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Abstract: In this work, we use developmental rate models to predict egg laying activity and suc-
cession of generations of T. urticae populations under field conditions in the Prespa lakes region in
Northern Greece. Moreover, the developmental rate model predictions are related to accumulated
heat summations to be compared with actual bean damage and to generate pest-specific degree-day
risk thresholds. The oviposition was predicted to start at 57.7 DD, while the first peak in egg laying
was estimated to be at 141.8 DD. The second and third peak in egg production were predicted to
occur at 321.1 and 470.5 DD, respectively. At the degree-day risk threshold, half development of
the first summer generation was estimated at 187 DD and 234 DDm while for the second, it was
estimated at 505 DD and 547 DD for 2021 and 2022, respectively. According to the model predictions,
no significant differences were observed in the mean generation time (total egg to adult development)
of T. urticae between the two observation years (t = 0.01, df = 15, p = 0.992). The total generation
time was estimated at 249.3 (±7.7) and 249.2 (±6.7), for 2021 and 2022, respectively. The current
models will contribute towards predictions of the seasonal occurrence and oviposition of T. urticae to
be used in pest management decision-making. Moreover, the development of population model is a
prerequisite for the buildup and implementation of smart plant protection solutions.

Keywords: decision support; pest management; simulation and forecast; developmental rate

1. Introduction

Common bean (Phaseolus vulgaris L.) is one of the most important pulses worldwide
due to its high protein content, fiber, and other essential minerals for humans [1]. In
Greece, beans are the most important pulses, providing the backbone of the traditional
Mediterranean diet where cultivated area has increased in recent years [2]. National
production of dry beans covers 50% of the consumption and is concentrated in the region of
Western Macedonia. They are cultivated during spring and summer, at high altitudes and
cool temperatures. In the region of Western Macedonia, more than 2500 ha of dry beans are
cultivated, which makes the region the first producer at a national level with an average
annual production approaching 6000 tons [3]. In particular, almost 43% of this production
comes from the Prespa lakes region. For the year 2019, 1050 ha were cultivated with the
annual quantity produced amounting to 2500 tons.

It can be characterized as monoculture since it occupies most of the arable land (1050
out of a total of 1800 ha), in particular, 83% of the irrigated land in the region. Dry bean
cultivation is essential for the local economy as 80% of the gross revenue of the region’s
crop production, and 75% of the income, crop, and animal production come from this
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specific crop. At the same time, bean cultivation employs more than 90% of the active
population of the region. Local landraces of three species are used in the region—the
“Plake”, the “Elefantes”, and “Gigantes” type—which are white large-seeded beans of the
indeterminate climbing type with a continuous flowering that needs support. Through
the long-term cultivation in this specific environment and the local cultivation techniques
applied, the high quality of the end-product formed their unique characteristics with a
Protected Geographical Indication (PGI) designation from the EU [4,5].

Nevertheless, in order to maintain a high yield in dry-bean productions as well as to
produce a quality product, the pests must be controlled on a regular basis. In the area of
Prespes, the most important arthropod pests are the two-spotted spider mites, Tetranychus
urticae Koch 1836 and the old-world (African) bollworm Helicoverpa armigera, followed
occasionally by thrips [6]. Due to the absence of predictive models, the control of T. urticae
is usually carried out when the leaf damage is extensive and not during the initial stages of
the population growth, in particular, the period in which the hibernating females lay their
first eggs.

The spider mite T. urticae has a worldwide distribution including mostly Europe, Asia,
and North and South America, feeding on approximately 1500 described plant species
of 70 genera [7]. It is regarded as a native species of the temperate climate zone, but is
also found in subtropical regions [8]. The species overwinters as a fertilized female in
fields, under dry leaves on the ground and other locations that provide enough shelter.
When weather conditions are favorable, the fertilized females produce females, while the
unfertilized produce males. Typically, mites puncture the underside of green leaves and
draw out their contents. When conditions are favorable for growth and development, T.
urticae feeds heavily and reproduces fast-causing significant leaf damage resulting in a
considerable decrease in dry bean yield production [9].

The life cycle of T. urticae includes four developmental stages: egg, larval, nymph,
and adult. However, due to their rapid biological cycle, there is an overlap of generations
in which different stages of mite development are observed. Environmental factors, par-
ticularly temperature, but also precipitation, relative humidity, and the sunshine, have a
big impact on the ecology of the two-spotted spider mite. Under favorable temperature
conditions, i.e., 27.5 to 32.5 ◦C, the pest develops from egg to adult in 7 to 8 days, and one
female can deposit more than 100 eggs [10]. The type of host, plant nutrition status, leaf
age, and moisture stress also influence development and reproduction of T. urticae [11].
However, in temperate climates, females enter into diapause, a physiological state a period
in which they do not feed or deposit eggs until environmental conditions are favorable for
a resumption of their feeding and reproductive activity [12,13]. Consequently, finding the
time point when diapause ends and overwintering females lay their first eggs is crucial
for implementing control actions to suppress further population development and miti-
gating oncoming leaf damage. This event can be further considered as a starting point to
model the total egg-to-adult development as well as the successive T. urticae generations
throughout the growth season. These models can be used to study the impact of various
factors on spider mites, such as changes in the environment and the introduction and use
of pesticides. The model results form the basis of algorithms to be used as part of decision
support systems to inform about insect pest management actions. Providing a modeling
framework for understanding and predicting the evolution of spider mite population dy-
namics can improve the sustainability and efficiency of pesticides application and control
action practices. Consequently, the development and application of models will contribute
to the comprehensive and early season fight against this important pest.

In previous work, we have focused on developing digital decision models to manage
H. armigera [14], yet we have hesitated to develop similar work for T. urticae despite its
importance to dry-bean production. This was due to the particular ecology of mites in
relation to insects, which is characterized, among others, by a large reproductive potential,
overlapping generations, mite-specific feeding and reproductive behavior [8]. Moreover, T.
urticae, due to its small size, cannot be observed with the help of traps and lures to be used
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along with weather data to develop phenology models, as in the case of most insect pests.
Usually, under field conditions, no distinct generations are observed as in other pests until
a certain point where the initial plant damage occurs. The first physical damage in leaves
is evidenced by chlorotic discoloration. As a result, consequently, different approaches
should be applied to their modeling compared to traditional insect phenology models.

In this work, we are interested in predicting the time of appearance of T. urticae in dry
bean crops in Northern Greece. For this, we implemented two mathematical approaches for
modeling T. urticae populations in a complementary manner. The first approach was based
on a combination of temperature-driven non-linear developmental rate, egg fecundity, and
survivorship models to simulate egg production by overwintering adults and succeeding
generations. The second used heat summations to estimate thermal thresholds which
are related to the simulated egg production as well as the actual damage observed in the
experimental fields. Despite the complexity of this approach, it was preferred because of the
necessity to generate and predict not only the time of actual leaf damage caused by T. urticae
under field conditions, but also the critical times of egg production for the overwintering
and the following generations. Finally, based on the proposed modeling approach, among
our aims was the development of an algorithm that consisted of a submodule to be used as
part of a digital decision support system (DSS) for dry bean plant protection.

2. Materials and Methods
2.1. Study Site, Weather Data, and Heat Summations

Data were collected throughout the years 2021 and 2022 from four experimental dry
bean farms, 0.4–0.7 ha each, located in the Prespa lakes in the prefecture of Florina in
Northern Greece. Two of the farms were under conventional cultivation receiving the
region-specific pesticide treatments according to a regular calendar schedule, except for
the cultivation rows where the pheromone traps were placed. The two other experimental
farms were under organic cultivation without receiving any pesticide application. Due to
the presence of the Prespa lakes, the climate is classified as Cfb according to the Köppen-
Geiger’s climate classification, which is characterized as temperate with dry warm summers
with at least three times as much precipitation in the wettest month of winter as in the
driest month of summer, and where the driest month of summer receives less than 30 mm
of rain [15].

Real-time weather data including mean, minimum and maximum temperatures, pre-
cipitation, and relative humidity were collected through a network of meteorological
stations that are placed in the area of the experimental bean farms [14]. Furthermore, since
the delimitation of infestation levels depended on the progression of T. urticae diapause
termination and population resumption in relation to favorable heat conditions, we esti-
mated the physiological time until the first individuals and related leaf damage appearance
under field conditions (see Section 2.3 for details). The average method or linear model
was used to calculate daily degree days from minimum–maximum air temperature data.
In all cases, degree days were accumulated after the 1st of January. We used lower tem-
perature thresholds from other published studies considering that these are closer to the
total development of the species with a lower developmental threshold TL = 9.42 ◦C and
an upper threshold TU = 34.4 ◦C [16]. For producing seasonal predictions of population
dynamics, we chose three meteorological stations throughout the Prespa lakes region, from
which we extracted hourly temperature data [6].

2.2. T. urticae Leaf Infestation, Sampling, and Damage Assessment

Field observations were performed during 2021 and 2022, two times per week, start-
ing after dry bean sowing from mid-to-late April until the start of September in order to
detect the first active T. urticae individuals and related leaf damage. The presence and
identification of the first overwintering female individuals and eggs was performed on the
spot in the field with the help of an auxiliary lens by randomly inspecting 15–30 plants
per experimental farm at each of the scheduled times during the season. Furthermore, we
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applied a stratified in-field sampling protocol to capture the time evolution of T. urticae
infestations and asses the related degree of leaf damage. Similar to a weighted average,
this method of sampling has the advantage of estimating the degree of leaf damage charac-
teristics in the sample that are proportional to the overall population [17]. Let L = 1, 2, . . . ,
i denote the number of strata, Ni be the total number of sample units in strata i, and N is
the total number of sample units in the entire population. Then, the population mean, µ, is
estimated as follows [18,19]:

µ̂ =
1
N
(N1µ̂1 + N2µ̂2 + . . . + NLµ̂L) =

1
N

L

∑
ι=1

Niµ̂i (1)

The variance, ŝ, of the mean µ̂ is an estimation of the overall population variance from
each strata i through L:
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While the standard error of µ̂ is
√
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(3)

Finally, let WL refer to the stratum weight of stratum Li, which corresponds to the
proportion of the total population damage contained in the subpopulation defined by the
stratum Li [18]:

WL =
Nh
N

(4)

We used three strata per inspected plant, thus L = 3 and each of one corresponding to
a different height: lower, middle, and upper parts of the plant, with a distance of 30–50 cm
between them depending on plant growth. In each bean plant sampling unit, we counted
the total number of leaves and sampled randomly 15 leaves from each stratum to detect
T. urticae infestations. The time evolution of the leaf damage was quantified according to
a damage scale [20], but slightly modified to be divided into five scores instead of four
as usually proposed. These scores were as follows: (1) for normal green leaves, with no
apparent mite damage; (2) for paler green leaves, with some evident yellow mottling in
approximately 1/4 of the leaf; (3) more prevalent yellow mottling covering the half area of
the leaf, or 2/4 of the leaves; (4) more prevalent yellow mottling, tending to cover the 3/4
of the leaf surface with a few necrotic areas and 5 extensively mottled leaves, covering all
parts and usually with numerous necrotic areas.

2.3. Modeling the Occurrence of T. urticae

To gain insides of the population dynamics of T. urticae under field conditions and
predict its occurrence and succession of generations throughout the growth season, we
implemented two similar mathematical approaches in a complementary manner [19]. The
first approach simulates the physiological age of adults and egg production using rate
summations, whilst the second is using heat summations to estimate the thermal units that
correspond to the appearance of different stages of development estimated with the first
approach as well as the actual leaf damage. Conceptually, the rate-summation approach
adds fractions of development per unit time in relation to changing environmental temper-
atures [21,22]. The second approach assumes a linear relationship between development
rate and temperature and estimates the number of degree-days (or thermal units) required
to complete development. Moreover, since T. urticae displays a facultative reproductive
diapause in females only, which is induced by short-day photoperiods experienced during
pre-imaginal development, we used as )the critical time length (CTL) of 11.5 h light as a
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condition of which 50% of the adult females have terminated diapause as a starting point
for the rate and heat summations [23]. The selection of this value was not arbitrary; rather,
it was based on published work conducted with Greek strains of the species [23]. This is
because diapause intensity may vary depending on the geographic region. Both modeling
approaches are described in brief below.

2.3.1. Rate Summation Modeling of T. urticae

We apply the Lactin-2 model to simulate the physiological age of overwintered T.
urticae adults [24]:

r(Ti) = eρTi − e[ρTM−(
TM−T

∆T )]+λ (5)

where r(t) is the developmental rate (day−1), T temperature (◦C), ρ constant defining the
developmental rate at optimum temperature, λ constant forcing the curve to intercept
with the x-axis to estimate the lower developmental threshold, ∆T constant temperature
range between Topt and TM, where Topt the optimal temperature of development (i.e.,
the temperature at which the rate takes its highest value), and TM the highest temper-
ature developmental threshold [24]. The above equation was selected among available
non-linear developmental rate models first because it is among the few which have been
parameterized for T. urtiacae [25]; secondly it involves parameters that can be interpreted
biologically [26]. To describe the nonlinear relationship between adult female developmen-
tal rate and temperature, we used parameters published by Vangansbeke et al. (2015) [27]
as follows: ρ = 0.0068, Tmax = 40.9589, λ = −1.0741 and ∆T = 1.9220. The model was
generated ∀ Ti ≥ TL = 10

◦
C to exclude negative developmental rate values.

To simulate the physiological age of total immature development (i.e., egg to adult of
the succeeding generations), we applied the same model (Equation (7)) using parameters
published by Farazmand (2020) [28] for T. urticae growth studies performed under seven
constant temperatures. The parameters values are, respectively, ρ = 0.0068, Tmax = 52.156,
λ = −1.063, and ∆T = 1.9220 [28].

2.3.2. Physiological Age

The physiological age Pxi was obtained by accumulating the rates computed with the
development model r(Ti). as an input of temperature Ti

◦C from the starting day (0) to the
n-th day, estimated as follows [25]:

Pxi =
∫ ni

n1

r(Ti) (6)

Since the data are discrete, the statement holds [25] as follows:

Pxi =
∫ ni

n1

r(Ti) ∼
n

∑
i=0

r(Ti) (7)

where r(Ti). development rate at temperature T (K) of ith time step. The progress of
physiological age, Pxi, of female spider mite adults uses as a starting time the day on which
the physiological time threshold, K, is completed and corresponds to the first damage
occurred in the bean fields. Once the accumulated developmental rate equals 1, the
physiological age of overwintering mites is completed, and individuals start to lay the eggs
of the first generation.

2.3.3. Temperature-Dependent Fecundity Model

To model oviposition, we applied a productivity function describing the total number
of eggs that each female produces. Since there is no information concerning the number
of fertilized eggs, we account for the total fecundity which is expressed as the expected



Agriculture 2023, 13, 756 6 of 18

number of eggs laid per female during her whole lifespan and as a function of an extreme
value function temperature [29]:

f (T) = ae[1+( b−T
k )−e((b−T)/k ] (8)

where f (T) is the total number of eggs produced by a female adult at temperature T
(average), α is the maximum reproductive capacity, b corresponds to the temperature
at which the maximum reproduction occurs, and k is a gradient calibration parameter
(i.e., steepness). We used parameter values published by Kim and Lee (2003) [29] with
α = 45.6550, b = 25.8064, and k = 8.3097. Moreover, since we are interested in the time at
which egg production occurs (e.g., phenology), as well as for simplicity’s sake, we do not
account for age-specific fecundity in this work.

2.3.4. Age-Specific Cumulative Oviposition and Survivorship Rate Models

The age-specific oviposition rate is the proportion of the total lifetime reproductive
potential that elapses during each time period [30,31]. We applied the two-parameter
Weibull function as proposed and parameterized by Kim and Lee (2003) [29]:

p(Pxi) = 1− e−(
Pxi

a )
β

(9)

where p(Px) is the cumulative proportion of eggs laid by physiological age Px by a female
adult, while α = 0.6083 and β = 2.5573 are fitted constants according to Kim and Lee
(2003) [29].

The age-specific survival rate is the proportion alive at any given age (time) [30] and
can be described using exponential [32], Gompertz [33,34], or Weibull functions [31–38]. In
this study, we applied a sigmoid function that was parameterized and used by Kim and
Lee (2003) [29] to describe the age-specific survival distribution of T. urticae:

s(Pxi) =
1

1 + e(
γ−Pxi

δ )
(10)

where s(Px) is the proportion of live females at the physiological age Px, γ = 0,9688 is the
physiological age at 50% survival, and δ = −0.1925 is the parameter defining steepness of
the equation.

2.3.5. Total Oviposition Model and Cumulative Eggs Laid by T. urticae

The number of eggs laid by a female adult at ith time (i.e., physiological age Pxi) is the
product of the temperature-dependent total fecundity f (T), the age-specific cumulative
oviposition rate p(Pxi), and the age-specific survival rate s(Pxi) [29]:

g[ f (T), p(Pxi), s(Pxi)] ≡ f (T)[p(Pxi+1)− p(Pxi)]
s(Pxi) + s(Pxi+1)

2
, (∀i ≥ 1, Px0 = 0) (11)

where Pxi+1 and p(Pxi) are the physiological ages obtained through the accumulation of
the aging rates derived by the female aging model f (T) to the i-th, respectively [39,40].

In order to model and simulate the eggs produced from the individuals of the succeed-
ing generations, we applied the same approach, this time using a non-linear egg to adult
developmental model. In all cases, we assumed invariable developmental and reproductive
rates for each generation through the year.

2.3.6. Heat Summation Modeling of T. urticae

Using the (CTL) of 11.5 h light as Biofix, we estimated the degree days under field
conditions for the appearance of the first T. urticae populations, as well as the corresponding
leaf symptoms and their evolution in the experimental bean fields. Additionally, since it
was virtually impossible to observe the first eggs laid by T. urticae under field conditions,
as well as the evolution of the succeeding generations, we estimated the degree-days of the
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different physiological events as simulated with the rate summation model. We measured
all heat summations according to the linear model, which is a product of time and the
degrees of temperature above the threshold temperature [41]:

DD =
∫ t

0
(T(t)− Tmin)dt (12)

However, Equation (12) cannot be computed analytically and must instead be numeri-
cally integrated by breaking the time interval (t) into a number (n) of small increments so
that [42] the following is the case:

DD =
∫ t

0
(T(t)− Tmin)dt ∼=

t

∑
0
[T(t)− Tmin]∆t (13)

where T is the average temperature for day t and Tmin = 7.11 ◦C the lower temperature
threshold for the development of overwintering adults. DDs were estimated for the start
and end of oviposition by overwintering adults for each of the generations.

3. Results
3.1. Suitability of Weather Conditions and Heat Summations

Figure 1a shows the average temperatures recorded during 2021 and 2022 in the
region of Prespa lakes in Northern Greece, as well as the period where temperatures were
higher than the lower developmental threshold of T. urticae. In addition, the figure shows
the period (e.g., date) in which the photoperiod was critical for diapause termination
and diapause induction. We observed favorable temperatures for the development of
the species in mid-April; however, in both growth seasons (2021 and 2022), the average
daily field temperatures were consistently above the lower developmental threshold of
T. urticae (10◦) from May to September. Thus, the degree-days were accumulated mainly
from the middle of May onwards even though the photoperiod was favorable much earlier
(Figure 1b). This was expected because the Prespa lakes area is at a high altitude, and
the region is considered one of the coldest areas in Greece. Thus, unlike other continental
regions of Greece, favorable climatic conditions for the development of T. urticae appear
much later, with a delay close to a month.

Agriculture 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

(a) 

 

(b) 

 

Figure 1. Field recordings of average daily temperatures (a) and accumulative degree days (b) dur-
ing the growth seasons of 2021 and 2022 in the region of Prespa lakes in Northern Greece, and the 
respective dates were temperature and photoperiod conditions are favorable for T. urticae develop-
ment. 

3.2. Overall Model Struction and Model Flow 
The rate and heat summation models formed the basis for the development of an 

algorithm aiming at predicting the growth of the pest in real time. For threshold temper-
atures below a minimum of 10 °C, the development rate of T. urticae was set to zero as 
well as higher temperatures (above 38 °C). As described in Figure 2, the input for the non-
linear rate summation model was the temperature time series, whilst for the total egg pro-
duction, the physiological age summation model. The simulation process started from the 
overwintering females and then increased based on the non-linear rate model for each 
time step and temperature data until it reached 1, according to the physiological age sum-
mations (Equation (2)). Once the time of egg production was reached and the first eggs 
were laid, the model was run again, this time using the egg-to-adult non-linear develop-
mental rate equation and so on. The model performed the previous steps again and again 
until the environmental conditions were not favorable for development and reproduction. 
Furthermore, the model simulates the time and duration of each generation, the number 
of eggs produced per female, and the number of completed generations per year. The 

-10

-5

0

5

10

15

20

25

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

TE
M

PE
R

AT
U

R
E

DATE

Temperature (AVG) (°C)_2021 Temperature (AVG) (°C)_2022

L>11h

0

500

1000

1500

2000

2500

3000

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

AC
C

U
M

U
LA

TE
D

 D
EG

R
EE

-D
AY

S 
 -

Σ[
D

D
]

DATE

Σ[DD]_2021 Σ[DD]_2022

L>11h

Figure 1. Cont.



Agriculture 2023, 13, 756 8 of 18

Agriculture 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

(a) 

 

(b) 

 

Figure 1. Field recordings of average daily temperatures (a) and accumulative degree days (b) dur-
ing the growth seasons of 2021 and 2022 in the region of Prespa lakes in Northern Greece, and the 
respective dates were temperature and photoperiod conditions are favorable for T. urticae develop-
ment. 

3.2. Overall Model Struction and Model Flow 
The rate and heat summation models formed the basis for the development of an 

algorithm aiming at predicting the growth of the pest in real time. For threshold temper-
atures below a minimum of 10 °C, the development rate of T. urticae was set to zero as 
well as higher temperatures (above 38 °C). As described in Figure 2, the input for the non-
linear rate summation model was the temperature time series, whilst for the total egg pro-
duction, the physiological age summation model. The simulation process started from the 
overwintering females and then increased based on the non-linear rate model for each 
time step and temperature data until it reached 1, according to the physiological age sum-
mations (Equation (2)). Once the time of egg production was reached and the first eggs 
were laid, the model was run again, this time using the egg-to-adult non-linear develop-
mental rate equation and so on. The model performed the previous steps again and again 
until the environmental conditions were not favorable for development and reproduction. 
Furthermore, the model simulates the time and duration of each generation, the number 
of eggs produced per female, and the number of completed generations per year. The 

-10

-5

0

5

10

15

20

25

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

TE
M

PE
R

AT
U

R
E

DATE

Temperature (AVG) (°C)_2021 Temperature (AVG) (°C)_2022

L>11h

0

500

1000

1500

2000

2500

3000

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

AC
C

U
M

U
LA

TE
D

 D
EG

R
EE

-D
AY

S 
 -

Σ[
D

D
]

DATE

Σ[DD]_2021 Σ[DD]_2022

L>11h

Figure 1. Field recordings of average daily temperatures (a) and accumulative degree days (b) during
the growth seasons of 2021 and 2022 in the region of Prespa lakes in Northern Greece, and the respec-
tive dates were temperature and photoperiod conditions are favorable for T. urticae development.

3.2. Overall Model Struction and Model Flow

The rate and heat summation models formed the basis for the development of an
algorithm aiming at predicting the growth of the pest in real time. For threshold tem-
peratures below a minimum of 10 ◦C, the development rate of T. urticae was set to zero
as well as higher temperatures (above 38 ◦C). As described in Figure 2, the input for the
non-linear rate summation model was the temperature time series, whilst for the total
egg production, the physiological age summation model. The simulation process started
from the overwintering females and then increased based on the non-linear rate model
for each time step and temperature data until it reached 1, according to the physiological
age summations (Equation (2)). Once the time of egg production was reached and the
first eggs were laid, the model was run again, this time using the egg-to-adult non-linear
developmental rate equation and so on. The model performed the previous steps again
and again until the environmental conditions were not favorable for development and
reproduction. Furthermore, the model simulates the time and duration of each generation,
the number of eggs produced per female, and the number of completed generations per
year. The related decision-support output are alerts related to important phenological
events such as diapause termination, reactivation of females, and start and end of egg
production for each generation.
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Figure 2. Conceptual rate summation model scheme and related algorithm developed for simulating
and predicting T. urticae phenology in dry bean cultivations under field conditions. The model
consists of accumulating the development rate every day from the egg laying date. The development
of a given stage is completed when the accumulation of development rate reaches one, and then the
same calculation is made for the following larval stages. The beginning (first day of development of
the first individual who reached the stage), the end (last day of development of the last individual
who reached the stage), and the mean duration of each instar, as well as the percentage of individuals
therein, were also calculated.
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3.3. T. urticae Diapause Termination and Female Total Oviposition Patterns

Initiation of oviposition and its course after the completion of diapause by adult T.
urticae females and according to the total oviposition model during 2021 and 2022 is shown
in Figure 3a,b. These simulations were carried out using real-time data collected from a
network of meteorological stations in the study area and provide insight into the end of
diapause and the evolution of egg production. In addition, to be able to compare the course
of the total oviposition per overwintering female between the different study areas (not
shown here since we give pooled data) and also between the different experimental years
of observation instead of a calendar scale, we used physiological time using the linear
degree-day model. We also show the empirical cumulative distribution of eggs laid as well
as that of a sigmoid model in order to facilitate the visual comparison between the two
observation years as well as to improve calculation of critical degree-day risk thresholds
(Table 1). For comparison, the number of eggs was scaled to a ratio of probability 1
against the respective peak numbers of each case (e.g., 2021 and 2022) since the actual
adult population levels for egg population simulation could not be estimated in the field.
During both observation years, trends of the predicted egg population of females of the
overwintering generation pursued some days earlier in relation to the first significant
lesions that were observed on the bean leaves (i.e., higher than 10%). This is to be expected
since the presence of the first eggs and corresponding hatchlings, although feeding on
the plant, may not cause noticeable damage. On the contrary, as the population increases
and we observe overlapping generations, the plant damage become noticeable. This lag
period was observed in both growing seasons. During the later season, the model outputs
deviated little from the actual observation in the succeeding days of the growth seasons
and the model prediction of the succeeding generations generally depicted the observed
T. urticae population occurrence and related field damage. Moreover, it is worth noting
that egg-laying patterns were more evenly distributed during 2021 and are characterized
by a large maximum followed by a smaller one compared to that of 2022 characterized by
two periods of high egg laying activity. Despite this, in both years, the simulated peaks of
egg laying, regardless of size, seemed to occur at the same physiological time. Differences
in egg laying abundance patterns during early summer might be related to the fact that
temperatures were higher in early summer (i.e., June) during 2022 compared to 2021, and
due to the small differences in temperature between the two years of observation, which
can cause the prolongation of ovulation for a longer period. Table 1 shows the ordinal
(linear) heat summation (degree-days) risk thresholds of egg laying events (i.e., peak in egg
laying) of overwintering T. urticae females according to the simulated total fecundity rate
summation model. The oviposition was predicted to start at 57.7 DD, while the first peak
in egg laying was estimated to be 141.8 DD. The second and third peak in egg production
was predicted to occur on 321.1 and 470.5 DD, respectively.

Table 1. Ordinal (linear) heat summation (degree-days) risk thresholds of reproductive 3.4. Suitability
of weather conditions and heat summations.

Degree-Days of Overwintering T. urticae Egg Laying Events

Year Start of
Oviposition

First Egg
Peak

Second Egg
Peak

Third Egg
Peak

Pooled Egg
Peak

2021 57 137.2 292.2 461.7 123.8

2022 58,4 146.5 332 479.3 265.7

Pooled 57.7 141.8 321.1 470.5 194.75
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Figure 3. Simulated T. urticae egg production model output and related during the dry bean growth
season of (a) 2021 and (b) 2022 in the region Prespa lakes in Northern Greece.

The predicted physiological age of total spider mite immature development (i.e., egg
to adult of the succeeding generations) for the growth season of 2021 and 2022 is depicted
in Figure 4a,b, respectively. According to the physiological rate model, T. urticae completed
eight to nine generations from early May until late August (Figure 4). It is worth noting that
the first noticeable bean damage (~10%) was observed after the prediction of the second
summer generation. In addition, we did not notice any difference in leaf damage between
the three plant leaf strata, thus deciding to pool the leaf damage data to increase sampling
space. The leaf damage increased, reaching the highest infestation at the time that the rate
summation model predicted after the seventh T. urticae generation. The fact that the first
infestations did not coincide with the appearance of the first T. urticae generation could
be explained by the fact that the populations at the start of the season (i.e., individuals of
the first generation) were too low to cause significant damage. However, as populations
increased due to the succession of generations, we observed a corresponding increase in
plant infestation. As we plan in the future to integrate the current modeling tool into a
real-time decision-making system, we scaled the developmental rate predictions of the
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succeeding generations over a degree-day physiological time scale to establish heat degree-
day risk threshold to be compared with other related studies. As in the case of predicting the
egg laying of overwintering females, this correspondence allowed us to compare between
our simulated developmental rates predictions of T. urticae population dynamics with heat
summations estimated according to the linear heat summation model. Table 2 presents the
thermal thresholds for each year as well as for combined data. For temperatures below or
above the threshold temperatures, no development was cumulatively added. The degree-
day risk interval where the half of the development of the first summer generation was
completed was estimated at 187 DD and 234 DD for 2021 and 2022, respectively, while that
of the second generations was estimated at 505 DD and 547 DD. According to the model
predictions, no significant differences were observed in the mean generation time (total
egg to adult development) of T. urticae between the two observation years (t = 0.01, df = 15,
p = 0.992). Degree days were estimated at 249.3 (±7.7) and 249.2 (±6.7), for 2021 and 2022,
respectively.
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Figure 4. Simulated total egg-to-adult development of T. urticae and succession of generations
according to the developmental rate summation model output scaled over the linear heat summations
(degree days) and comparison with actual plant damage caused by T. urticae in dry bean during 2021
(a) and 2022 (b).
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Table 2. Degree-day developmental heat summation risk thresholds of total egg to adult T. ur-
ticae development in respect to corresponding predictions generated by the developmental rate
summation model.

Year Phenological Event T. urticae Generation Mean

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

2021 Half of first generation * 187 505 822 1044 1295 1513 1745 1967 2193

Total generation time * 278 280 274 258 237 233 235 220 229 249.3
(±7.7)

2022 Developmental
threshold 234 547 792 1048 1271 1519 1744 1969 2195

Total generation time 300 257 250 239 225 252 224 239 256 249.2
(±6.7)

Pooled Developmental
threshold 201 526 807 1046 1283 1516 1744.5 1968 2194

Total generation time 289 268.5 262 248.5 231 242.5 229.5 229.5 242.5 249.8
(±5)

4. Discussion

The spider mite T. urticae is among the most important pests in agriculture and often
has a negative impact on the productivity and quality of bean crops. The species hibernates
as a fertilized female, in well-sheltered places in the field, under dry leaves on the ground
and in other places that offer sufficient protection. Overwintering females end hibernation
in early spring and lay their eggs. The species has four stages: the egg, the larva (hexapod),
the second larva, and the immature female. Spider mite management in the bean plant
involves monitoring for the pest and signs of damage to detect infestations and take
actions [43,44]. However, when actions are taken at the point where extensive leaf damage
is visible, it is often too late since the crop has already suffered irreversible damage. Ideally,
pest management actions should be carried on early in the season when eggs are laid
and the first summer generations start. Nevertheless, since overwintering individuals, as
well as the first eggs laid after diapause termination, are difficult to detect and the first
individuals do not cause considerable damage, most farmers miss this time point and take
actions too late.

In this work, we are combining two temperature-driven modeling approaches. The
first approach is using a model of egg laying as well as an egg-to-adult developmental
rate model [45]. The second approach is using heat summations, which are further used
as a scaling factor to be related with the predictions generated from the developmental
rate model and the actual damage [41]. The model of egg laying comprises three essential
temperature-dependent components: total fecundity, age-specific oviposition rate, and
age-specific survival rate [40]. Total fecundity model uses temperature as an input, and
these two age-specific models use physiological age as an input that is a sum of the outputs
from female aging model with mean temperatures of each day from adult emergence.
The output of both models is generated into a heat summation insect physiological scale,
rather than into calendar days, to extract degree-day heat thresholds. The prediction of
egg production and the succession of generations can contribute to the achievement of
optimal control T. urticae with minimal impact on the environment. Moreover, the current
models will be part of a decision support system, which is developed for bean cultivation in
Northern Greece, used to predict potential pest outbreaks, helping farmers to manage bean
pests before they cause significant damage [6]. The models can also be used to evaluate
the effectiveness of different bean management strategies and to identify the most effective
methods of pest control.

Concerning the modeling approach, it is worth noting that, in practice, both models,
the developmental rate and the heat summation model, can be used separately. However,
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the heat (or thermal) summation approach has the advantage of estimating thermal thresh-
olds that can be compared with other works because it is expressed in terms of degree
days [14,41]. In addition, it can be applied more easily by the producers since it essentially
requires the calculation of the degree days and not the combination of complex equations,
as in the case of the total egg production model. This was a second reason to decide to use
and finally relate the two modeling approaches to provide forecasts in degree days rather
than calendar time. Furthermore, given that it is not always possible in practice to find the
time of the end of diapause as well as of the deposition of the first eggs (they are very small
both in size and number), we calculated this interval after combining simulations and leaf
infestation data caused by T. urticae at the point which is visible. On the number and dura-
tion of T. urticae generations, they depended upon the particular location of the research
and the methods used for heat summations. For instance, the duration of egg-to-adult T.
urticae generation time as estimated in the current work, although higher, is close to that
estimated by Herbert (1982) in the US [46]. On the other hand, it is higher than that of Carey
et al., 1982 [47] as well as compared to that of Karami–Jamour and Shishehbo (2012) [48]
with populations from Iran and that of Ju et al., 2008 in Korea [49]. However, we cannot
make an absolute comparison of our results since the first two papers used a different
heat summation calculation method. Furthermore, while most other studies are based on
laboratory data, it is known that significant variations can be observed in the population
dynamics of field populations compared to those reared in the laboratory. One other source
of variability of the mean generation time is the host plant since it can have a significant
effect on insect growth and development [50]. Different host plants can provide different
nutrition levels, thereby affecting T. urticae growth, survival, and reproduction [51,52].

To ensure the validity and accuracy of the proposed rate and heat summation results,
it is essential to use precise and reliable temperature data and to determine temperature
thresholds for each stage of development through experimental or field observations. To
address the first challenge, we employed high-quality weather data from a network of
meteorological stations installed at the experimental sites instead of relying on free or
remote-sensed data. For the second factor, i.e., determining the temperature thresholds
and parameters of the non-linear growth models, we researched relevant literature and
collected field data. Further insight into the accuracy and validity of the rate and heat
summation models was obtained by validating their predictions through field observations,
although we intend to test more years and regions.

Based on the calculated developmental rate models and actual field temperature data,
the continuous development for T. urticae was calculated and summed (for temperatures
below or above the threshold temperatures) and generated more than 10 generations
from May till late August. These predictions are in accordance with other studies which
confirm that T. urticae has a fast life cycle that is favored by dry and warm conditions with
temperatures close to 30–32 ◦C and very low relative humidity [52,53]. Furthermore, under
these conditions, its biological cycle is very short (5–7 days) and overlapping generations are
observed. Moreover, the actual leaf damage caused by T. urticae started during the period
when the model predicted the end of the second and the start of the third generation, while
the highest leaf infestations were observed when the model predicted the fourth and fifth
spider mite generation. This makes sense, since as generations proceed during the growth
season, the spider mite population and their feeding activity increase, which are causing
a more widespread leaf injury (discoloration) to the bean plant. Other factors that might
affect mite population and damage development are host type [54,55] abrupt temperature
fluctuations, high relative humidity, and heavy rainfall [56,57]. Stress conditions of the
host and plant defenses can also reduce their mite feeding activity, but also fecundity and
survival, keeping populations and relative plant damage at low levels [58].

Nevertheless, despite any inherent ecological constrains that might affect mite abun-
dance and related bean damage, temperature is by far the most predominant factor; there-
fore, the current work provides useful information for predicting the time of egg production
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and succession of mite generations. Moreover, our study provides an alternative to most
modeling approaches using field data rather than laboratory growth studies.

From a pest management standpoint, the models developed in this study can be used
to predict the timing of spider mite outbreaks to apply pesticides only when they are most
effective at saving money and minimizing environmental impact. Additionally, the current
model prediction and the necessity of pesticides application will take into account the prior
confirmation of actual mite population damage as verified by unmanned aerial vehicles
(UAVs). In this context, the study demonstrates the importance of T. urticae risk thresholds
for the development and operation of real-time decision support systems for pest man-
agement. To date, the model we implemented as well as the developed degree-day risk
thresholds will be further validated and integrated into VELOS, a novel cloud-based smart
ecosystem for precise farming and pest management of bean farms. VELOS leverages Infor-
mation and Communication Technologies such as Internet of Things, Artificial Intelligence,
Big Data analytics, and Unmanned Aerial/Ground Vehicles for extracting knowledge to
provide an integrated solution to support decision-making, efficiently managing pesticide
application and its scheduling [59]. The pest risk threshold subsystem of VELOS will drive
the activation of other VELOS subsystems (e.g., UAVs and UGVs), while it will constitute a
verification of the output of the pest prediction subsystem.

Compared to other modeling approaches, it is worth noting the basic characteristics
and differences of the current approach. Some recent improved pest prediction models,
for example, use machine-learning algorithms, which are usually trained on large insect
population datasets and environmental factors to identify population patterns and make
predictions. Raghavendra et al. [60], for instance, focused on the weather-based prediction
of pests in cotton by using different prediction model machine learning algorithms such
as multiple linear regression (REG) and generalized linear model (GLM). Shang et al. [61]
proposed a prediction model to predict the occurrence of insect pests by combining two
machine-learning algorithms, artificial neural network (ANN) and genetic algorithm (GA),
while in Damos et al. [62], autoregressive recurrent and focused time-delay ANNs are
applied on large phenology data set to predict outbreaks of important arthropod vectors.

However, despite being potentially more efficient than traditional statistical mod-
els [63], these modeling approaches may not work well when the datasets are limited.
Conceptually, they are computing models designed to process information through dy-
namic state responses to external inputs [64], and thus do not include any rate models with
biologically interpretable parameters. The current modeling approaches are useful because
they take into account the effect of temperature on insect development in a deterministic
manner, thereby improving the accuracy and usefulness of insect population predictions
with limited data sets, backed by a strong theoretical background.

On the other hand, the accuracy of the heat summation models relies on the accuracy
and consistency of temperature data. Small variations in temperature can affect insect
development and emergence, making it important to use accurate and high-quality temper-
ature data. Additionally, the current models are species specific, meaning that a separate
model must be developed for each pest species. These models require several inputs,
including base temperature and degree-day thresholds, which must be determined through
experimental or field observations [41]. This process can be time consuming and resource
intensive, particularly for less common or newly discovered insect species for which pa-
rameters are not available. One other constraint of the current approach is that it does not
take into account other climatic variables such as humidity, nutrition, as well as crowding
and competition at different density levels and in different patch sizes. Nevertheless, while
plant nutrition and irrigation concerns may affect the growth and development of T. urticae,
this mainly relates to the occurrence of damage rather than the prediction outputs of the
models, which are solely driven by temperature.

In this context, a future key research question is whether traditional heat and rate
summation models and modern machine learning techniques differ in terms of the accuracy
of their predictions for a certain pest and area. Furthermore, although temperatures are a
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driving factor of pest population dynamics, it is inof our special interest to test whether
we can improve the predictions by incorporating more variables (i.e., host plant nutrition,
water conditions). This is the focus of our next study.

5. Conclusions

In the present work, we aimed to predict the development of spider mite populations
under field conditions to be further used in decision-making and rational pest manage-
ment. We combined rate and heat summation models estimating problematic metrics
of phenology patterns such as the start of egg and peak of egg laying and the onset of
successive generations of T. urticae. Additionally, the approach resulted in the development
of degree-day thresholds to be used as a rational tool for predicting the most important
phenological events of T. urticae. The performance and accuracy of the predictions was
assessed by examining the actual leaf damage caused by T. urticae in four experimental
bean cultivations. Compared to other studies, the advantage of the current thresholds
is that we have developed them using field data. Despite the inherent limitations of the
current work, we expect that the present study will fill the gap of the absence of modeling
of T. urticae phenological events in a bean crop and provide algorithms and risk thresholds
that are necessary to develop digital plant protection systems for the rational management
of spider mites, thus reducing the hazards of synthetic chemicals.
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