs 1922–2014. Gross et al. [22] utilized these modeled values
to compare inter- and intra-annual variability of pre-development and contemporary
Delta outflow.

Pre-development salinity conditions in the San Francisco Estuary were investigated
and compared to contemporary salinity conditions by Andrews et al. [26] using a three-
dimensional hydrodynamic model [61]. Their pre-development model was based on
a planform developed by [62] and bathymetry from multiple sources. Their simulation
used observed inflow data from February 2006 to October 2008 to represent wet, dry, and
critically dry water years. Andrews et al. [26] found the dramatic changes in estuary plan-
form and bathymetry, as well as differences in mean sea level between the pre-development
and contemporary conditions, to have limited influence on saltwater intrusion. The pre-
development estuary was found to have less saltwater intrusion for the same Delta outflow
and a faster response of saltwater intrusion to changes in Delta outflow. Due to the changes
in seasonal distribution of Delta outflow, saltwater intrusion was found to be less variable
for their contemporary scenario than their pre-development scenario. Changes to the
seasonal timing of freshwater flows was reported to have a larger influence on saltwater
intrusion than the changes in estuarine planform and bathymetry. Gross et al. [22] uti-
lized this work to compare inter- and intra-annual variability of pre-development and
contemporary salinity intrusion in the Delta.

The aforementioned model studies of pre-development conditions used an analysis
method termed the “level-of-development” approach [63]. In this approach, landscape,
channel geometry, and anthropogenic flow modification through reservoirs or withdrawals
are fixed to represent a specific era or scenario (e.g., pre-development conditions, contem-
porary conditions, planned future conditions) and hydrology is typically represented by
a sequence of historically observed precipitation or runoff. Thus, these model studies seek
to describe how a pre-development or modern landscape and estuary would respond given
contemporary instrumentally derived climatic inputs.

As described later in this paper, our work adopts some level-of-development assump-
tions to characterize pre-development Central Valley hydrology and Delta hydrodynamics.
For example, we assume a stationary pre-development landscape consistent with Fox
et al. [24] and CDWR [25] and a stationary pre-development outflow–salinity relation-
ship consistent with Andrews et al. [26]. However, our work deviates from a typical
level-of-development analysis in one crucial aspect—the driving hydrology is not simply
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represented by repeating the sequence of observed runoff over the instrumented period.
Rather, it reflects the estimated runoff over a millennial time scale obtained from the
tree-ring proxy record from the watershed.

2.3. Early Development Conditions

The pre-development landscape has been radically modified over two centuries,
starting in the mid-18th century when Spanish settlers arrived, bringing livestock and
range management. The discovery of gold along the American River in 1848 spurred
agricultural and urban development in the Central Valley. That same year, the federal
government transferred ownership of “swamp and overflowed lands” to California on the
condition that they be drained and reclaimed. These permanent wetlands were largely
converted to agriculture by 1930.

Regular flooding on major rivers led to the formation of levees and reclamation
districts by 1860. Starting in the 1870s, studies were conducted to determine how to reduce
flooding and supply irrigation water. The Office of the State Engineer was established
in 1878 to further these plans, and in 1880 the legislature approved the Drainage Act,
proposing valley-wide flood control. These studies culminated in the Central Valley Project
Act in 1933. Water resources were further reconfigured in response to voter approval of
the Burns-Porter Act in 1960, financing the State Water Project [64]. Ultimately, the Central
Valley was re-plumbed to move water throughout the state in a complex man-made water
system with some 1300 miles of aqueduct and 1350 surface reservoirs with 40 million
acre-feet (32.4 BCM) of storage [64].

Although this period of early development between WYs 1851 and 1911 is poorly
understood hydrologically, limited availability of instrumented data facilitated previous
work. Arguably the most significant data set compiled during the latter part of this period
was published by the California Department of Public Works [65], the predecessor to
CDWR. This document, commonly referred to as Bulletin 5, reports a long-term record of
stream flows to the Central Valley beginning in WY 1872.

Moftakhari et al. [66] reconstructed a Delta outflow time series spanning the early
development period (beginning in 1858) through correlation with tide gauge data mea-
sured at San Francisco. Moftakhari et al. [67] reconstructed a Delta outflow time series
beginning in WY 1850 through correlation with Sacramento River stage data measured
at Sacramento. River stage data were unavailable over WYs 1863–1881; thus, the authors
augmented the reconstructed outflow time series using the work of Moftakhari et al. [66].
MacVean et al. [68] explored the hydrology of the early development period following
1850 by synthesizing reconstructed time series of precipitation, basin inflows, land use,
and levee construction in a semi-distributed hydrologic model. They concluded that, in
spite of significant anthropogenic modifications to the region’s hydrology, by the 1920s
Delta outflow remained similar to pre-development conditions, due in part to flow aug-
mentation provided by flood control infrastructure and enhanced channel conveyance.
MacVean et al. [68] concluded that levee construction, rather than land use change, had the
greatest impact on Delta hydrology during this early development period.

2.4. Contemporary Conditions

Extensive salinity intrusion in the Delta in the early 20th century, caused by a combi-
nation of hydrologic variation and upstream land use and hydrologic change, motivated
a series of Delta field investigations that led to a better understanding of the relationship
between sources of water flows and salinity patterns in the Delta [65]. These findings
supported the development of reservoirs in the upstream watershed to store winter and
spring flows and supply irrigation water needs in the summer months. Among the vari-
ous reservoirs built in the Central Valley, the federal government completed construction
of the 4.5 million acre-feet (5.6 BCM) Lake Shasta in 1944 as part of the Central Valley
Project (CVP) and the state government completed construction of the 3.5 million acre-feet
(4.3 BCM) Lake Oroville in 1968 as part of the State Water Project (SWP) (see Figure 1). Over
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a period of roughly three decades, a complex network of reservoirs, aqueducts, pumps
and gates was constructed to facilitate transport of water to other parts of the state for
agricultural and municipal use.

Today, regulatory activity related to the management of estuarine flow and salinity is
led by the California State Water Resources Control Board (CSWRCB), an agency concerned
with both the water quality and water rights adjudication in California. In August 1978,
the CSWRCB adopted its Delta Plan and Decision 1485 which set objectives for Delta
outflow [69]. CSWRCB updated its Delta Plan in 1995 and adopted Decision 1641 in
2000 [70], which is still in force. The position of the X2 isohaline is a particular focus
of salinity regulation in the estuary, and target ranges are defined by season and water
year type. The position of the X2 isohaline is managed through control of out-of-basin
exports from the Delta and reservoir outflows from major CVP and SWP reservoirs in
the watershed.

Based on continued risk to certain endangered aquatic species, additional restrictions
were imposed on the system through biological opinions rendered by the U.S. Fish and
Wildlife Service in 2008 [71] and the National Marine Fisheries Service [72] under the
U.S. Endangered Species Act. Both biological opinions were recently updated [73,74].
Additional flow regulations are being considered as part of the CSWRCB’s Delta Plan
periodic review [18,75].

A variety of models have been developed to interpret flow and salinity intrusion
in the contemporary Delta; these models are used for research, regulatory planning and
for CVP and SWP operations support. Jassby et al. [12] is an example of a commonly
used empirical X2-outflow model; Rath et al. [76] provides a comprehensive review of this
and other published empirical X2-outflow models. Mechanistically based hydrodynamic
models of the estuary include the one-dimensional Delta Simulation Model 2 or DSM2 [77]
and more complex three-dimensional models such as SCHISM [78], UnTRIM [61,79], and
Delft3D [80].

3. Methods

3.1. Data

Observed and synthetic hydrology data associated with the estuary and its contribut-
ing watershed were used in this work. Measured tree-ring data from available sites in
Northern California and Oregon (Figure 1) were used to develop synthetic annual runoff
sequences. These data are described below.

3.1.1. Hydrology Data

The hydrology data used in this work were drawn from California state data sources
and include secondary (i.e., processed) sources such as water balances and model simula-
tions. Table 1 presents a summary of the data used in our work, including sources.

A widely used measure of Central Valley hydrology is the Eight River Index (8RI),
which constitutes the unimpaired Sierra Nevada runoff to the Sacramento, Feather, Yuba,
American, Stanislaus, Tuolumne, Merced, and San Joaquin Rivers. The 8RI represents a the-
oretical quantity that removes anthropogenic influences such as reservoir impoundments
and land use modifications and thus does not reflect actual runoff conditions. The 8RI data
for WYs 1906–2018 were obtained from the website of the California Data Exchange Cen-
ter [81] and served as the predictand (after transformation) in the tree-ring reconstruction
model described below. The previously described Bulletin 5 [65] streamflow data, which
can be used to compute the 8RI beginning in WY 1872, was used for additional validation
of the tree-ring runoff reconstructions.

194



Water 2021, 13, 2139

Table 1. Summary of model calibration and validation data.

Data Time Period Source and Description

Eight River Index (8RI) (1) WYs 1872–2018 [65,81]

Tree-Ring Chronologies
(long record) 903–2008 Supplemental Materials: A and B

Tree-Ring Chronologies
(short record) 1640–2001 Supplemental Materials: A and B

Pre-Development Delta
Outflow (simulated) WYs 1922–2014 [25]

Contemporary Delta
Outflow WYs 1912–2018 [27,82]

Pre-Development X2 WYs 1922–2014

Generated as part of this work using
simulated

pre-development Delta outflow and
an empirical

relationship developed by
Andrews et al. [26]

Contemporary X2 WYs 1920–2018

Generated as part of this work using
contemporary Delta outflow and an

empirical
relationship developed by

Andrews et al. [26]
(1) measure of Central Valley Runoff.

We adopted publicly available simulation output of the valley floor hydrology [25] to
calibrate a pre-development relationship between Central Valley unimpaired runoff and
Delta outflow on an annual basis. The simulation assumes pre-development land use in the
Central Valley and Delta as presented in Fox et al. [24] and associated natural vegetation
evapotranspiration as presented in Howes et al. [41]. Furthermore, the simulation uses
historical flows from the surrounding upper-elevation watersheds as boundary inputs;
these boundary inputs represent unimpaired runoff data corresponding to WYs 1922–2014,
a 93-year period inclusive of widely varying hydrologic conditions.

We used historical estimates of freshwater flows to the San Francisco Estuary (i.e.,
Delta outflow) spanning WYs 1912–2018 to calibrate a contemporary relationship between
Central Valley unimpaired runoff and Delta outflow on an annual basis. Due to the
complexity of direct observation of Delta outflow, these estimates are not based on tidal
flow measurements. Rather, these estimates are computed from a budget of inflows and
diversions from the Delta [27,82] As discussed below under Modeling Approach, we
used calibrated runoff–outflow relationships (rather than historical data) to reconstruct
contemporary Delta outflow conditions. We decided to use reconstructed flows for the
contemporary period to provide a homogeneous time series for comparison with pre-
development conditions. Otherwise, flow differences between the two periods could
be perceived to be due to statistical artifacts, such as the compression of variance of
reconstructed flows relative to variance of observed flows over a common period [53,83].

3.1.2. Salinity Data

Several modeling steps were followed to generate salinity data necessary to cali-
brate pre-development relationships between annual Delta outflow and seasonal average
X2. First, the daily outflow time series from the aforementioned 93-year simulation [25]
was transformed into a daily “antecedent outflow” time series to represent flow time-
history in the estuary [14,84]. This transformed outflow time series was used to generate
a daily X2 time series using a pre-development flow–salinity relationship reported by
Andrews et al. [26]. Finally, this synthetic daily X2 time series was averaged to develop
seasonal (February–June and July–October) average X2 calibration time series.

For internal consistency, rather than using historical data, we followed a similar
methodology to generate salinity data necessary to calibrate contemporary relationships
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between annual Delta outflow and seasonal average X2. Specifically, we used a subset
of the daily contemporary Delta outflow time series [27,82] spanning WYs 1920–2018
and a contemporary flow–salinity relationship reported by [26]. The initial years of the
contemporary period (WYs 1912–1919) were excluded from model calibration due to lack
of historical Delta outflow data at a daily resolution.

3.1.3. Tree-Ring Data

Sixty-nine tree-ring site chronologies of total ring width were assembled as part of
our work (Figure 1). Each chronology typically represents many (e.g., 15 or more) trees at
a specific location. Initial screening criteria were a minimum time coverage of the period
1636–2003, and geographical location within a box delineated by latitudes 34.5 N to 44.0 N
and longitudes 118 W to 125 W.

We started with files of measured ring widths obtained from two studies conducted
for CDWR [20,85] and supplemented those with additional files from the International
Tree-ring Data Bank [86]. Ring widths were standardized uniformly into site chronologies
using Matlab functions following similar protocol to that in the ARSTAN standardization
package [87]. This includes fitting ring-width series with a cubic smoothing spline [88],
computing core indices as the ratio of ring-width to the smooth spline and averaging the
indices over cores to get the site chronology. Trend in variance indistinguishable from age
or size effects was removed using the method recommended by [89]. From an assessment
of the persistence in the standard chronologies and the annual flows, we decided to use the
residual version [90] of the site chronologies in the reconstruction modeling. The residual
chronology is an average over core indices whose low-order autocorrelation has been
removed fitting the index to an autoregressive (AR) model. We used a modified Akaike
information criterion [91] to select the AR order. Site chronologies are averages over fewer
and fewer trees toward the early part of the tree-ring record. Adequacy of sample size
for each chronology was assessed by the expressed population signal [92]. Secondary
screening eliminated any site chronology whose Pearson correlation with annual flows
over the available period of data overlap (subset of the WYs 1906–2018 period) was either
statistically insignificant or unstable over time at significance level α = 0.05. The temporal
stability of correlation was tested using a difference-of-correlation test [93] of the null
hypothesis that the sample correlations for the first and second halves of the overlap are
from the same population.

Additional tree-ring data and processing information are included in the Supple-
mentary Materials section. Sites and metadata are listed in Supplementary Material A.
Chronology development is described in more detail in Supplementary Material B. Ad-
ditional electronic data files are also included Supplementary Materials and identified in
Supplementary Material A: files of original tree-ring width measurements; a time series
matrix of the residual site chronologies; a time series matrix of observed and reconstructed
flows, with confidence intervals on the reconstruction.

3.2. Modeling Approach

A composite modeling approach was employed to reconstruct time series of annually
varying Central Valley runoff, Delta outflow and salinity spanning more than 1000 years.
The modeling approach, as summarized below, consists of three components. The purpose
of the first component is to reconstruct a runoff time series from measured tree-ring data.
The purpose of the second and third components is to reconstruct time series of Delta
outflow and salinity from the modeled runoff time series representing the pre-development
and contemporary periods, respectively. The three model components draw from a variety
of measured and synthetic (i.e., simulated) calibration data. The model components and
time periods are summarized in Table 2.
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Table 2. Summary of modeled time periods and key variables.

Time Period WYs
Central Valley
Runoff (Eight
River Index)

Delta Outflow
X2 Position
(Salinity)

Predevelopment Prior to 1850
Predicted from
tree-ring data
using Model 1

Predicted from
Equation (2) using
runoff estimates

and parameters in
Table 5 (Model 2)

Predicted from
Delta outflow

using Equation (3)
and parameters in
Table 7 (Model 2)

Early
development 1851–1911

Predicted from
tree-ring data
using Model 1

Predicted from
Equation (2) using
runoff estimates

and parameters in
Table 5 for

pre-development
period (Model 2)

Predicted from
Delta outflow

using Equation (3)
and parameters in

Table 7 for pre-
developmentperiod

(Model 2)

Contemporary Post 1912
Predicted from
tree-ring data
using Model 1

Predicted from
Equations (2) and
(4) using runoff
estimates and
parameters in
Tables 5 and 6

(Model 3)

Predicted from
Delta outflow

using Equation (3)
and parameters in
Table 7 (Model 3)

3.2.1. Selection of Modeled Time Periods

Our modeling approach differentiates between three eras described earlier: a “pre-
development” period, an “instrumented” or “contemporary” period, and an “early devel-
opment” period that bridges the pre-development and instrumented periods. Tree-ring
reconstructions of Central Valley runoff were developed spanning the three time periods.
A “long record” reconstruction represents the pre-development period back to WY 903 and
a “short record” reconstruction represents the pre-development period back to WY 1640.
Both runoff reconstructions cover the early development period spanning WYs 1851–1911;
however, a unique Delta outflow and salinity model component was not generated for
this period. While some literature is available to characterize the hydrology of this early
development period [65–68], associated Delta outflow trends and drivers of change are
poorly understood. In light of this uncertainty, we assumed that the early development
period was adequately represented by pre-development relationships between runoff,
Delta outflow and salinity.

3.2.2. Model 1: Annual Central Valley Runoff Reconstruction from Tree-Ring Data

Separate models were developed to reconstruct 8RI annual flows over the periods 903–
2008 (long record) and 1640–2001 (short record). The long record prioritizes reconstruction
length by making use of a small set of long tree-ring chronologies. The short record
prioritizes reconstruction accuracy by taking advantage of a larger number of chronologies
that, while not of great age, yield improved reconstruction accuracy and several centuries
extension of flow beyond the gage record. The procedure described below was repeated
for each of the two model periods.

A two-stage reconstruction method, introduced for reconstruction of river basin pre-
cipitation [94], and later extended for reconstruction of streamflow [53,95] was modified for
this study. The first stage is conversion, by regression, of each of the available N chronolo-
gies into a separate single-site reconstruction (SSR) of yt, the square-root-transformed
annual 8RI flows. A square root transform was found adequate to correct problems with
violation of assumptions about the regression residuals that occur when using the untrans-
formed flows as the regression predictand in the reconstruction models. The second stage,
called multi-site reconstruction (MSR) combines the signals from the individual SSRs to
get the final single time series of reconstructed flows. The two stages of reconstruction are
outlined below and are described in more detail in Supplementary Material B.
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In the first stage, yt is regressed stepwise on a pool of potential predictors that in-
cludes a site chronology, xt, its square, x2

t , and lags t−2 to t + 2 on those two variables [96].
Preliminary stepwise modeling using cross-validation [97] is first applied to identify the
step, m, beyond which addition of another predictor fails to increase the validation skill
as measured by the reduction of error statistic (RE) [98]. The final SSR regression model
has only those predictors entered in the first m steps, and substitution of the full available
length of tree-ring predictors into the fitted equation gives the SSR reconstruction. Cal-
ibration accuracy of the SSR model is summarized by regression R2. Significance of the
regression model is assessed by pF, the p-value of the overall-F of regression, and calibration
uncertainty is summarized by the standard error of the estimate, or root-mean-square error
(RMSEc) of calibration [96]. Validation accuracy is summarized by the root-mean-square
error of cross-validation (RMSEv) which is computed from the cross-validation errors (see
Supplementary Material B).

The product of the first stage of reconstruction in this study is a separate SSR, ŷt,i, of
transformed flow for each of the i = 1, . . . , N tree-ring chronologies (N = 69) mapped in
Figure 1. Those whose SSR calibration signal is not significant (pF > 0.05) or whose SSR
has no skill of validation (RE ≤ 0) were eliminated from the study. Depending on the
time coverage (varies over SSRs), the remaining SSRs could contribute in the second stage
of reconstruction.

The second stage is a re-calibration of the arithmetic mean of a subset of the N
individual SSRs with acceptably strong signal and common time coverage into a final
reconstruction—long or short, depending on the particular subset. The regression model
for the MSR is

y = a + bxt + et, (1)

where xt is the arithmetic average of the SSRs covering either the long or short records, yt
is the square-root-transformed 8RI WY flow, et is the error term, and {a, b} are regression
coefficients. The arithmetic average of the SSRs was preferred as a predictor with the
assumption that the flow signal is best represented by the common variation in the SSRs.
Since, by definition, the SSRs have variance proportional to the strength of their flow signals,
a simple arithmetic average emphasizes chronologies with a strong flow signal. Equation (1)
applies to both the long and short reconstructions, but for each xt is an average over
a different set of SSRs. The calibration period is defined by the overlap of 8RI flows (and yt)
with the particular SSR subset: WYs 1906–2008 for the long record and WYs 1906–2001 for
the short record. Calibration and validation accuracy for the MSR models were measured
by the same statistics already described for the SSR models. Substitution of the full-length
SSRs into the fitted equations gave long and short reconstructions covering 903–2008 and
1640–2001, respectively. The RMSEv of the model was used, along with the assumption that
the reconstruction residuals are normally distributed, to place a 50% confidence interval on
the annual reconstructed transformed flows, ŷt. As a final step, the MSR reconstructions
were back-transformed to original flow units (BCM) before interpretation.

As additional validation, time series plots and the Spearman correlation coefficient [99]
were used to check agreement of the long and short reconstructions of 8RI flows spanning
WYs 1872–1900 and reported in Bulletin 5 [65]. This step serves as a completely independent
verification, as the Bulletin 5 data precede the start of the period used for screening tree-
ring data and calibrating and cross-validating the reconstruction models. Supplementary
Material C provides the statistics of the SSR models.

Low-frequency features (decadal and longer) are of interest in understanding long-
term hydrologic patterns. Severity of droughts and wet periods is also summarized by
simple moving averages of reconstructed flows. Consistency of with other work was
checked by comparing reconstructions with the sum of separate reconstructions of annual
Sacramento River and San Joaquin River flow [20].
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3.2.3. Model 2: Pre-Development Outflow and Salinity Reconstruction

The annual 8RI time series tree-ring reconstructions from Model 1 were used as the
basis for reconstructing annual Delta outflow volume and salinity in the estuary under
pre-development conditions. The modeling logic employed for the long- and short-period
reconstructions is presented as a flow chart in Figure 2.

Figure 2. Flow chart for pre-development (Model 2) and contemporary (Model 3) models. 1 Model 2
calibration based on pre-development daily outflow (DWR, 2016) and daily X2-outflow relationship;
Model 3 calibration based on historical daily and contemporary daily X2-outflow relationship;
2 Model 2 calibration based on pre-development annual outflow and historical Eight River Index
(WYs 1922–2014); Model 3 calibration based on historical annual outflow and historical Eight River
Index (WYs 1912–2018); 3 Tree-Ring reconstruction from Model 1 for long record and short record
through WY 1850.

Annual pre-development Delta outflow volume was estimated for both reconstruction
periods assuming a power law relationship between Delta outflow volume and annual
Central Valley runoff volume:

Delta Out f low = α1 × 8RIα2 (2)

where outflow and runoff volumes are in units of BCM per year and α1 and α2 are fitting
parameters determined through least squares analysis [25] simulated pre-development
conditions in the Central Valley and Delta assuming a historical runoff pattern measured
over the 93-year period spanning WYs 1922–2014. Annual Delta outflow volume from the
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CDWR simulation, along with annual Central Valley runoff (as measured by the 8RI over
the same 93-year period), were used to calibrate Equation (2). Tree-ring reconstructions of
Central Valley runoff (i.e., the 8RI) were used in conjunction with Equation (2) to estimate
pre-development annual Delta outflow volumes through WY 1850.

Seasonal (February–June and July–October) average pre-development X2 positions
were estimated for the reconstruction periods assuming power law relationships between
X2 position and annual Delta outflow volume:

X2 = α3 × Delta Out f lowα4 (3)

where X2 position is in units of km from Golden Gate and α3 and α4 are fitting parameters
determined through least squares analysis. The 93-year simulated pre-development Delta
outflow time series, as described above, was utilized to calibrate Equation (3). Several
modeling steps were followed to generate 93-year X2 calibration data sets. First, daily
outflow from the aforementioned CDWR [25] simulation was transformed into a daily
“antecedent outflow” time series to represent flow time-history in the estuary [14,84]. This
transformed outflow time series was used to generate a daily X2 time series using a pre-
development flow–salinity relationship reported by [26]. Finally, this synthetic daily X2
time series was averaged to develop seasonal average X2 calibration time series. Time series
of annual pre-development outflow volume, estimated from the tree-ring reconstructions
(Model 1), were used in conjunction with Equation (3) to estimate seasonal average X2
positions through WY 1850.

3.2.4. Model 3: Contemporary Outflow and Salinity Reconstruction

Following the methods reported above for pre-development conditions, the annual 8RI
time series tree-ring reconstructions from Model 1 were used as the basis for reconstructing
annual Delta outflow volume and salinity in the estuary under contemporary conditions.
The modeling logic employed for the reconstructions is presented as a flow chart in Figure 2.
This logic was applied to both the long- and short-period reconstructions spanning WYs
1912–2008 and WYs 1912–2001, respectively.

Contemporary Delta outflow was estimated for both reconstruction periods assuming
the power law relationship provided in (Equation (2)). This relationship, which was
calibrated with historical annual runoff and Delta outflow data, does not represent the
full contemporary period; rather, it is limited to a relatively stationary period prior to
significant increases in water use in the Central Valley and Delta following construction of
Shasta Dam in WY 1944. A residual analysis was conducted to address the observed time
series trend. Tree-ring reconstructions of Central Valley runoff (from Model 1) were used
in conjunction with Equation (2) to estimate contemporary annual Delta outflow volumes
for the WYs 1912–1944 period; a modified form of Equation (2), presented later in this text,
was used to estimate Delta outflow volumes for the post 1944 period.

Contemporary X2 position was estimated for the long- and short-period reconstruc-
tion periods assuming power law relationships between annual Delta outflow volume
and seasonal (February–June and July–October) average X2 position. Equation (3) was
calibrated for the contemporary period using a data subset spanning WYs 1920–2018. The
initial years of the contemporary period (WYs 1912–1919) were excluded from model
calibration due to lack of historical Delta outflow data at a daily resolution. Following the
methodology used for pre-development model calibration, daily outflow was transformed
into a daily antecedent outflow time series and this daily antecedent outflow time series
was then transformed into a daily X2 time series using a contemporary flow–salinity rela-
tionship reported by Andrews et al. [26]. Finally, this daily X2 time series was averaged to
develop seasonal average X2 time series for purposes of model calibration. The time series
of annual contemporary outflow volume, estimated from the tree-ring reconstructions,
were then used in conjunction with Equation (3) to estimate seasonal average X2 positions
for each time series beginning in WY 1912.
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4. Results

Following the methods presented in the previous section, we developed multi-century
reconstructions of watershed runoff, freshwater flows to the estuary, and the estuary’s
salinity regime as expressed by intrusion length. Below we summarize the reconstructions,
following the logic sequence provided in the flow chart depicted in Figure 2.

4.1. Annual Central Valley Runoff Reconstructions

A total of 60 of the 69 initial chronologies passed screening tests for temporal stability
of the runoff signal and significant SSR regression model (Supplementary Material C). Most
of these lagged models resulting from stepwise regression have a simple structure. All
60 models include a lag-0 (current year predictor) and 28 models have just one predictor.
The median number of predictors is 2 and the maximum is 5. The minimum, median and
maximum percentage of calibration-period variance explained by the models are 8%, 29%
and 73%, respectively. All models are significant as judged by p < 0.05 for the overall F
of regression. Blue oak chronologies from the Central Valley or the coastal region tend to
have the strongest signal (Figure 1).

Time coverage by SSRs varies according to the coverage of the chronologies themselves.
Thirteen of the SSRs have uniform coverage for 903–2008 and comprise the subset for
the long reconstruction; all 60 SSRs, with a common period 1640–2001, are available for
the short reconstruction. As in previous studies (e.g., Meko et al. [53]), long tree-ring
chronologies of western juniper from south-central Oregon are important contributors to
the long network (Figure 1).

Regression of yt on the 13-site-mean and 60-site-mean SSRs yields long and short
reconstruction models accounting for 66% and 77% of the calibration-period variance of
yt after adjustment for loss of degrees of freedom (adjusted R2) (Table 3). Both models
have strong validation, as indicated by high positive RE values from cross-validation, and
by highly significant correlation of cross-validation predictions with observed flow. Both
reconstructions also closely track and have significant correlation with earlier flows (span-
ning WYs 1872–1900) from gages on the Sacramento, San Joaquin, and other Central Valley
rivers that comprise the Bulletin 5 8RI flows (Figure 3) [65]; these earlier data had also
been used, with less success, for validation of the first Sacramento River runoff reconstruc-
tion [51]. Both models greatly underestimate the flow in WY 1890. Tree-ring reconstruction
calibrated by regression with gaged flows tend to be conservative (biased toward the mean)
because the variance explained by regression is always less than 100%. This compression
of variance theoretically would lead to underestimation of both wet extremes and dry
extremes and complicates direct comparison of observed and reconstructed magnitudes
of extreme flow events [83]. Moreover, as seen in Figure 3, the magnitude of extreme
high flows may be especially difficult to capture because growth of drought-sensitive trees
beyond some high level of soil moisture is logically expected to benefit less and less from
additional moisture.

Table 3. Statistics for long record and short record tree-ring reconstructions (Model 1). Statistics are
for regression models whose predictand is transformed 8RI flow (square root billion cubic meters).

Tree-Ring
Record N a Calibration b Cross-Validation c

WYs R2

adj RMSE RMSE RE r

Long record
903–2008 13 1906–2008 0.66 0.697 0.712 0.65 0.82

Short record
1640–2001 60 1906–2001 0.77 0.585 0.592 0.77 0.88

a Number of contributing tree-ring chronologies. b Overall F (not listed) for both models is highly significant
(p < 1E-25). c RE = reduction-of-error statistic; r = correlation of cross-validation predictions with observed flows.
The two correlations listed are both larger than any of the correlations for the 1000 simulated reconstructed flow
series (p < 0.001)
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Figure 3. Time series plots (WYs 1872–1900) comparing reconstruction of Central Valley runoff (Model 1) with instrumented
flows for (a) long record reconstruction and (b) short record reconstruction. Spearman correlations and significance
annotated. Significance not adjusted for autocorrelation because none of the series are positively autocorrelated. This period,
as documented in Bulletin 5 [65], precedes years used for calibrating and validating reconstruction models.

Both the short and long record reconstructions strongly track the sum of individ-
ual reconstructions generated previously for the Sacramento and San Joaquin Rivers by
Meko et al. [20]. For the 1640–2001 period common to these reconstructions, the Pearson
correlation is r = 0.83 for the long record reconstruction and r = 0.95 for the short record
reconstruction. For the earlier 903–1639 period in common with the long reconstruction
only, the correlation remains high (r = 0.82). While agreement between reconstructions
is limited by differences in tree-ring networks and statistical reconstruction methods, the
reconstructions are reasonably consistent in their characterization of droughts and wet
periods. The long record reconstruction, for example, includes a period of low runoff
values in the mid-1100s that aligns with a period of notable persistent drought in both the
Colorado and Sacramento Basins [95,100].

The long and short record 8RI reconstructions are shown in Figure 4, indicating
annual and 5-, 10-, 20-, and 100-year center-averaged values. When the late-19th to early
20th century reconstructed flows are compared with reconstructed flows in the preceding
centuries, it is apparent that single-year wet and dry extremes are more variable, however,
time averaged flows are more consistent over the different periods. This is also summarized
in Table 4, which shows that for all of the averaging periods presented, from 5 to 100 years,
the range of flows are essentially similar for the full reconstruction and the more recent 1872–
2001 period. Importantly, the entirety of the instrumented period, 1872–2018, generally
shows a wider range in flows that the reconstructed values. Additionally, low flows
over different averaging periods are lower in the instrumental record than in the longer
reconstruction period. This comparison suggests that the instrumental flow record is a
reasonable representation of the conditions over the past millennium and captures extremes
in the low flow periods.
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Figure 4. Time series plots of long and short tree-ring reconstructions of Central Valley runoff (Model 1) for (a) long record
reconstruction, spanning 903–2008 and (b) short record reconstruction, spanning 1640–2001. Smooth lines represent 20-year
average flows. Other averaging periods, as summarized in Table 4, are excluded from the figure for clarity.
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Table 4. Range of reconstructed and instrumented Central Valley Runoff (8RI) for different averaging periods. Units are
reported as BCM.

8RI Record WYs
Center Averaging

Period (yr)
Min Max Range 5% 10% 25% 50% 75% 90% 95%

Long Record
Reconstruction 903–2008 5 16.6 41.4 24.7 23.0 24.3 26.5 28.8 31.0 32.7 33.9

Short Record
Reconstruction 1640–2001 5 18.7 39.9 21.2 22.1 23.3 26.0 28.7 31.3 34.0 35.4

Long Record Re-
Construction 1872–2001 5 19.5 41.4 21.8 22.0 24.4 26.7 29.7 32.3 34.6 36.3

Short Record Re-
Construction 1872–2001 5 19.7 39.9 20.1 22.3 23.4 26.3 29.5 31.9 35.3 37.0

Instrumented
Flows 1872–2018 5 16.0 44.5 28.5 19.1 22.3 25.4 31.2 34.5 39.0 41.4

Long Record Re-
Construction 903–2008 10 21.3 38.2 16.9 24.8 25.7 27.2 28.7 30.2 31.6 32.4

Short Record Re-
Construction 1640–2001 10 21.9 36.3 14.3 24.3 25.3 27.2 28.8 30.4 32.3 33.1

Long Record Re-
Construction 1872–2001 10 21.3 38.2 16.8 23.0 25.6 27.4 30.1 31.5 32.7 34.1

Short Record Re-
Construction 1872–2001 10 21.9 36.2 14.3 24.1 25.7 27.4 29.4 31.1 32.9 33.4

Instrumented
Flows 1872–2018 10 20.2 40.3 20.2 21.7 23.9 27.2 31.1 33.8 36.3 37.5

Long Record Re-
Construction 903–2008 20 23.7 33.9 10.2 25.9 26.6 27.6 28.7 29.8 30.7 31.3

Short Record Re-
Construction 1640–2001 20 24.1 32.6 8.55 25.9 26.6 27.7 29.0 30.0 30.7 31.2

Long Record Re-
Construction 1872–2001 20 23.9 33.9 9.94 25.0 25.7 27.4 30.2 31.4 32.3 32.7

Short Record Re-
Construction 1872–2001 20 24.1 32.6 8.55 25.3 26.3 27.9 29.5 30.6 31.3 31.8

Instrumented
Flows 1872–2018 20 22.4 38.4 16.0 24.7 25.8 28.1 29.9 33.8 35.4 36.2

Long Record Re-
Construction 903–2008 100 27.2 29.8 2.58 27.6 27.8 28.1 28.7 29.1 29.3 29.4

Short Record Re-
Construction 1640–2001 100 27.9 29.4 1.50 28.2 28.4 28.6 28.8 29.0 29.2 29.2

Long Record Re-
Construction 1872–2001 100 28.8 29.5 0.734 28.9 29.0 29.0 29.1 29.3 29.4 29.4

Short Record Re-
Construction 1872–2001 100 28.6 29.4 0.763 28.7 28.7 28.8 28.9 29.1 29.3 29.4

Instrumented
Flows 1872–2018 100 28.0 31.2 3.20 28.4 28.6 29.4 29.9 30.7 30.9 31.0

Another way to look at the flow reconstructions is to examine the sequence of wet
and dry periods in the record, in comparison to the contemporary period. The long record
reconstruction was reviewed to highlight patterns of low and high flows that are of interest
for water resources management. Figure 5 shows 20-year center averages associated with
four 121-year periods with the greatest variations (970–1090; 1100–1220; 1570–1690; 1850–
1970). This figure illustrates that shifts between wet and dry periods have occurred several
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times in the past millennium, but in most of these instances, the range of flow variation
is not greater than the reconstructed flows for late 19th and early 20th century. Actual
observed flows during high flow periods are higher that the reconstructed flows, a bias
expected from the variance compression inherent in regression, and possibly also to lower
sensitivity of tree-growth to soil moisture beyond a threshold level. However, if only
reconstructed flows are considered for comparison over different time periods, as done
throughout this study, it may be inferred that flow patterns in the instrumental period after
the 1870s, especially over decadal time scales, are a reasonable representation of the overall
variability seen in the past millennium.

Figure 5. Selected flow periods over the long reconstruction compared with instrumented flow from
(20-year centered average for both flow terms).

4.2. Delta Outflow: Model Calibration and Reconstructions
4.2.1. Model Calibration

The resulting pre-development relationship between Delta outflow and Central Valley
runoff, both expressed in terms of annual flows, is displayed in Figure 6. Equation (2)
fitting parameters and regression statistics are summarized in Table 5.
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Figure 6. Pre-development annual outflow–runoff relationship (Model 2). See Equation (2) and
Table 4 for model fitting parameters.

Table 5. Model fitting parameters and regression statistics for Equation (2): relationships between
Delta outflow and Central Valley runoff under pre-development (Model 2) and contemporary
(Model 3) conditions. Flow units are in BCM per year.

Model α1 α2 r2 Std. Error (BCM)

Pre-development (Model 2) 0.380 1.23 0.956 2.7

Contemporary WYs 1912–1944 (Model 3) 0.285 1.38 0.991 1.5

Contemporary WYs 1945–2018 (Model 3) (1) (1) (1) (1)

(1) The contemporary outflow–runoff relationship for WYs 1945–2018 was adjusted using Equation (4) to reflect
significant increases in water use in the Central Valley and Delta following construction of Shasta Dam in WY
1944. See Table 6.

Table 6. Model fitting parameters and regression statistics for Equation (4): adjusted relationships be-
tween Delta outflow and Central Valley runoff under WYs 1945–2018 contemporary (Model 3) conditions.

Fitting Parameter/
Regression Statistic

Low Runoff Years
8RI < 24.6 BCM/yr

High Runoff Years
8RI > 24.6 BCM/yr

α1 0.285 0.285

α2 1.38 1.38

α8 −0.000137 0

α9 0.0148 0.00426

α10 0 0.0863

R2 0.474 0.482

Historical annual Delta outflow was correlated with annual Central Valley runoff
(as measured by the 8RI) over a subset of the contemporary period spanning WYs 1912–
1944; the resulting model fit is displayed in Supplementary Material D (see Figure D-1).
Equation (2) fitting parameters and regression statistics are summarized in Table 5. Model
residuals, reported as predicted minus observed, are plotted as a time series in Figure 7a
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for the full contemporary period spanning WYs 1912–2018. This figure clearly shows
that Equation (2) increasingly over-estimates Delta outflow over time following WY 1944,
signifying a decreasing trend in Delta outflow relative to the 8RI. Equation (2) residuals
were de-trended through the following re-formulation (see Figure D-2 in Supplementary
Material D):

Delta Out f low = α1 × 8RIα2 ×
{

1 −
[
α8 × (Water Yr − 1944)2 + α9 × (Water Yr − 1944) + α10

]}
(4)

where α8, α9, and α10 are dimensionless fitting parameters. Hutton et al. [101] observed
that Delta outflow trends, when normalized to the 8RI, were different between low and
high runoff years. In high runoff years, they observed a decreasing trend in normalized
outflow. However, they reported that:

Figure 7. Time series of model residuals associated with contemporary annual runoff–outflow rela-
tionship (Model 3). Residuals from Equation (2) applied to the entire WYs 1912–2018 contemporary
period are shown in (a). De-trended model residuals from Equation (4) applied to WYs 1945–2018
are shown in (b).
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In drier years, the downward trend in normalized Delta outflow appears to have been
curbed (and possibly reversed) over the last few decades due to more restrictive water
management (i.e., lower normalized Delta exports) in the estuary and a leveling of water
use in the upstream watershed.

Following the observations of [101], Equation (4) was independently calibrated for
low runoff years (8RI < 24.6 BCM/yr) and high runoff years (8RI > 24.6 BCM/yr) with
a combined standard error of 3.0 BCM. Fitting parameters and regression statistics are
provided in Table 6. Model residuals, reported as predicted minus observed, are plotted
as a time series in Figure 7b. This figure shows no apparent time trend in the de-trended
model residuals. The tree-ring reconstructions of Central Valley runoff (i.e., the 8RI) were
used in conjunction with Equations (2) and (4) to estimate contemporary annual Delta
outflow volumes for each time series beginning in WY 1912.

4.2.2. Delta Outflow Reconstructions

The annual Central Valley runoff reconstructions (long record and short record) were
used as the basis for reconstructing Delta outflow volume under pre-development and
contemporary conditions using Models 2 and 3 described above. The results are shown in
the form of exceedance frequencies in Figure 8. Through WY 1850, the plot shows little
difference between the long and short record reconstructions to estimate pre-development
annual Delta outflow volumes. Annual outflow volumes for this period are approximately
35–37 BCM, 24 BCM and 11–13 BCM at the 10th, 50th and 90th percentiles, respectively.
For the contemporary period beginning in WY 1912, the plot shows small differences
between the long and short record reconstructions. Annual outflow volumes for this
period are approximately 40–44 BCM, 24 BCM and 9–11 BCM at the 10th, 50th and 90th
percentiles, respectively.

 

Figure 8. Reconstructed delta outflow exceedance frequency under pre-development (Model 2) and
contemporary (Model 3) conditions, for the long and short record reconstructions.

Differences between pre-development and contemporary Delta outflow conditions
reflect differences observed in the Central Valley runoff reconstructions as well as differ-
ences in water use on the valley floor and in the Delta. For example, assuming a common
historical runoff sequence from WYs 1922–2003, Gross et al. [22] reported mean annual
Delta outflows of 24.5 BCM and 19.4 BCM under pre-development and contemporary con-
ditions, with the difference approximately equal to CVP and SWP exports from the south
Delta, which together average approximately 6.1 BCM [22]. Our work shows similar mean
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annual Delta outflow conditions (24 BCM) for the pre-development and contemporary
periods. However, the contemporary period is associated with a more variable outflow
regime relative to the pre-development period, with higher outflows in the low end of
the exceedance frequency domain and lower outflows in the high end of the exceedance
frequency domain.

Contemporary outflow model residuals associated with Equations (2) and (4) are
highly correlated (R2 = 0.94) with reconstructed Central Valley runoff residuals. Residuals
are computed as the difference between reconstructed values and historical values. Figure 9
shows scatter plots and regression lines for long record (WYs 1912–2008) and short record
(WYs 1912–2001) relationships, with residuals shown as 5-year center weighted averages.

Figure 9. Relationship between reconstructed annual delta outflow residuals and reconstructed
central valley runoff residuals for the contemporary period. Residuals are presented as 5-yr center
weighted averages. The long record (WYs 1912–2008) and short record (WYs 1912–2001) relationships
are shown in (a) and (b), respectively.

4.3. X2: Model Calibration and Reconstructions
4.3.1. Model Calibration

The resulting pre-development relationships between seasonal average X2 and annual
average Delta outflow are displayed in Figure 10. Equation (3) fitting parameters and
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regression statistics are summarized in Table 7. Step changes in contemporary relationships
between annual Delta outflow volume and seasonal average X2 position were observed
following construction of Shasta Dam in 1944. Hutton et al. [101] observed statistically
significant trends in seasonal outflows, with decreasing trends observed in four months
(February, April, May and November) and increasing trends observed in two months
(July and August). The authors discussed linkages between outflow trends and changes
in upstream flows and coincident developments such as reservoir construction and op-
eration, out-of-basin imports and exports, and expansion of irrigated agriculture. The
resulting contemporary pre- and post-WY 1945 relationships between seasonal average X2
and annual Delta outflow volume are shown in Supplementary Material D (Figures D-3
and D-4) and regression statistics are summarized in Table 7. Although a physical basis
exists for developing independent correlations for the pre- and post-1945 February–June
relationships, we note that the derived fitting parameters are not statistically different from
one another.

 

Figure 10. Pre-development seasonal X2–outflow relationships (Model 2). See Equation (3) and
Table 5 for model fitting parameters.

Table 7. Model fitting parameters and regression statistics for Equation (3): relationships between X2
position and Delta outflow under pre-development (Model 2) and contemporary (Model 3) conditions
X2 is in units of km from Golden Gate and outflow units are in BCM per year.

Model Season α3 α4 r2 Std. Error (km)

Pre-development (Model 2) February–June 107 −0.223 0.943 1.7

Pre-development (Model 2) July–October 130 −0.128 0.763 3.7

Contemporary WYs
1912–1944 (Model 3) February–June 120 −0.242 0.974 1.5

Contemporary WYs
1912–1944 (Model 3) July–October 142 −0.137 0.760 4.8

Contemporary WYs
1945–2018 (Model 3) February–June 122 −0.228 0.886 3.6

Contemporary WYs
1945–2018 (Model 3) July–October 113 −0.106 0.709 4.0
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4.3.2. X2 Reconstructions

The annual Delta outflow reconstructions (long record and short record) were used as
the basis for reconstructing seasonal (February–June and July–October) average X2 position
under pre-development and contemporary conditions, using Models 2 and 3 described
above. Figure 11 shows pre-development seasonal average X2 exceedance frequencies for
each reconstruction. Little difference is observed between the pre-development long and
short period reconstructions except in the 10th–20th percentile range. As shown in the top
panel, February–June average X2 positions are approximately 60–63, 53 and 48 km at the
10th, 50th and 90th percentiles, respectively. X2 is further downstream (smaller values) in
the spring, indicative of relatively higher flow conditions. As shown in the bottom panel,
July–October average X2 positions are approximately 94–96, 86–87 and 82–83 km at the
10th, 50th and 90th percentiles, respectively. X2 is further upstream (larger values) in the
summer and fall, indicative of relatively lower flow conditions.

(a) 

 
(b) 

 

Figure 11. Reconstructed seasonal X2 exceedance frequency under pre-development (Model 2) and
contemporary (Model 3) conditions. February–June and July–October X2 exceedance curves are shown
in (a) and (b), respectively. Exceedance curves are provided for long and short record reconstructions.
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This same figure shows small differences between the reconstructions throughout
the exceedance frequency domain for the contemporary period beginning in WY 1912.
February–June average X2 positions are approximately 70–73, 58–59 and 50–51 km at
the 10th, 50th and 90th percentiles, respectively. July–October average X2 positions are
approximately 94–96, 84–86 and 76–77 km at the 10th, 50th and 90th percentiles, respectively.
As under pre-development conditions, contemporary X2 is further downstream (smaller
values) in the spring and further upstream (larger values) in the summer and fall.

Differences between pre-development and contemporary X2 conditions reflect dif-
ferences observed in the Delta outflow reconstructions and differences in interannual
pattern of water use. Differences in X2 also reflect natural and anthropogenic drivers that
modified the estuary’s flow–salinity regime, resulting in greater outflow requirements
under contemporary conditions to repel salinity intrusion [22,26] The contemporary period
is generally associated with greater spring (February–June) salinity intrusion and lesser
summer–fall (July–October) salinity intrusion relative to the pre-development period. Sea-
sonal differences between pre-development and contemporary X2 conditions are indicative
of upstream reservoir operations that store water in winter and spring months and release
water in summer and fall months.

5. Discussion

Flow and salinity have been the subject of scientific observation in San Francisco
Estuary over more than a century [14,65]. These observations, which have provided
a reasonable understanding of contemporary conditions and associated trends in the
estuary over the past century, have also supported decision-making related to freshwater
flow management in the estuary. However, important knowledge gaps exist that cannot be
addressed solely by the available observations. These gaps relate to the fact that large-scale
changes in the estuary and its watershed pre-date the observational record by several
decades; these gaps also relate to the fact that California is known to have been subject to
highly variable climatic conditions over the past millennium. Additional data collection
is thus insufficient to provide an understanding of how the system behaved prior to the
initiation of large-scale disturbances after the mid-19th century. This work is an attempt
to fill these gaps by (i) using an updated set of tree-ring chronologies to represent annual
runoff into the Central Valley from the surrounding higher-elevation watersheds over the
past millennium and (ii) utilizing a modeling approach to relate runoff to freshwater flow
to the estuary and to salinity intrusion in the Delta. This integration of tree-ring based
estimates of runoff with models of flow and salinity representing different configurations
of the system (pre-development and contemporary) allows for a more nuanced exploration
of flow and salinity changes over periods much longer than covered by the instrumented
record. This information is of scientific and practical importance because it can help
guide decisions related to the restoration of the estuarine ecosystem. These decisions have
recently focused on potential changes to flow and salinity management in the estuary [18],
decisions with major environmental and economic consequences for California.

The updated tree-ring-based reconstruction shows a mean annual Central Valley
runoff (8RI) of approximately 29 BCM, a quantity that is similar to that observed in
the contemporary system. The reconstruction also shows large single-year anomalies
from the mean, although multi-year anomalies over averaging periods of 5–100 years
are minimal. An important observation is that, while high runoff extremes overlap with
the instrumented record, their magnitudes are lower than observed. The reconstruction
indicates the occurrence of individual years with runoff significantly lower than seen
in the gauged record; however, over longer averaging periods, pre-development runoff
variations are of similar magnitude to those in the instrumented period and represent
broadly similar patterns of wet and dry periods. Our findings are contrary to some prior
reconstructions—notably Stine [47] based on the position of tree stumps at Mono Lake
and Graham and Hughes [48] focused on Merced River runoff and the Mono Lake Basin
inflow—that indicate evidence of more severe droughts over the past millennium than any
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seen in the instrumented period. However, our findings are broadly consistent with the
work of Meko et al. [20] that focused on a smaller set of tree-ring data from the Sacramento
and San Joaquin River basins. Our work confirms that major long-term deviations from
the mean runoff in California’s Central Valley are often seen in the tree ring record, but the
extended drought of the late 1920s and early 1930s compares with the most extreme in the
past millennium.

Consistent with the historical pattern of flow variability, California at the end of WY
2020 appears to be in the midst of another severe long-term drought. The Eight River
Index, averaged over the preceding 20-years from WY 2020, stands at 25.6 BCM; long-term
average runoff of lower magnitude was last seen in the severe drought of the 1920s and
1930s, when 20-year average flows from WY 1931 to 1939 ranged from 22.4 to 25.1 BCM.

Integration of the tree-ring based runoff with downstream flow models shows that,
although median freshwater flows into the estuary have not changed significantly, Delta
outflow has been more variable in the contemporary period compared to pre-development
conditions. Extending to salinity, the contemporary period is associated with greater spring
(February–June) salinity intrusion and lesser summer–fall (July–October) salinity intrusion
relative to the pre-development period. Both outflow and salinity intrusion are directly
affected by contemporary reservoir storage and release patterns, which tends to smoothen
the intra-annual extremes that are seen in the pre-development system.

Our work can also be compared with similar research by Stahle et al. [23] who used
tree-ring chronologies to relate to salinity intrusion in the Delta. Using a 625-year (1379–
2003) tree ring chronology to reconstruct the February–June average X2 position in San
Francisco Estuary, the authors were able to explain 73% of the variance in the observed
X2 data over a 1956–2003 calibration period. The authors used their reconstructed salinity
record to examine return intervals between single-year X2 extremes and to quantify the
frequency of consecutive seasonal maxima and minima over the period of record. [23]
recognized that their reconstruction does not mimic pre-development salinity conditions
in the estuary. Rather, the authors concede that their X2 time series:

. . . provides an estimate for variability in the salinity gradient on interannual-to-decadal
time scales, given the present land cover, stream morphology, and regulated flow environment,
in response to the range of modern and prehistoric seasonal precipitation totals registered in the
tree-ring record over the past 625 years.

In other words, the authors employed a “level-of-development” methodological
approach [22,24,63] and their 625-year X2 reconstruction represents salinity variability
under a contemporary level of development. Stahle et al. [23] found the hydroclimatic
signal from tree growth to be approximately stationary over the past six centuries; thus, we
expect that their estimate would be consistent with the contemporary level X2 time series
presented by Gross et al. [22] that utilized a shorter, more recent climate sequence spanning
WYs 1922–2003.

In contrast with [23], our work explicitly attempts to reconstruct an extended record
of historic salinity conditions in the estuary. Our work relies on modeled relationships
between Central Valley runoff, Delta outflow and estuarine salinity under natural and
anthropogenically altered hydrologic conditions as they occurred over the period span-
ning 903–2008 (long record) and 1640–2001 (short record). We expect that our pre-1850
estimates would be consistent with the pre-development level X2 time series presented by
Gross et al. [22] similarly, we expect that our post-1944 estimates (following construction of
Shasta Dam) would be consistent with the contemporary level X2 time series presented
by [22]. Consistent with Gross et al. [22], our work shows that, in spite of a relatively sta-
tionary hydroclimatic signal from tree growth (a proxy for Central Valley runoff), the San
Francisco Estuary’s seasonal salinity pattern has changed due to anthropogenic alterations.
Specifically, both studies suggest that the estuary is now more saline in the late winter
and spring than it was under pre-development conditions because of contemporary water
management. Both studies also show that the contemporary estuary is less saline in the late
summer and fall than it was under pre-development conditions because of water management.
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Flows in the observed record from WY 1872 onwards display significant change, with
a wet period from the late 19th century to the first decade of the 20th century, followed
by a severe drought in the late 1920s and early 1930s. As noted earlier, these were drivers
of the early water resources engineering activities in California, with a focus on flood
control in the late 19th century to be followed by a focus on regulation and storage by
the 1920s and beyond. The longer flow reconstruction in this work highlights that this
period in the observed record captures the types of extreme shifts that have occurred over
the past millennium. These reconstructed data therefore show that widely used level-of-
development modeling approaches, that repeat the instrumental sequence of flows for
different estuary and watershed configurations, appear to be an appropriate methodology
for representing a range of pre-development conditions.

The agreement between the tree-ring record with the earliest hydrologic observations
confirms and draws attention to a period of dramatic hydrologic change during the late
19th and early 20th centuries, a shift driven by natural factors coupled with rapid regional
development. Thus, population growth and extensive watershed modification was overlaid
on the underlying hydrologic shift from very wet to very dry conditions, which complicates
the task of inferring estuarine changes in the early development period (WYs 1850–1911).
Putting this hydrologic shift in the context of other anthropogenic drivers is important in
understanding how the estuary responded during this early period and in setting salinity
targets for estuarine restoration.

Although tree-ring proxies from long-lived species with high sensitivity to drought
are a powerful tool for water resources planning in California, some important caveats are
noteworthy. As indicated by the reconstruction statistics, tree-ring width is an imperfect
proxy for Central Valley precipitation. In our work, uncertainty is greatest in the early
part of the tree-ring record because the data network thins. In particular, the tree-ring
record suffers from limited blue oak data, a tree which is shorter-lived than several other
less moisture-sensitive species. Our Central Valley runoff reconstructions are especially
uncertain in extremely wet years, likely due to a weakening in response of tree growth to
changes in precipitation in very wet years [19]. The gaged flows themselves may also be
more uncertain under high-flow conditions. The phenomenon can lead to problems with
non-normality and non-constant variance (as a function of predicted values) or regression
residuals. Transformation of flow before regression (employed in this work) can partly help
fix such problems with residuals. Despite these efforts, however, error bars are generally
wider in wet years than in dry years [53]).

Another aspect of uncertainty in our Central Valley runoff reconstructions that is
not necessarily summarized by calibration and validation statistics is the possible lack of
detection of runoff variations at very low frequencies (e.g., wavelengths > 200 years); this
results from detrending techniques used to standardize ring widths into annual indices
of growth. Specifically, climate trends that span periods longer than the time series of
ring width from longest-lived individual trees are removed by detrending. Uncertainty
associated with reconstructed flows at very low frequencies could be addressed with
alternative detrending methods, such as regional curve standardization or age-banding,
which rely on estimation of the curve of expected ring width as a function of tree-ring
age [102,103]. Such methods require intensive sampling, demand representative age classes
over the entire tree-ring records, and may be possible for a small number of tree species
in the study area. The tree-ring data set could be extended in the medieval period (and
possibly earlier). Such an extension may be possible if remnant preserved wood can
be found for species with strong moisture signals—e.g., Quercus douglasii, Psuedotsuga
macrocarpa, and Pinus balfouriana.

The flow–salinity models used in this reconstruction generally assume stationary
sea level conditions, although sea level and thus salinity intrusion is expected to have
changed over the reconstruction periods. An exception is Andrews et al. [26] in which the
pre-development model used a (single) lower sea level value than the contemporary model.
Additional detailed mechanistic salinity intrusion modeling may help resolve the impact of
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continuous sea level changes in the past millennium and allow refinement of the empirical
models employed in this work. Although technically feasible, this is generally limited by
the cost and computational complexity of running the mechanistic models under a range
of observed sea level values.

In conclusion, this work is an important step in integrating tree-ring data with models
of flow and salinity in the San Francisco Estuary and its watershed to develop millennial-
scale ranges of pre-development conditions. Even though refinements are possible, we
believe that our findings support regulatory decision making by providing a baseline to
inform future flow regulations and restoration activity in the estuary. While it is helpful to
have a target reference range, attainment in future years will continue to be a challenge:
much in the system remains highly dynamic and will continue to evolve over time, includ-
ing sea level, precipitation, snowmelt, and runoff patterns, all of which are expected to be
affected by climate change, with limited predictability at present.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13152139/s1, Supplementary Material A. Metadata of tree-ring chronologies (xlsx file)
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widths used to develop the tree-ring chronologies considered for use in the Model 1 annual runoff
reconstructions. Individual file names are linked to the site information (metadata in Supplementary
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Abstract: This paper presents the history and evolution of the California Department of Water
Resources’ Municipal Water Quality Investigations (MWQI) program. This program tracks source
water quality in the Sacramento–San Joaquin Delta (Delta) for drinking water supply for nearly
two-thirds of California. The program provides early warning of changing conditions in source
water quality, provides data and knowledge-based support for operational decision making, and
provides scientific support to a variety of urban water users. This retrospective (i) documents program
formation, (ii) describes its evolution in response to regulations and technological advances in water
treatment and field monitoring, and (iii) notes how the development of federal drinking water quality
regulations such as the Disinfection By-Products Rule impacted the program. The MWQI program is
believed to be the first drinking water supply program in the United States to conduct continuous,
real-time monitoring of organic carbon, bromide, and other anions and to report these data on the
internet. In addition to its regular use for operational decision making, the data may be used for
evaluating long-term trends and responses to specific changes in the Delta and its watershed. Future
program directions will likely be guided by factors that may trigger changes in treatment plant
processes and operations, such as emerging contaminants, changes in land and water management
practices, permanent Delta island flooding, sea level rise, and climate change. While this retrospective
focuses on one region, its multi-decade interplay of science, treatment and monitoring technology,
and regulations (as well as practical aspects of managing such a large-scale program) are broadly
relevant to professionals engaged in drinking water quality management in other urbanized and
developed regions of the world.

Keywords: drinking water quality; operational decision-making; real-time monitoring; Sacramento-
San Joaquin Delta

1. Introduction

Estuaries, which provide freshwater for drinking water consumption and agricultural
production, have historically served as outstanding locations for human communities.
Estuaries provide access to both rivers and oceans, thereby enhancing opportunities for
trade and communication [1]. Because they are highly productive, estuaries have also been
an important food source for human habitation [2]. In fact, the earliest civilizations in
the world developed around estuaries. Many modern cities have grown near estuaries,
including Jakarta, New York City, and Tokyo. Of the 32 largest cities in the world in the
early 1990s, 22 were located on estuaries [3].

Estuaries, by definition, exhibit a water quality spectrum between seawater and
riverine that varies with freshwater inflows and geometry [1]. The riverine ends of estuaries
are often used as drinking water resources for the communities that have grown around
them. However, because of the proximity to population centers, these waters tend to
exhibit high concentrations of nutrients, pathogens, and other contaminants (in addition
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to ocean-derived salts and organic matter from contributing watersheds), which create a
challenge to drinking water suppliers that treat such waters for human consumption.

The San Francisco Estuary, including the delta formed by the Sacramento and San
Joaquin Rivers (hereafter Delta) (Figure 1), plays a major role in California’s prosperity and
is shaped by the large population centers that have developed around it. In addition to
serving as an important habitat to more than 750 animal and plant species [4], the Delta is
the largest single water supply source in California and its waters are transported across
river basin boundaries to support major urban and agricultural centers in the state. To
accomplish these inter-basin transfers, large water projects were constructed in the 1940s
by the federal government (i.e., the Central Valley Project or CVP) and in the 1960s by
the State of California (i.e., the State Water Project or SWP) [5]. These projects consist of a
network of dams in upper elevations of the Delta watershed, combined with aqueducts
and pump stations for long-range conveyance. The CVP generally serves agricultural
water users, whereas the SWP is primarily devoted to municipal supply (approximately
70%). The largest source of SWP water is the Feather River, which is impounded by
Lake Oroville [5]. SWP water, exported from the Delta via the California, North Bay,
and South Bay Aqueducts for irrigation and municipal use [6], is allocated through long-
term contracts to 29 water agencies (termed “contractors”) who are responsible for water
delivery to communities and irrigation districts within their jurisdiction [5]. Allocations
are developed by the California Department of Water Resources (CDWR) early in each
water year (which begins on 1 October) and updated as additional hydrologic information
becomes available. Releases from Lake Oroville are managed by CDWR for water exports
and to meet various water quality standards in the Delta, notably standards mandated
to limit the intrusion of saline water [7]. The SWP is one of the largest water conveyance
systems in the world, with an average of 2.9 million acre-feet of water delivered annually
in the decade ending in 2016 [5].

Collectively, Delta exports from the SWP and CVP support a $32 billion agricultural in-
dustry and serve as an important source of drinking water to almost 27 million residents [4].
Saltwater intrusion was one of the earliest water quality concerns for human uses of Delta
water. In 1920, the City of Antioch sued upstream irrigators to protect the city’s intake from
salinity intrusion [8,9]. In response to this lawsuit, the State of California implemented a
monitoring program and published the first authoritative review of Delta salinity and its
control in 1931 [10]. Early plans envisaged control of Delta salinity by means of storage reg-
ulation on the Sacramento River [10] and a saltwater barrier in the estuary near Carquinez
Strait (see Figure 1) [8,11]. Later, as part of the SWP planning process, the California Water
Plan [12] and subsequent investigations considered re-routing low salinity Sacramento
River flows through and around the Delta (see additional discussion in [8]).

Water quality concerns broadened over time to include a suite of chemical constituents
related to natural and anthropogenic sources in the Delta and its watershed. Water quality
management in the Delta occurs through a complex framework of federal and state laws,
such as the Clean Water Act (1973), the state Porter-Cologne Water Quality Control Act
(1969), and the Safe Drinking Water Act (1974), with the goals of supporting beneficial uses
for ecosystems, municipal use, and agricultural use. Here, we focus on a program that
has evolved to track a subset of constituents in Delta waters that are of concern from the
standpoint of drinking water supply.

Since the late 1970s and early 1980s, Delta water quality concerns have included
natural organic matter (NOM) [13] and bromide [14]. NOM and bromide are persistent
in Delta waters due to agricultural return flows from the region’s organic peat soils and
seawater intrusion, respectively. NOM promotes the formation of trihalomethanes (THMs)
and other carcinogenic disinfection by-products (DBPs) when Delta waters are chlorinated
during drinking water treatment [15,16]. In the presence of bromide, brominated DBPs
are also formed [17]. Bromine-containing DBPs are of greater health concern than their
chlorine-containing analogs [18]. In addition, the estuary receives wastewater discharges
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from more than 9 million people along its periphery and other pollutant loads (including
pesticides, herbicides, and nutrients) from the developed watersheds upstream [19,20].

Figure 1. Map of study area identifying MWQI routine discrete and real time monitoring locations
(noted as RTDF stations, for real time data forecasting).

Given this confluence of factors, water quality in the estuary related to constituents
of drinking water interest has been extensively studied (e.g., [13,15,21–24]). Among all
state and local agencies monitoring water quality in the Delta and its tributaries, CDWR’s
Municipal Water Quality Investigations (MWQI) program is the most extensive and cohe-
sive program established to investigate the quality of Delta source water with respect to
its suitability for production of drinking water. MWQI program elements have evolved
over three decades in response to advances in science, water treatment technology and
regulations, and emerging contaminants, paralleling major investments made by local
water supply agencies (Figure 2).
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Figure 2. Timeline showing the evolution of drinking water regulations, MWQI program activities,
and ozone implementation by participating MWQI water contractors.

The primary objective of this paper is to provide a retrospective overview of CDWR’s
MWQI program, highlighting its evolution in response to changing understanding of
Delta water quality water constituents, regulatory drivers, and new technologies. It is not
our intention to provide a subjective critique of the program’s perceived utility, benefits,
successes, and/or failures. This retrospective builds on a prior summary of the program’s
history [25] with a focus on program evolution and its utility to SWP operations, drinking
water quality regulators, and organizations responsible for municipal water supply. Here,
we describe the program, including purpose, organization and funding, and key elements.
This description is followed by a historical account of the program origin, which can be
traced back to federal and state regulatory activities in the 1970s and early studies by
CDWR and other state and local agencies in the 1980s. We then chronicle how the program
evolved from its formation in 1990 to its current configuration. We conclude this paper
with a discussion of key program accomplishments and future directions. This paper is
focused on program-level activities, rather than specific study results or interpretation
of data collected through the program. Although this paper focuses on one region, its
multi-decade interplay of science, treatment and monitoring technology, and regulations
(as well as practical aspects of managing such a large-scale program) are broadly relevant
to professionals engaged in drinking water quality management in other urbanized and
developed regions of the world.

2. Program Description

The MWQI program supports the use of SWP water for municipal supply through
monitoring, forecasting, and reporting of Delta and SWP water quality data. The program
provides early warning of changing conditions in source water quality, provides data and
knowledge-based support for SWP operational decision-making, and provides scientific
support to CDWR, water contractors, and other governmental entities.
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2.1. Program Organization & Funding

The MWQI program activities include water quality monitoring, water quality fore-
casts, and data management. Data generated by the MWQI program, along with related
data generated by other programs, are distributed via daily and weekly electronic reports
at: http://rtdf.info/ (accessed on 8 October 2022). Program staff administer tasks such
as data quality assurance and quality control and participate in other multi-agency water
quality management activities across the Delta. MWQI program organization is shown
schematically in Figure A1 (see Appendix A) and includes support from groups within
CDWR that perform monitoring, laboratory analysis, and modeling. The MWQI program
budget was approximately $3.1 million in 2020 [26]. CDWR manages the MWQI program
with input and funding from participating urban water agencies.

2.2. Program Elements

In its early years, the focus of MWQI was to establish and maintain a discrete or
grab-sample monitoring program that could identify sources of contaminants to the Delta,
elucidate how contaminants from each source are transported through the system, and
evaluate how they affect concentrations at drinking water intakes. Program data were used
to build scientific understanding and to inform a variety of regulatory efforts such as SWP
watershed sanitary surveys. As the program evolved, its scope has expanded to include
real time data collection, water quality forecasting, and targeted scientific studies.

2.3. Watershed Sanitary Surveys

Watershed sanitary surveys are required under the California Surface Water Treatment
Rule (SWTR) and are submitted to the CSWRCB’s Division of Drinking Water, formerly the
California Department of Public Health and the California Department of Health Services.
In February 1988, the California Department of Health Services requested that a sanitary
survey of the SWP be conducted to enable Department of Health Services and water
agencies treating SWP water to appraise the effectiveness of the operation of existing water
treatment plants and to adequately evaluate new treatment plant design requirements.
The SWC decided to conduct a single survey of the entire SWP watershed rather than
conducting independent surveys when they applied for new water supply permits or
amended existing permits. As a result, SWP watershed sanitary surveys cover almost
two thirds of the State of California, starting with the upper reaches of the Sacramento
and San Joaquin River watersheds and extending to the terminal reservoirs of the SWP in
southern California. Since 1990, SWP watershed sanitary surveys have nominally been
conducted every five years; this 1990 survey and its updates are summarized in Table A1
(see Appendix A).

3. Program Genesis

As far back as the early 20th century, salinity and inorganic constituents have been the
primary constituents of concern in the municipal and agricultural beneficial uses of Delta
source waters. Federal legislation in the 1970s, including the Clean Water Act of 1972 [27]
and the Safe Drinking Water Act of 1974 [28] led to the regulation of a broad range of water
quality constituents of concern in drinking water supplies and in treated drinking water.
Coincident with this period, researchers demonstrated the formation of THMs during
chlorination [29,30], a conventional treatment process for disinfecting drinking water. Later
investigations suggested a potential relationship between THM occurrence and increased
incidence of cancer among exposed populations [31]. In 1979, the USEPA promulgated a
maximum contaminant level (MCL) of 100 μg/L for total THMs [32].

3.1. SWP THM Study

In anticipation of this new federal THM regulation, the California Department of
Health Services (now CSWRCB’s Division of Drinking Water), Contra Costa Water District,
and the Metropolitan Water District of Southern California conducted independent studies
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of Delta source waters [14,33]. These studies found that Delta source waters had significant
potential to produce THMs when chlorinated as part of conventional water treatment
processes. Furthermore, these studies found that treated Delta waters, especially during
drought conditions when bromine-containing THMs sharply increased, could exceed the
MCL established under the 1979 regulation. These findings led to questions concerning
the sources and magnitudes of THM precursors in the SWP and the possible benefits
of a peripheral canal or other through-Delta conveyance facility in reducing precursor
concentrations in the SWP. To answer these and other questions, CDWR conducted a study
from September 1981 to January 1982 to determine the sources of THM precursors in the
Sacramento River, Delta, and the SWP [33]. This study, which confirmed high concentra-
tions of THM precursors in Delta source waters, concluded that waters exported from the
southern Delta are higher in THM-producing substances than are waters tributary to the
northern Delta. Specifically, the study identified Delta island agricultural drainage and
seawater intrusion as key contributors of NOM and bromide, respectively, in southern
Delta channels and drinking water intakes. Because Delta island peat soils are rich in
NOM, they are high in THM precursors [13,21]. The drainage from these islands is higher
in THM precursors than the channel waters. Because seawater is very high in bromide,
seawater intrusion significantly raises the level of bromide in Delta water [15]. Chlorination
of bromide forms bromine, which is more reactive in forming THMs than chlorine [34].
Moreover, bromine-containing THMs weigh more than chlorine-containing THMs, a sig-
nificant fact given that the MCL is regulated on a weight-based total. Confirming earlier
work, the study concluded that a peripheral canal would provide a source water to the
SWP with reduced concentrations of THM precursors relative to baseline conditions. The
report recommended that a monitoring program be initiated for the measurement of THM
formation potential in the Delta and the SWP [33]. Formation potential, an indicator of
precursor levels under laboratory conditions, does not measure formation under full-scale
water treatment operations.

3.2. Expert Panel Report

Motivated by the findings of its SWP THM study [33], CDWR assembled an indepen-
dent expert panel in 1982 to evaluate the consequences of using Delta source waters for
domestic purposes. Panel findings were documented in a report [35] and are summarized
here. The panel concluded that:

The current Delta water monitoring program . . . was developed primarily to monitor
quality from an ecological perspective specifically directed towards fishery resources
and not to assess human health aspects with respect to drinking water. The program
as presently constituted . . . is not entirely adequate to assess the present or projected
suitability of these waters as a source of drinking water supply [35].

The panel opined that drinking water quality “ . . . should be given a much higher
priority in decisions about the Delta.” While some of the panel members believed that the
traditional public health practice of obtaining drinking water from the best source available
should be adhered to (providing support for a peripheral canal), other panel members
believed that advanced water treatment could provide adequate public health protection.
The panel unanimously agreed that public health should be more broadly considered in
decisions about Delta water management.

The expert panel recommended that a monitoring program be initiated to identify
the sources of drinking water contaminants in the Delta (e.g., THM precursors, sodium,
asbestos, pesticides, and heavy metals), how contaminants are transported through the
system, and how contaminant sources impact water quality at drinking water diversions.
Furthermore, the panel recommended that information from the monitoring program be
incorporated into a comprehensive modeling framework that would support public health
decision-making as it related to Delta water management.
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3.3. Interagency Delta Health Aspects Monitoring Program

The expert panel recommendation was implemented by CDWR in July 1983 with com-
mencement of the Interagency Delta Health Aspects Monitoring Program (IDHAMP) [36–39].
The program, initially established as an 18-month investigation (and subsequently ex-
tended), was conducted in cooperation with the U. S. Bureau of Reclamation, the City of
Stockton, East Bay Municipal Utility District, Contra Costa Water District, and several SWP
water contractors.

Program participants provided funding as well as technical guidance through a stand-
ing committee, with participation by other relevant parties such as the California Depart-
ment of Public Health and the CSWRCB. The program initially focused on monitoring
drinking water quality contaminants identified in the expert panel report [35]. Monthly
samples were collected from 15 to 18 stations in areas representing urban drinking water
diversions, Delta inflows, in-Delta agricultural drainage, in-Delta channels and sloughs,
and the Sacramento–San Joaquin River confluence. As analytical methods became more
sophisticated, new and previously unidentified water quality concerns emerged and were
monitored by the program, including selenium in the San Joaquin River watershed, rice
herbicides in the Sacramento River watershed, and insecticides and waterborne pathogenic
protozoa (Giardia and Cryptosporidium) in both watersheds [25].

3.4. Delta Island Drainage Investigation

Data collected under IDHAMP showed high THM formation potential in Delta island
drainage. Delta island drainage refers to return flows collected from lands in the Delta and
pumped into surrounding channels. Pumping of drainage is needed because organic-rich
soils in the Delta lowlands are subsided relative to water levels in surrounding channels.
Motivated by this finding, the Delta Island Drainage Investigation was initiated in 1987 to
assess the impacts of Delta island drainage on the quality of drinking water supplies taken
from the Delta [39]. Goals of the investigation were to (i) evaluate the quality and quantity
of island drainage, (ii) identify processes that affect quality and quantity of island drainage,
(iii) determine potential impacts of island drainage on water quality in Delta channels and
at drinking water supply intakes, and (iv) explore potential mitigation strategies.

The investigation concluded that Delta island drainage had a higher potential to form
THMs than water from Delta channels. While THM formation potential was found to vary
from island to island, in general, drainage was found to have four times greater THM
formation potential than Delta channel samples. Based on mass balance calculations, island
drainage was estimated to contribute 40–50% of the THM formation potential in Delta
waters during periods of irrigation and winter leaching [39]. Amy et al. [13], in conjunction
with CDWR, corroborated the investigation’s conclusion that Delta island drainage has
a higher THM formation potential relative to the surrounding Delta channels. Through
investigation of the chemical composition of water samples, the authors found distinct
differences between Delta island drainage and channel waters, with drainage samples
exhibiting higher average molecular weights. Amy et al. [13] also conducted a mass balance
analysis and concluded that, on average, island drainage could contribute as much as 20%
of the THM formation potential found in the SWP.

3.5. Formation of the MWQI Program

Local water agencies, recognizing that source water quality improvements would have
significant consumer cost and public health benefits, commissioned a study to evaluate
various Delta water management alternatives for meeting existing and proposed state
and federal drinking water quality standards [40]. In addition to placing more stringent
requirements on water treatment, the Surface Water Treatment Rule (SWTR) [41] promul-
gated by USEPA also emphasized watershed protection. Robbins et al. [42] concluded that,
based on a national survey of surface water systems, a three-tiered approach that combines
watershed controls, reservoir management, and water treatment is often necessary to meet
public health objectives for drinking water protection. Arriving at a similar conclusion for
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the Delta water supplies, Krasner et al. [15] advocated DBP control strategies that included
watershed management in addition to water treatment components.

As fundamental understanding of Delta source water quality issues coalesced (based
on data made available through the various independent efforts of the 1980s) and regulatory
pressures mounted, the need for a unified program to provide water quality data in
support of management decisions affecting Delta water supplies was identified. The
SWP water contactors, regarding IDHAMP as a model of interagency cooperation and
a successful vehicle for public health decision support, requested that CDWR create a
standing program that would provide information on known and emerging threats to
drinking water quality [25]. Responding to this request, CDWR initiated the MWQI
Program in 1990, unifying activities being conducted under IDHAMP and the Delta Island
Drainage Investigation [43].

4. Program Evolution

The MWQI program was established as a flexible and pro-active collaboration between
CDWR and participating water agencies to address new concerns as they arise [25]. Accord-
ingly, the program has evolved in response to regulatory drivers, technology innovations,
and an ever-increasing knowledge base. Here, we chronicle the evolution of the MWQI
program by distilling the past 30 years into three eras: the early years (1990–1995), the
CALFED years (1996–2005), and the RTDF years (2006–present). The CALFED Bay-Delta
Program, a cooperative state-federal planning effort created as part of the 1994 Bay-Delta
Accord [8,16], was tasked with developing a 30-year plan that addressed key problem
areas in the Delta, including water quality. Although this goal was not achieved under the
expired CALFED program, the Delta Stewardship Council (a state agency stemming from
the CALFED program and created under the 2009 Delta Reform Act) developed a plan for
the long-term management of the Delta’s water and environmental resources [4].

4.1. Defining Baseline Conditions: The Early Years (1990–1995)

In 1990, CDWR merged IDHAMP, the Delta Islands Drainage Investigation, and
other drinking water quality activities into the MWQI Program. The primary goal of this
newly formed program was to assist water agencies in protecting and improving Delta
drinking water supplies and to guide research on optimal water treatment processes. In
the early years of the MWQI program, nominally between 1990 and 1995, this goal was
achieved through continuity and expansion of previous monitoring activities (including
monitoring key Delta channel and river stations and agricultural drains for constituents
such as pesticides, arsenic, selenium, sodium, and THM formation potential) to characterize
baseline conditions in the Delta. Efforts to fully characterize baseline conditions were
confounded by persistent drought conditions: California endured a severe six-year drought
spanning 1987–1992 with a brief return to drought in 1994. During this period, following
a recommendation from the 1982 expert panel report [35], the MWQI program expanded
efforts to incorporate information from the monitoring program into a comprehensive
modeling framework. Finally, during this period, the program conducted its first SWP
watershed sanitary survey. A summary of these early activities is provided below.

4.1.1. Water Treatment Technology and Regulations

During this period, THMs were the only regulated category of DBPs. However, new
USEPA regulations were anticipated—i.e., the DBP Rule [44,45]—prompting water agencies
to initiate research on advanced water treatment technologies such as ozonation [46] or
granular activated carbon (GAC) adsorption [47] and to expand testing for additional
DBPs [48] in their finished waters. At the time, chlorine and chloramines were generally the
preferred primary and secondary disinfectants, respectively, because of relatively low cost,
control of THM formation (significantly reduced during post-chloramination) [49], and
high effectiveness in controlling bacterial growth in water distribution systems. Among
the water agencies participating in the MWQI program, most were employing these con-
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ventional water treatment technologies during the early years of the MWQI program; less
than 10 percent of the combined treatment capacity of the agencies employed ozonation
(Figure 2).

The DBP Rule, which was promulgated in 1998 [44], lowered the total THM standard
from 100 μg/L to 80 μg/L and set limits on other DBPs, including a 60 μg/L limit on
the sum of five species of haloacetic acids (HAAs) (another chlorination by-product) and
a 10 μg/L limit on bromate, an ozone by-product formed from bromide. The Rule also
requires removal of total organic carbon (TOC) via enhanced coagulation or softening. The
best available technologies identified for meeting the DBP Rule requirements for THMs
and HAAs include enhanced coagulation, enhanced softening, or GAC; ozonation process
optimization was identified as the best available technology for meeting the bromate
standard. Water agencies anticipated the need for extensive research, retrofitting and
upgrading of treatment facilities to meet the DBP Rule. Moreover, the specter of a more
stringent Rule magnified the urgency to understand the possible effectiveness of source
control in addition to new treatment technologies.

It was clear that water agencies charged with protecting the public health through
treating drinking water from the Delta would face serious problems in meeting anticipated
regulations [50]. The water agencies recognized that the degree of success they would
experience in complying with the new rule would depend, in part, on how well DBP
precursors could be reduced in the raw water supply. By reducing the concentration of
these precursors in the raw water supply, the formation of known and unknown DBPs
(regulated and unregulated DBPs) can be lowered. Moreover, controlling DBPs involves
balancing risk/risk tradeoff issues with disinfection requirements. The SWTR had removal
requirements for Giardia and viruses [41]. An Enhanced SWTR, developed along with the
DBP Rule [44,51,52], included removal requirements for Cryptosporidium, which can be
inactivated with ozone but not with chlorine.

4.1.2. Data Collection & Analysis

The MWQI program has conducted discrete water quality monitoring in the Delta since
its inception in 1990 [25]. The spatial and temporal extent of this monitoring has varied in
response to program needs and system understanding [25]. Currently (as of 2022), the pro-
gram conducts routine discrete monitoring at ten locations (see Figure 1) and collects data
at other locations in support of special studies. Discrete sampling has typically been con-
ducted at a monthly interval and currently measures organic carbon (total and dissolved),
standard minerals (i.e., major anions and cations), bromide, nutrients, and chlorophyll.
TOC and dissolved organic carbon (DOC) are quantitative indicators of NOM content.
Throughout its history, the MWQI program has evaluated several additional water quality
parameters as part of routine monitoring and special studies, including trihalomethane
(THM) formation potential, ultraviolet absorbance at 254 nm (UV-254) (a surrogate for the
humic portion of the NOM), metals, selenium, pesticides, and herbicides [25].

The discrete water quality monitoring network, the backbone of the MWQI program
in its early years, expanded dramatically at program inception. While IDHAMP had main-
tained a network of 15 to 18 sampling locations [39], in 1990, the MWQI program was
collecting water quality samples at about 40 Delta urban intake and channel locations and
about 30 agricultural drainage locations [43]. Discrete sampling frequency was typically
monthly. Foreshadowing the program’s later adoption of real time monitoring, beginning
in 1993 the program experimented with the use of autosampler technology to increase
sampling frequency in a cost-effective manner. These devices were programmed to col-
lect samples at variable frequencies (i.e., daily and sub-daily), which were subsequently
analyzed in a laboratory. Autosamplers were later replaced by auto-analyzers, devices
that could analyze selected water quality constituents in near real time (typically within
minutes). Highlights of the program’s data collection and analysis efforts are summarized
below; published program annual reports provide greater detail [43,53–56]. During this
period, a parallel effort was undertaken by others [57] to evaluate loadings of key drinking
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water contaminants to Delta tributaries and to determine if there were source control
measures that, if implemented, would improve drinking water quality at Delta intakes.

Measurement of cations and anions in Delta source waters continued under the
MWQI program, thereby providing continuity with previous IDHAMP monitoring. The
intended purpose of these data was to characterize the major water types in the Delta (e.g.,
freshwater inflows, seawater intrusion, and agricultural drainage) and their sources. By
developing a chemical fingerprint or profile of specific water types, the program planned
to assess the movement and degradation of water under specific hydrologic conditions in
the Delta. Cation and anion data also assisted modelers and planners in the examination of
alternatives to improve the management and distribution of Delta water supplies [43]. A
comprehensive analysis of these data, along with related legacy data available on CDWR’s
Water Data Library website http://www.water.ca.gov/waterdatalibrary/ (accessed on 1
November 2020), was undertaken more recently [58,59].

During this period, several advancements were made in the measurement and under-
standing of THM precursors and THM formation potential and their relationship to actual
THM formation in treated water. Measurements of source water THM precursors, such
as bromide, TOC, and DOC became routine. The resulting data showed consistent rela-
tionships between TOC and DOC and confirmed that seawater intrusion was the primary
source of bromide in Delta waters [15]. Starting in 1990, water samples were also measured
for UV-254, another indicator of NOM content, which was found to correlate with DOC
in most water samples. UV-254 measurements were conducted for several years, with
the intent of providing a quick and inexpensive measurement useful in assessing THM
precursor levels in the Delta. In 1992, a modified chemical testing procedure was developed
and adopted to improve measurement of THM formation potential in high DOC water
samples [53]. This modified procedure was needed because the original THM formation
potential assay method was shown to underestimate precursor levels in high DOC samples
common in agricultural drainage [60]. Analysis of the program’s THM formation potential
data revealed a consistent relative distribution of the four THM compounds as a function
of bromine incorporation factor [61] and strong correlations were found between precursor
concentrations, THM formation potential data, and THM formation in simulated distri-
bution system samples [62,63]. Krasner et al. [21] studied water samples from the Delta
and other locations to evaluate research approaches for characterizing NOM, including its
source and nature in watersheds, its response to seasonal variations, and its potential to
form DBPs.

The relationship between Delta agricultural drainage and Delta source water quality
became clearer as the MWQI program maintained and expanded monitoring initiated under
the Delta Island Drainage Investigation program. The volume and quality of drainage
was found to correlate with seasonal farming activities and regional soils. High drainage
volumes were associated with farming activities centered on two periods. In the late
fall and early winter, fields are flooded to leach out salt accumulations from the soil,
resulting in high drainage volume and high DOC concentrations in the drainage, especially
from organic soil areas. The second peak drainage period was observed during summer
irrigation. DOC concentrations were found to be lower during the irrigation peak relative
to the leaching peak; this difference was thought to be caused by less soil-to-water contact
time and a lower water table that resulted in lower soil moisture. High DOC and THM
formation potential levels were found to be associated with the organic content of the
drained soils. The highest concentrations were typically found in drains located on peat soil
areas and the lowest from mineral soil areas [53]. Following statistical analysis of drainage
data and soil classifications proposed in CDWR [53], characteristic monthly values of DOC,
THM formation potential, and UV-254 were proposed for organic soils (i.e., high-range
DOC soils), intermediate organic soils (i.e., mid-range DOC soils), and mineral soils (i.e.,
low-range DOC soils); these are documented in CDWR [64] and summarized in Figure A2
(see Appendix A).
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4.1.3. Modeling

Prior to 1990, efforts to develop a comprehensive modeling framework—following
a recommendation from the 1982 expert panel report [35]—was limited to testing avail-
able software from USEPA, including a pesticide model (EXAMS) and two water quality
transport models (QUAL2E and WASP3) [37]. Absent a transport model, a simple water
balance approach was utilized to estimate Delta drainage contributions to THM forma-
tion potential in channel waters during the leaching and irrigation periods of water year
1988 [39]. Beginning in 1990, the MWQI program collaborated with the CDWR Delta
Modeling Section to develop a framework for modeling THM precursor fate and transport
in the Delta. Early model development was documented in a CDWR Division of Planning
report [65], the CDWR Delta Modeling Section’s “Methodology for Flow and Salinity Esti-
mates in the Sacramento–San Joaquin Delta and Suisun Marsh” series [66–71], and other
publications [72–76]. Aspects of this early model development that focused on organic
precursor fate and transport provided a foundation for today’s MWQI forecasting work.

4.2. Evaluating Potential Baseline Changes: The CALFED Years (1996–2005)

The CALFED years, nominally spanning 1996 through 2005, reflect a period of change
from the early years of the MWQI program. Prior to 1996, most of the work done by the
program was completed in response to water agency concerns over the contaminants in the
source water of the Delta and focused on existing problem definition and possible solutions.
With the 1994 Bay-Delta Accord among state and federal agencies with management
responsibilities over the Delta, and expansion of the interagency CALFED process [16], the
MWQI program expanded its scope to address potential changes in land use, water storage,
and conveyance. A summary of program activities during this era is provided below.

4.2.1. Water Treatment Technology and Regulations

During the CALFED years, two clusters of USEPA drinking water regulations were
promulgated: the Enhanced SWTRs [44,51,52] and the DBP Rule [44,45]. In response to
these rules, the CALFED program established targets for providing safe, reliable, and
affordable drinking water as either: (i) average bromide concentrations of 50 μg/L and
3.0 mg/L TOC concentrations at southern and central Delta drinking water intakes or (ii) an
equivalent level of public health protection using a cost-effective combination of alternative
source waters, source control, and treatment technologies [77]. The CALFED targets were
predicated, in part, on data and information developed through the MWQI program.

Because the CALFED targets could not be feasibly achieved in the short time frame
required to comply with the promulgated rules, water agencies participating in the MWQI
program generally adopted advanced treatment technologies during this era that went
beyond the best available technologies outlined in response to the new USEPA drinking
water regulations. Typical advanced treatment technologies included GAC adsorption with
chlorine as the primary and secondary disinfectant or ozone and chloramines as the primary
and secondary disinfectants, respectively. By the end of 2005, more than 70 percent of the
combined treatment capacity of the agencies employed ozonation (Figure 2), including
Metropolitan’s 326 million gallon per day (mgd) Mills plant and 750 mgd Jensen plant,
which treat Delta water from the east and west branches of the California Aqueduct,
respectively. Nonetheless, continued efforts to develop a Delta “fix” were made to address a
possible future tightening of the USEPA regulations and/or to reduce the costs of operating
the advanced treatment technologies in place.

4.2.2. Data Collection & Analysis

The MWQI discrete water quality monitoring network was scaled back during the
CALFED years, resulting in a network of 11 routine sampling locations by 2005 [78] that
was more reflective of the IDHAMP network of the late 1980s. During this time, analysis of
organic DBP precursors in channel waters shifted away from formation potential testing
and the surrogate UV-254 measurement. THM formation potential testing was discontinued
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in 1998, reflecting a growing concern that it did not adequately represent formation in
drinking water and could be misinterpreted [79]. While UV-254 data continued to be
collected, their use for analysis was deemphasized because consistent spatial and temporal
relationships with DOC could not be found [79] and was observed to vary from one
NOM type to another. For example, agricultural drainage from peat soils (high in humic
content) was found to have a UV-254:DOC ratio of 0.044–0.050 cm−1/mg/L, whereas
agricultural drainage from mineralized soils (lower in humic content) was found to have
a ratio of 0.035–0.370 cm−1/mg/L [21]. To place these ranges in context, the Sacramento
and San Joaquin rivers are characterized by UV-254:DOC ratios of approximately 0.022 and
0.027 cm−1/mg/L, respectively. The Colorado River, outside the study area watershed,
represents a source water low in humic content and has a ratio of 0.015 cm−1/mg/L.
Discrete monitoring of nutrients was resumed in 2002 after being discontinued for several
years. Greater emphasis was placed on data analysis, given interest in (i) potential adverse
effects of nutrients on finished drinking water quality, (ii) examining their seasonal and
spatial trends [20], and (iii) studying their effects on in-channel production of organic
carbon [80]. Published program annual reports provide greater detail on MWQI’s discrete
water quality monitoring during the CALFED years [79–83].

MWQI program efforts to conduct real time monitoring and disseminate the data
on the internet were initiated during the CALFED years. The first TOC analyzer was
installed along the Sacramento River at Hood in 1999 in support of a pilot study of real
time organic carbon monitoring [84]. TOC analyzers were later installed at Banks Pumping
Plant in 2001 and along the San Joaquin River at Vernalis in 2005. The capabilities of several
instruments were evaluated [85]. Anion analyzers were also installed at these locations to
collect continuous data on bromide, chloride, nitrate, and sulfate [86]. These installations
are believed to be the first to take continuous measurements of organic carbon, bromide,
and other anions in United States waters and to publish the data immediately on the
internet [87].

MWQI program staff published several peer-reviewed journal articles on laboratory
methods during the CALFED years. While most of these articles related to measurement
of THM precursors from organic soils [88–91], one focused on measurement of microbial
contamination in natural waters [92]. The latter examined Giardia and Cryptosporidium,
which are pathogens of concern in the Enhanced SWTR.

4.2.3. Modeling

The CALFED Delta Drinking Water Council recommended a multi-faceted assess-
ment program that included preliminary establishment of baseline Delta water quality
conditions [93]. A workgroup was formed in 1999 and tasked with developing a model
simulation of historical water quality conditions in the Delta [94] to (i) develop confidence
in a previously developed hydrodynamic and water quality model of the Delta to establish
baseline conditions for salt and organic carbon transport and (ii) establish error bounds for
future simulation results. The model in question was the Delta Simulation Model version 2
(referred to as DSM2) [95]. CDWR [96] documents a DSM2 model validation study con-
ducted in support of this CALFED effort. The validation study simulated transport of
DOC and UV-254 from October 1990 through December 1997 and employed an approach
documented in Jung [94] to characterize Delta island return water quality; this approach
built upon earlier work documented in CDWR [64].

CDWR’s Delta Modeling Section, acting as a program partner to the MWQI pro-
gram, continued DSM2 model development for simulating DBP organic precursor trans-
port throughout the CALFED years. Model development activities included formulating
planning-level precursor boundary conditions [97] and implementing an algorithm to sim-
ulate the transfer of DOC from peat soils to Delta channels (due to leaching and microbial
decay) when Delta islands are flooded [98,99]. This algorithm was used for evaluation of
the proposed Delta Wetlands project, a project to store water on two Delta islands [100] and
a major levee break in 2004 on the Jones Tract in the Delta [101].
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Following the MWQI program’s early success implementing real time monitoring in
the Delta, proof-of-concept efforts were launched to utilize available modeling tools to fore-
cast drinking water quality constituents of concern, notably bromide and DOC [102–104].
To support water quality forecasting capabilities beyond the Delta region, the DSM2 mod-
eling platform was used for initial development of a water quality transport model of the
California Aqueduct, South Bay Aqueduct, and Delta-Mendota Canal systems [105,106].
These nascent efforts ushered in a new MWQI program focus on providing decision support
for SWP operation, as described in Section 4.3.

4.2.4. Targeted Science Studies

Scaling back of the MWQI discrete water quality monitoring network during the
CALFED years was accompanied by a greater program emphasis on targeted science
studies related to a broad range of Delta drinking water issues. These studies tended to
focus on specific aspects of source waters, contaminant loading, measurement methods and
instrumentation, and climate and hydrology. They were conducted to: (i) investigate the
origins, fate, transport, and, in some cases, loads of current and emerging contaminants of
concern; (ii) investigate seasonal patterns and trends of constituents and examine circulation
patterns of contaminants; (iii) refine modeling assumptions; and (iv) assess the impacts
of increasing urbanization on levels of water quality constituents of concern. Key studies
conducted by the MWQI program, some in collaboration with outside agencies and/or
consultants, are listed chronologically in Table A2 (see Appendix A). For example, Jung
and Weisser [107] studied flooded peat soil environments, as there were various proposed
projects (e.g., the Delta Wetlands project) that were considering using flooded islands for
water storage.

4.3. Providing Decision Support for SWP Operations: The RTDF Years (2006–Present)

The MWQI program was expanded during 2002–2006 with the incorporation of real
time data collection and water quality forecasting. The expansion occurred in phases
as new sensors and data dissemination were deployed (e.g., [108]); these new program
elements are collectively referred to as Real Time Data and Forecasting (RTDF). For the
purpose of this narrative, 2006 is defined as the first year when these elements were in stable
operation. The objective of RTDF was to enhance the ability of drinking water agencies to
make informed operational decisions based on observed and forecasted changes in Delta
water quality [24]. Program activities during this contemporary era were documented in
CDWR’s Bulletin 132 series beginning in 2012 [5,109–111].

As part of this work, 14 participating water contractors were surveyed to understand
their current use of MWQI’s real time and forecast data. The survey asked each contractor
about the locations where they monitor water quality and how their agency used the
water quality data. Responses were then categorized and compiled as shown in Figure A3
(see Appendix A). The survey revealed that use of the RTDF website to check on current
conditions was commonplace, especially data reported through real time sensors. The
main use of MWQI water quality data is to provide an early warning of changes in source
water quality. Contractors also reported special interest in metrics that might affect their
water treatment processes, particularly over short-term horizons. Specific examples of
contractor uses of RTDF data, obtained in the survey responses, include tracking (i) bromide
concentrations to allow adjustment of ozone dosage during treatment, (ii) cyanobacteria
levels to address potential taste and odor concerns, (iii) pH and alkalinity, which can affect
treatment effectiveness, (iv) organic carbon concentrations (and related measurements) to
plan for coagulant dosage, and (v) the contribution of San Luis Reservoir releases, which
can affect water quality in the California Aqueduct relative to flows coming directly from
the Delta.

To satisfy additional real time water quality data needs by the participating water
contractors, monitoring of taste and odor compounds and cyanobacteria was initiated by
the MWQI program during this era. Taste and odor compounds are sampled weekly all

233



Water 2022, 14, 3426

year throughout the SWP (at selected reservoirs, Delta pump station inlets and at selected
locations on the California Aqueduct). Cyanotoxins are collected across the SWP system
monthly in May and April, and twice a month from June to October. If toxins are detected,
the sampling frequency is increased to weekly. These data have helped inform water
contractor operations. Specifically, given that most of the participating water contractors
have a defined trigger level for source water taste-and-odor compounds, such timely
information can inform decisions related to real time water treatment. The MWQI program
is currently evaluating real time sensors for chlorophyll and phycocyanin to possibly serve
as early warning detection of harmful algal blooms.

The well-established MWQI program has also provided a unique environment for
participating water contractors and CDWR to interact on a regular basis. It has become a
forum where the contractors can bring their source water quality concerns to address either
a new or proposed regulation or to seek assistance on issues related to the operation of
the SWP. Ultimately, these issues may be resolved with other CDWR personnel outside of
the MWQI Program, but the MWQI program serves as a resource for locating assistance.
For example, water contractors received notification about a new herbicide (Endothall),
which would be used to treat aquatic vegetation in the SWP. Due to water quality concerns
about the residual herbicide concentration, the contractors and CDWR discussed the issue
extensively at MWQI meetings and ultimately developed a monitoring plan to study the
fate and transport of the herbicide in the SWP, which was implemented and supported
by CDWR.

As another example of interagency coordination, CDWR periodically receives requests
from water agencies to transport non-SWP water (typically groundwater) or to transfer
water between agencies through the California Aqueduct. These are generally referred
to as non-project water turn-ins. The water contractors have raised concerns about such
requests in the past; these concerns have related primarily to groundwater quality. To
address these concerns, the contractors collaborated with CDWR to establish a facilitation
group, which sets an approval process (including minimum water quality criteria) for each
turn-in request. An annual report is produced by CDWR to document turn-ins and their
impact on downstream water quality [112].

4.3.1. Water Treatment Technology and Regulations

While drinking water regulations have continued to evolve since 2006, they have had
varied influence on the treatment of Delta source waters. The shift from chlorination as a
primary disinfectant toward ozonation has continued since 2005. By 2020, about 85 percent
of the combined treatment capacity of the participating agencies employed ozonation
(Figure 2). In the current era, drinking water regulations have played a reduced role in
driving MWQI program activities. However, that trend would likely reverse if new regula-
tions were implemented. Examples of new DBPs being considered for regulation include
four additional brominated HAAs and nitrosamines (such as N-nitrosodimethylamine or
NDMA) [113]. In waters high in bromide, such as Delta waters, the five currently regulated
HAAs may only represent around half of the concentration of the nine HAAs [114]. Certain
pharmaceuticals discharged from wastewater treatment plants react with chloramines to
form NDMA in drinking water [115]. The participating MWQI agencies that use ozone as
the primary disinfectant use chloramines as the secondary disinfectant; thus, NDMA is
produced at many of their water treatment plants.

4.3.2. Data Collection & Analysis

The MWQI discrete monitoring network has changed little since the CALFED years
(Figure 1), with routine monitoring locations sampling for bromide, TOC, DOC, nutrients,
standard minerals, and chlorophyll on a monthly basis [78,116]. The total number of
discrete monitoring locations may change year to year based on need of special studies.
The MWQI program discontinued publication of its annual data reports after water year
2009; however, the program continues to make its data available online through the CDWR
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Water Data Library. Representative time series of discrete sample bromide and TOC data
from Banks Pumping Plant are shown in Figure 3.

Figure 3. Representative data from the MWQI Program at the Banks Station: (a) Bromide (Br−) and
(b) TOC. Data are downloaded from the California Water Data Library (WDL Water Quality Data
(ca.gov), accessed 21 July 2021).

The MWQI program was expanded during 2002–2006 with the initiation of real time
data collection and water quality forecasting. The key elements of this expansion include
construction and on-going management of real time monitoring sites, systematic production
of water quality forecasts, and management and dissemination of information generated by
the program expansion [24]. The objective of this program expansion was to enhance the
ability of drinking water treatment plant operators to make informed operational decisions
based on observed and forecasted changes in Delta water quality [117].

Five real time monitoring stations are operated and maintained by the MWQI program;
four of the stations are located in the Delta and one is located south of the Delta (Figure 1).
The Delta stations include Hood (located on the Sacramento River near the town of Hood
upstream of most Delta influences—see Figure A4 in Appendix A), Vernalis (located on
the San Joaquin River near the town of Vernalis upstream of most Delta influences), Banks
Pumping Plant (located at the head of the SWP), and Jones Pumping Plant (located at
the head of the Delta-Mendota Canal, which provides water to the CVP). The southern
station, Gianelli, is located along the SWP at the Gianelli Pumping-Generating Plant on
O’Neill Forebay below San Luis Reservoir. Data, collected from 46 field sensors at the five
monitoring stations, measure several key water quality constituents, with organic carbon
(both TOC and DOC) and bromide being the primary focus. Of the 46 sensors, 31 are
operated by the MWQI program while the remaining sensors are operated by other entities
such as the U.S. Geological Survey, the San Luis Delta Mendota Water Authority, and other
CDWR programs. Table 1 summarizes MWQI real time station names, California Data
Exchange Center (CDEC) identifications, and water quality parameters collected by the
MWQI program and other entities; parameters collected by other entities are referred to as
“non-program” parameters in the table.

235



Water 2022, 14, 3426

Table 1. MWQI Real Time Stations and Parameters.

Station Name CDEC ID Installation Date MWQI Program Parameters
Non-Program Parameters

(Collected by Non-MWQI Programs)

Sacramento
River at Hood SRH 1999 TOC, DOC

Water: Chlorophyll, EC, Dissolved Oxygen,
pH, Temperature, Turbidity

Atmospheric: Solar Radiation, Temperature,
Wind Speed and Direction

San
Joaquin River

at Vernalis
SJR 2005 TOC, DOC, Bromide, Chloride, Nitrate,

Sulfate

Water: Chlorophyll, EC, Dissolved Oxygen,
pH, Temperature, Turbidity

Atmospheric: Solar Radiation, Temperature,
Wind Speed and Direction

Banks
Pumping Plant HRO 2001

TOC, DOC, Bromide, Chloride, Nitrate,
Sulfate, EC, Temperature, Dissolved

Oxygen, pH, FDOM, Algal Fluorescence

Water: EC, pH, Temperature, Turbidity,
Fluorescence, Pump Discharge

Atmospheric: Temperature,
Wind Speed and Direction

Jones
Pumping Plant TRP 2009

TOC, DOC, Bromide, Chloride, Nitrate,
Sulfate, EC, Temperature, Dissolved

Oxygen, pH, FDOM, Algal Fluorescence
Water: EC, Temperature, Pump Discharge

Gianelli ONG 2012
TOC, DOC, Bromide, Chloride, Nitrate,

Sulfate, EC, Temperature, Dissolved
Oxygen, pH, FDOM, Algal Fluorescence

Water: Pump and Generation Discharge

Note: Abbreviations and definitions: EC = electrical conductivity (surrogate for salinity); TOC = total organic
carbon; DOC = dissolved organic carbon; FDOM = Fluorescent Dissolved Organic Matter (refers to the fraction
of organic matter that fluoresces). Algal fluorescence refers to the detection of cyanobacterial and algal cells via
measurement of fluorescence from specific pigments.

Although the MWQI program discontinued measurement of UV-254 as a surrogate
for organic carbon, efforts continue to find a useful real time surrogate. Recent efforts
have focused on the use of fluorescence of dissolved organic matter (FDOM) as a real
time surrogate for DOC; preliminary results appear promising [118]. The U.S. Geological
Survey has been using FDOM sensors in the Delta since 2014 and has found it to be a strong
predictor of DOC concentration [119,120]. Real time monitoring data, along with the daily
water quality report, are posted on the SWC RTDF web page at http://rtdf.info/ (accessed
on 8 October 2022). This web page provides links to CDWR’s Water Data Library, CDEC,
and the daily MWQI water quality report.

4.3.3. Modeling

Modeling during the early RTDF years focused on developing and enhancing DSM2
forecast simulation capabilities for salinity (specific conductance), bromide, and DOC
in the Delta and the downstream aqueduct systems [106,121–123] and conducting tool
validation [124]. Most of this work was conducted by CDWR’s Delta Modeling Section. As
modeling tools matured, CDWR’s Division of Operations & Maintenance (O&M) became
a program partner and began producing water quality retrospective simulations and
21-day forecasts on a routine basis [125]. The retrospective simulations also characterize
Delta water quality through fingerprints that quantify different source contributions (e.g.,
Sacramento River inflow, San Joaquin River inflow, Delta agricultural drainage) at fixed
locations [126,127]. The fingerprint technique has also been used to estimate the fraction of
Sacramento and San Joaquin River inflows that are wastewater-derived [22]. The program
has also routinely produced “seasonal” water quality forecasts for conditions several
months into the future. However, based on several years of experience, the utility of these
seasonal forecasts has been questioned (due to large uncertainty) and production of these
forecasts was discontinued [128].

Participating water contractors commissioned the development of a DSM2 emu-
lator that employed artificial neural network technology, a common machine learning
technique [129]. This model was developed to provide an alternate, easy-to-use tool with
greatly reduced run times. However, to date, the tool has not been adopted as part of the
MWQI suite of forecasting tools.
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Concerns about low alkalinity levels in exported Delta waters have been raised by
participating MWQI agencies, prompting the program to develop capabilities to simulate
and forecast bicarbonate fate and transport in the Delta. While moderately low alkalinity
levels can improve the effectiveness of the coagulation process in water treatment plants,
especially when aluminum sulfate is used as a coagulant, extremely low alkalinity levels
can depress pH levels and can result in TOC re-stabilization [130]. These new forecasting
capabilities were implemented in 2021.

Information from MWQI’s routine monitoring and modeling efforts are disseminated
in a variety of ways. Discrete and real time data are posted in CDWR’s Water Data Library
and in CDEC (https://cdec.water.ca.gov/ accessed on 8 October 2022), respectively. A
daily water quality report, distributed electronically via email, contains a summary table
of real time station data, links to water quality forecasts, and a brief synopsis of current
events in and around the Delta. The summary table is updated daily and provides mean
daily values, seven-day averages and the percent change over the seven days. Finally,
monitoring data and model output, along with the daily water quality report, are posted
on the SWC Real Time Data and Forecasting web page at http://rtdf.info/ (accessed on
8 October 2022). This web page provides links to CDEC and the daily MWQI water quality
report. Figure 4 provides an example of observed and simulated data at Clifton Court
Forebay (located upstream of Banks Pumping Plant) that are routinely updated as part of
the MWQI program.

4.3.4. Targeted Science Studies

With an increasing emphasis on providing decision support for SWP operations
since 2006, the MWQI program has commensurately placed a decreasing emphasis on
targeted science studies in recent years. In spite of this shift in priorities, several important
studies have been conducted by the MWQI program (some in collaboration with outside
agencies and/or consultants) during the RTDF years; these are listed chronologically in
Table A2 along with relevant citations to illustrate the breadth of study. The MWQI program
additionally provided support to two key studies that examined wastewater discharges as
sources of NDMA and NDMA precursors in the Delta [22,131].
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Figure 4. Representative fingerprint charts for Clifton Court Forebay using the DSM2 model. Sources
tracked by the model include seawater intrusion (Martinez), in-Delta agricultural return flows (Delta),
Cosumnes and Mokelumne Rivers (East), San Joaquin River at Vernalis (SJR), and Sacramento River
at Hood (Sac). Symbols show the observed concentrations at these stations.

5. Program Accomplishments & Future Directions

CDWR’s MWQI program is the most extensive and cohesive program established
to investigate the quality of Delta source water with respect to its suitability for produc-
tion of drinking water. The program has met this goal over its first three decades of
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existence by evolving in response to regulatory drivers, technology innovations, and an
ever-increasing knowledge base developed through monitoring, targeted scientific studies,
and computer modeling. In its successful quest to follow the recommendations set forth
by an expert panel in the early 1980s [34], the MWQI program has accumulated several
notable accomplishments:

• A monitoring program for constituents of human health significance was instituted,
resulting in several long-term, open access discrete water quality data sets of value to
scientists and engineers working in the Delta. The monitoring program has success-
fully balanced the competing needs of maintaining long-term data sets while allowing
for on-going adjustments in response to new science and measurement technologies.

• A computer modeling framework for the transport of DBP precursors was developed
and, along with data analysis, has been successfully employed to identify sources
of key chemical constituents, determine how contaminants from each source are
transported through the system, and determine how they affect concentrations at the
points where water is diverted from the Delta and along the SWP.

• The MWQI program has provided key information for making decisions on how
to manage the Delta and treat its waters to protect public health. For example, real
time data on DBP precursors (i.e., DOC and bromide) have provided water agencies
with information on how to best operate advanced water treatment plants. This
information has supported participating water agencies in their decisions to adopt
new water treatment technology; it has also supported the development and update
of watershed sanitary surveys of the SWP.

• Real time data collection and water quality forecasting was initiated to enhance the
ability of drinking water agencies to make informed operational decisions based
on observed and forecasted changes in Delta water quality. Key elements of this
operational support include construction and on-going management of five real time
monitoring sites, systematic production of water quality forecasts, and management
and dissemination of generated information. The MWQI program is believed to be
the first in the United States to conduct continuous, real-time monitoring of organic
carbon, bromide, and anions and to publish the data immediately on the internet.

The MWQI program, an on-going collaboration between CDWR and participating
water agencies, has been designed and managed to be flexible and pro-active in order to
address new drinking water quality challenges as they arise. The program’s monitoring
network, its frequency of data analysis and reporting, and its modeling tools—all of which
have evolved over the past three decades—are collectively an effective “finger on the pulse”
for Delta and SWP water quality that allow program participants to proactively manage
risks by adjusting treatment processes, changing source water blends, or applying other
operational tools to obtain optimal source water quality. Given the program’s founding
principles that drinking water quality concerns will continue to change and that it must
adapt to address new challenges, future directions will likely be guided by a host of
factors that may trigger changes in treatment plant processes and operations and Delta
source water quality, including (but not limited to) identification of emerging contaminants,
changes in land and water management practices, Delta island flooding, sea level rise, and
climate change [132].
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CDEC California Data Exchange Center
CDWR California Department of Water Resources
CSWRCB California State Water Resources Control Board
CVP Central Valley Project
DBP Disinfection By-Product
DOC Dissolved Organic Carbon
DSM2 CDWR’s Delta Simulation Model 2
EC Electrical Conductivity or Specific Conductance
FDOM Fluorescence of Dissolved Organic Matter
GAC Granular Activated Carbon
HAA Haloacetic Acid
IDHAMP Interagency Delta Health Aspects Monitoring Program
MCL Maximum Contaminant Level
MWQI Municipal Water Quality Investigations
NDMA N-Nitrosodimethylamine
NOM Natural Organic Matter
QA/QC Quality Assurance/Quality Control
RTDF Real Time Data and Forecasting
SWP State Water Project
SWTR Surface Water Treatment Rule
THM Trihalomethane
TOC Total Organic Carbon
USEPA United States Environmental Protection Agency
UV-254 Ultraviolet Absorbance at 254 nm
WTP Water Treatment Plant

Appendix A

Figure A1. The MWQI program organization structure includes CDWR management, CDWR pro-
gram participants, and participating urban water agencies.
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Figure A2. Delta island drainage DOC values used in DSM2 [133]. The islands are divided into three
groups, each corresponding to specific ranges in DOC (low, medium, and high).
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Figure A3. Survey results from 14 water contractors on how they use MWQI real time and forecast
data in their regular operations.

Table A1. SWP Watershed Sanitary Surveys.

MWQI Era Year Focus Reference(s)

Early Years 1990

This survey focused on reviewing available water quality data and providing an inventory of
contaminant sources in the Sacramento, San Joaquin, and Tulare watersheds and along the
aqueducts, with minimal focus on the contaminant sources in the SWP reservoir watersheds. The
survey determined that the most significant water quality degradation in the SWP system occurs
between the Sacramento River at Greene’s Landing near Hood and the south Delta export facilities at
Banks and Jones Pumping Plants (see Figure 1). The major sources of this degradation were
identified as agricultural drainage from Delta islands, sea water intrusion, inflow from the San
Joaquin River, and local discharges in the Stockton area and into Cache Slough.

[134]

CALFED Years

1996

This update focused on the recommendations from the 1990 survey and major changes in the
watersheds between 1990 and 1996. The update also provided more details on contaminant sources
in several reservoir watersheds (Del Valle, San Luis, Pyramid, Castaic, Silverwood, and Perris), the
North Bay Aqueduct Barker Slough watershed, and the open canal section of the Coastal Branch of
the California Aqueduct.

[135]

2001

This update, which provided more details on contaminant sources in the watersheds of the SWP
reservoirs and along the aqueducts, contained a detailed analysis of pathogen and indicator
micro-organism data from the SWP. A major objective of the update was to provide information
needed to comply with the California Department of Public Health’s Drinking Water Source
Assessment Program requirements.

[136]

RTDF Years

2006
This update, in addition to reviewing significant changes to the watersheds and their impacts on
water quality, focused on the Jones Tract levee failure and emergency response procedures and
efforts to coordinate pathogen monitoring in response to USEPA’s Enhanced SWTR.

[137]

2011

Similar to the 2006 update, this update concentrated on the key water quality issues that challenge
the SWP contractors. This update discussed effects of the 2008 U.S. Fish and Wildlife Service and
2009 National Marine Fishery Service biological opinions, recent droughts and non-SWP aqueduct
inflows on water quality, subsidence along the California aqueduct, and monitoring conducted to
comply with the Enhanced SWTR. In addition, this update assessed long-term data trends at several
locations in the Delta and along the aqueducts.

[138]

2016
This update, in addition to evaluating key SWP water quality constituents, evaluated water quality
impacts associated with grazing and the drought spanning 2012 to 2015. A separate report on
contaminants in the San Joaquin River watershed was prepared (CDWR, 2015a).

[139]
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Figure A4. Sacramento River at Hood Real-Time Monitoring Station.

Table A2. Cross Section of Applied Science Studies Conducted under the MWQI Program.

MWQI Era Study Name Reference

CALFED Years

Characterization of DOC from Delta Island Soils [81,140]

Coordinated Pathogen Monitoring Program for SWP [81,82]

Treatment of Delta Island Drainage to Reduce TOC Loads [81]

Delta Drainage, Surface Withdrawal, and Land Use Data [141]

Delta Island Drainage Volume Estimates 1954–1955 verses 1995–1996 [142]

The North Bay Aqueduct Barker Slough Watershed Water Quality Phase 1 Report [143]

Candidate Delta Regions for Treatment to Reduce Organic Carbon Loads [144]

Environmental Study of Dredged Materials: Grant Line Canal [145]

Seasonal Water Quality Changes in Flooded Peat Soil
Environments Due to Peat Soil, Water Depth, and
Water Exchange Rate

[107]

Water Quality Investigations of the Barker Slough Watershed, 1997–2001: North Bay Aqueduct Summary [146]

Natomas East Main Drainage Canal Water Quality Investigation [147,148]

Movement of Diuron and Hexazinone [149]

RTDF Years

Staten Island Wildlife-Friendly Farming Demonstration—Water Quality Monitoring [150]

Steelhead Creek Water Quality Investigation [151]

Jones Tract Flood Water Quality Investigations [152]

Identifying Sources of DOC using Radiocarbon Age Dating [153]

Source, Fate, and Transport of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products [131]

Travel Time and Longitudinal Dispersion Rates in the California State Water Project [154]

Lathrop Urban Runoff Study [155]

Delta Salinity Constituent Analysis [58,59]

Nitrosamine Precursors and Wastewater Indicators in Discharges in the Sacramento–San Joaquin Delta [22]

Limnology of the State Water Project Nutrient Budget Study: Nutrients at the Hood Water Quality Station [156]

FDOM Final Report: A Two-Year Comparison of Dissolved Organic Carbon to Fluorescence of Dissolved
Organic Matter [118]
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