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Abstract: Brazil is one of the world’s biggest monogastric producers and exporters (of pig and broiler
meat). Farmers need to improve their production planning through the reliability of animal growth
forecasts. Predicting pig and broiler growth is optimizing production planning, minimizing the use of
resources, and forecasting meat production. The present study aims to apply a hybrid metaheuristic
algorithm (SAGAC) to find the best combination of values for the growth curve model parameters
for monogastric farm animals (pigs and broilers). We propose a hybrid method to optimize the
growth curve model parameters by combining two metaheuristic algorithms Simulated Annealing
(SA) and Genetic Algorithm (GA), with the inclusion of a function to promote the acceleration of the
convergence (GA + AC) of the results. The idea was to improve the coefficient of determination of
these models to achieve better production planning and minimized costs. Two datasets with age (day)
and average weight (kg) were obtained. We tested three growth curves: Gompertz, Logistic, and
von Bertalanffy. After 300 performed assays, experimental data were tabulated and organized, and
a descriptive analysis was completed. Results showed that the SAGAC algorithm provided better
results than previous estimations, thus improving the predictive data on pig and broiler production
consistency. Using SAGAC to optimize the growth parameter models for pigs and broilers led to
optimizing the results with the nondeterministic polynomial time (NP-hardness) of the studied
functions. All tuning of the growth curves using the proposed SAGAC method for broilers presented
R2 above 99%, and the SAGAC for pigs showed R2 above 94% for the growth curve.

Keywords: computational intelligence; optimization; production forecast; SAGAC

1. Introduction

By the mid-19th century, Gompertz [1] proposed a sigmoid function that describes
growth as being the slowest at the start and end of a given period. Because a stable
population would consequently have a saturation-level point and form a numerical upper
bound on the growth size, Verhulst [2] proposed to limit this constraint and introduced
the Logistic growth function. Afterward, Winsor [3] studied the parallelism between the
Gompertz curve and the Logistic one. The Gompertz and the Logistic curves have similar
properties, making them useful for the empirical representation of growth phenomena. Von
Bertalanffy [4] postulated the General System Theory (GST), a logical concept applicable to
all systems-related sciences, implying that specific principles have pertinence to systems.
It explains the occurrence of isomorphous laws in various scientific fields. Such concepts
were, after that, used to develop growth curves in living organisms and used as a basis for
the genetic development of farm animals [5–7].
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Growth is a continuous function during the animal’s life, from embryonic stages to
adult age. Growth models mathematically explain it with biological meaning parameters [6].
Most functions are resultant of empirical data from specific experiments. Associating
parameters with animal productivity and reproductive traits is a valuable resource for
selection programs [8]. Using the growth curve, it is possible to describe animal body
changes, such as size, mass, volume, and other units of performance interest. Furthermore,
relative growth rates are essential for evaluating growth performance and efficiency [9].

Pig and broiler growth depends on feed efficiency and varies with the animal’s age
or stage of production. The study of animal growth models facilitates monitoring their
development, which can help establish the optimum slaughter time. Growth curves help
explain body development patterns in birds and pigs [6]. The growth curve can be analyzed
in three defined stages: (1) shortly after birth or hatching when there is a moderate growth
rate; (2) after a certain age, the curve settles, and the growth rate is maximum; and (3) at the
end of growth, the rate is slowed down and ends in an asymptote in the mature phase [10].
The use of non-linear models helps consolidate large volumes of information into a set of
constraints that can be explained biologically [7,11,12].

The growth rate is the main focus of pig farming systems, including key performance
indicators such as weight gain, feed intake, and feed conversion [7,13–15]. Current broilers
are high-yielding and growing due to excellent feed conversion [16]. As development
progresses, a more significant amount of energy is destined for the maintenance of the
organism, thus reducing the mass gain and growth of the animals [17]. Growth curves are
vital to support monogastric breeding programs. The three previously described functions
(Gompertz, Logistic, and von Bertalanffy) generate satisfactory results; however, they differ
slightly along the curve. Mathematic models such as growth curves that result from field
trials cannot necessarily be applied to all datasets, because they are developed from specific
experimental conditions. A way to search for the optimal growth curve is to use the hybrid
metaheuristic algorithm strategy. By optimizing the growth curve model, we can define the
increase in body weight as a function of age based on the weight vs. age indicators, which
is critical for the production of monogastric animals.

Simulated Annealing (SA) is a metaheuristic algorithm that applies a metal cooling
process simulation. This method reaches a better status than the current one. If some
movement generates the worst status, it may be accepted according to probability [18]. The
second algorithm is the Genetic Algorithm (GA). GA is also a metaheuristic algorithm that
applies a search and optimization method based on Charles Darwin’s theory of natural
selection of species, according to which it is advocated that over the generations of a population
of individuals of any species, only the best or most adapted to the environment in which they
live will survive. GAs are search algorithms based on the principles of natural selection and
genetics, inspired by the biological evolution of living beings; therefore, surviving individuals
have a chance to pass on their genetic code to subsequent generations [19,20].

In the current literature, there is no consensus on the best model to describe the
growth curve of monogastric animals. The differences between the models may be due
to many reasons, including breed or population structure, sex, feeding management,
environmental conditions, sampling, and statistical methods. Metaheuristics algorithms
are usually used in problems with combinatorial analysis features with many possible
solutions. In this case of growth curves, the average quantity of possible solutions is nearly
1.17 × 1012 (NP-hardness in the computational complexity theory). The present study
proposes optimizing the parameters of monogastric growth curves by applying a hybrid
metaheuristic algorithm (SAGAC) to field data to select the best available growth curve
model functions of monogastric farm animals (pigs and broilers).
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2. Materials and Methods
2.1. Database of Age and Live Weight

A sample of an actual dataset with age (day) and average weight (kg) was extracted
from [21]. To assess the coefficient of determination for the growth curves in pigs, the
sample data of age/average pig live weight are shown in Table 1. They were used to
evaluate the coefficient level of the growth curves.

Table 1. Database sample of age and pig live weight.

Age (Day) Average Weight (kg)

21 105 5.95 61.77
28 112 8.05 68.62
35 119 10.62 75.56
42 126 13.68 82.52
49 133 17.25 89.46
56 140 21.34 96.33
63 147 25.93 103.08
70 154 30.99 109.68
77 161 36.48 116.09
84 168 42.37 122.28
91 175 48.58 128.25
98 182 55.07 133.97

One essential piece of information calculated using this data is the total average
live weight (y = 2.66 kg), and it was used in Equation (4). This research used historical
information on the growth of broilers in the period from 0 to 41 days. The variables used
were retrieved from previous research [2,4,21] and are x (age, day), and y (weight, g), shown
in Table 2.

Table 2. Database of broilers’ historical growth, age, and weight.

Model Parameter

Value Range

Pig Broiler

Min Max Min Max

Gompertz
y1, kg 1.7421 1.7421 46.0000 46.0000
L, g/g 0.0600 0.1200 0.0600 0.1200
K, t−1 0.0154 0.0186 0.0153 0.0186

Logistic for pig
A, kg 114.8539 194.1031 - -
K, t−1 0.0130 0.0220 - -

M, kg/kg 4.9246 8.3226 - -

Logistic for broiler
A, kg - - 2616.3727 3165.8110
L, g/g - - 0.1182 0.1430
K, t−1 - - 24.4545 29.5900

Von Bertalanffy
A, kg 253.1169 427.7676 5652.4909 6839.5140

B, kg/kg 0.0000 0.9000 0.7909 0.9570
K, t−1 0.0070 0.0100 0.0273 0.0330

2.2. Growth Curve Models

The present study evaluated four growth curve models, two of which are generic
(Equations (1) and (2)), described by [22], and two specific ones, Equation (3) for pigs [22]
and Equation (4) for broilers [23].

Gompertz (ŷ) = y1.e[(
L
K )(1−eKt)] (1)

Von Bertalan f f y (ŷ) =
A

[1 − b(eKt)]
3 (2)
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Logistic f or pigs (ŷ) =
A

(1 − eKt)
m (3)

Logistic f or broilers (ŷ) =
A(

1 + e−L(t−K)
) (4)

where y1 = the first occurrence of independent variable y of the data sample; K = postnatal
maturity rate, in which high values indicate early maturity and low values delayed maturity;
L = the angle of the growth curve when t is 1, or the specific initial growth rate; A = the
upper asymptotic weight when t; m = the constant that determines the behavior of the
function, enabling a variable inflection point; and b = the constant of integration without
biological interpretation.

Table 3 shows the specific range of values of the models’ parameters. This range of
values is used by the SAGAC algorithm to vary the values in the equations and to calculate
the ŷ estimated for each age (shown in Table 1).

Table 3. Range values of the function parameters for the studied models.

Model Parameter

Value Range

Pig Broiler

Min Max Min Max

Gompertz
y1, kg 1.7421 1.7421 46.0000 46.0000
L, g/g 0.0600 0.1200 0.0600 0.1200
K, t−1 0.0154 0.0186 0.0153 0.0186

Logistic for pig
A, kg 114.8539 194.1031 - -
K, t−1 0.0130 0.0220 - -

M, kg/kg 4.9246 8.3226 - -

Logistic for broiler
A, kg - - 2616.3727 3165.8110
L, g/g - - 0.1182 0.1430
K, t−1 - - 24.4545 29.5900

Von Bertalanffy
A, kg 253.1169 427.7676 5652.4909 6839.5140

B, kg/kg 0.0000 0.9000 0.7909 0.9570
K, t−1 0.0070 0.0100 0.0273 0.0330

The range values permitted for variation in the SAGAC algorithm are defined in
Table 3. The precision levels of the parameters are different from each other, and the
parameter y1 has no level variation with a unique value (1.7421). After the SAGAC
algorithm calculates estimated values (ŷ) for all ages (day) in the sample data, the coefficient
of determination (R2) may be calculated using Equation (5).

Maximize R2 =
∑n

i=1(ŷ i − y)2

∑n
i=1(yi − y)2 (5)

where y = the independent variable of the data, y = the mean of the independent variables,
and ŷ = the estimated value of y (sample data) according to the models.

2.3. The Hybrid Metaheuristic Algorithm (SAGAC)

The model is formed using two algorithms, Simulated Annealing (SA) and the Genetic
Algorithm (GA), with the inclusion of a mechanism (function) that promotes acceleration of
the convergence (GA + AC) of the obtained results. The SA algorithm acts on the generation
of individuals who make up the modified Genetic Algorithm’s initial population (GA + AC).
Using the SA algorithm makes it possible to obtain a composition of a good-quality initial
population, that is, pre-optimized individuals. In this topic, the SAGAC algorithm is
presented in detail, including which parts compose it and how it works. First, it is critical
to mention that SAGAC is a hybrid metaheuristic algorithm formed by two algorithms.
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The main novelty presented by the SAGAC algorithm is the inclusion of a mechanism
(function) in the Genetic Algorithm that can promote a convergence acceleration (AC) of the
obtained results; that is, the improvement in the obtained results tends to occur in a smaller
number of generations. This mechanism (function) acts within the Genetic Algorithm in the
crossover functionality. The integration of the convergence acceleration (AC) mechanism
(function) with the Genetic Algorithm (GA) is named (AGAC). The first stage of SAGAC’s
functionality is in charge of Simulated Annealing (SA). SA generates the individuals for the
initial population or the first generation. The modified Genetic Algorithm (AGAC) uses
this initial population or generation. With the use of the SA algorithm, it is possible to
obtain a composition of an initial population of good-quality, pre-optimized individuals.

The behavior of the routine of the AGAC algorithm promotes convergence acceler-
ation. After crossing, there is an evaluation of the generated individuals (children) and
a verification of the quality improvement concerning the individuals of the elite population
group. If this does not occur, the individual(s) child(ren) is(are) discarded, and the individ-
ual (Father) of worse quality is replaced by another individual from the elite group that is
closer and better than the individual (Father) who was changed. After the exchange of the
individual (Father), a new crossing occurs for the generation of the missing individual(s)
child(ren). This sequence of steps is repeated until both children satisfy the improvement
criterion or the stipulated limit of the number of attempts is reached. Figure 1 presents the
flowchart of the SAGAC hybrid algorithm.
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Figure 1. Flowchart of the hybrid SAGAC algorithm.

With each cycle of processing of the Simulated Annealing (SA) algorithm, the best
result (individual) is stored to compose the initial population used by the modified Genetic
Algorithm (GA) with the convergence acceleration mechanism (AGAC). Figure 2 shows
the GA with the inclusion of the convergence acceleration mechanism CA [24], with
a mechanism to increase the probability of an individual’s continuous evolution over
the generations.

The algorithm checks whether they have the minimum qualifications to be part of
the elite in each generation of children. If this does not occur, these children are disposed
of, and a generation of others is added after changing one of the parents with the worst
evaluation [25]. In the case of SAGAC, the variables that influence the algorithm’s behavior
are its processing parameters [18,26,27]. The values for the SAGAC algorithm’s parameter
setup and their performance in the optimization process are shown in Table 4.
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Table 4. Setup parameters of SAGAC algorithm.

Setup Parameters of SAGAC

SA Parameters
Initial Temperature 100
TDS (Temperature Decay Scheme) 1
AGAC Parameters
Population size 400
Generations (Quantity) 200
Elitism 0.1
Mutation 0.05
Quantity of attempts to generate children in
the elite 1

2.4. Statistical Analysis

After optimizing the process and comparing the performance between both the RSM
algorithms [28] and SAGAC, a sample of optimization assays was performed with the
SAGAC algorithm. This test aimed to observe the stability of the results produced by
it. A total of 300 assays were performed using 200 generations. We plotted the results
convergence of one experiment. Because in 200 generations, there was no apparent stabi-
lization of the curve convergence, we processed a demonstrative assay with 250 generations
to determine the curve convergence after the 200 generations. After the 300 assays, the
experimental data were tabulated and organized, and a descriptive analysis was presented.
The descriptive statistical analysis was performed using the data from the results of the
300 assays. We used R2 (the coefficient of determination) to determine the proportion of
variance in the dependent variable that the independent variable can explain to compare
the models. The coefficient of determination (R2) is used to identify the strength of a model.
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3. Results
3.1. The Analysis of the Algorithms SA and GA

The use of a new hybrid algorithm (SAGAC), as a union of two or more algorithms,
such as SA and GA, is presented as an innovation to improve the performance of the
optimization process. The comparison between this new hybrid algorithm, SAGAC, and
its ancestor algorithms, SA and GA, is necessary to verify the effectiveness of the hybridiza-
tion. Then, a set of 300 experiments on the growth curve optimization with the ancestor
algorithms was conducted, and the results were compared with the SAGAC results. The
experimental data of the SAGAC, SA, and GA algorithms were tabulated and organized,
and the descriptive analysis is displayed in Figure 3. The boxplot graph describes the data
dispersion from the performance of each algorithm.
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An analysis of the results of the 300 experimental assays of each algorithm makes
it possible to identify the specific performance of each algorithm in the optimization
process. When comparing the updated results produced by the Simulated Annealing (SA)
techniques and the Genetic Algorithm (GA), it is feasible to observe that the SA and GA
algorithms present a lower performance than that of the SAGAC algorithm. Meanwhile,
the union of the two algorithms (SA and GA) in a new hybrid algorithm (SAGAC) makes
the performance more effective.

3.2. Optimization Experiments

After the implementation and setup of the parameters of the SAGAC algorithm, a se-
ries of experimental trials were performed. The results data were collected and tabulated.
According to the data, it is possible to identify the performance of the SAGAC algorithm in
process optimization. The convergence curve of the resulting data (Figure 4) was generated
using the coefficient of determination of the growth curves obtained with value-parameter
combination after 250 algorithm interactions (Generation) for broilers and pigs.
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Figure 4. Example of the data convergence curves of determination coefficient models for optimiza-
tion process (R2) for broilers (a) and pigs (b).

Table 5 presents the results obtained by the standard growth curves (von Bertalanffy,
Logistic, and Gompertz) [22] after applying the SAGAC algorithm. Comparing the data of
the coefficient of determination is possible to check that the SAGAC algorithm finds values
for the parameters that give the model the best R2 value for all models. Comparing the R2

values obtained using SAGAC between models, the Logistic model has the best coefficient
of determination, suggesting that it can provide more reliable prevision values.

Table 5. Comparison of the obtained results for the three tested models for pigs.

SAGAC

Model Von Bertalanffy Logistic Gompertz

Parameter
A, kg 259.524 A, kg 140.4539 y1, kg 1.7421

b, kg/kg 0.8277 K, t−1 0.0220 L, g/g 0.0784
K, t−1 0.0078 M, kg/kg 8.3226 K, t−1 0.0175

R2 0.9389 0.9738 0.9595

Results from [7] indicate that the Logistic and von Bertalanffy curves did not accu-
rately estimate both the initial and slaughter weights. On the other hand, the Gompertz
equation [1] was the most adequate to describe the pigs’ growth curve. The result in the
present study is similar to [22]. However, when optimized using the hybrid metaheuristic
algorithm (SAGAC), we found a rate of improvement (1%) compared to the Logistic and
von Bertalanffy models. This might suggest that these models are more accurate and
adjusted or that the other models have a superior flexibility in adjustment rates in the



AgriEngineering 2022, 4 1179

growth curves. After carrying out the experimental tests, the data generated by the SAGAC
algorithm using the Gompertz, Logistic, and von Bertalanffy models, which simulate the
growth curve of broilers, are compared with each other and presented in Table 6.

Table 6. Comparison of the obtained results for the three tested models for the broilers.

SAGAC

Model Von Bertalanffy Logistic Gompertz

Parameter
A, kg 5800.4909 A, kg 2884.3727 y1, kg 46.0000

b, kg/kg 0.9570 L,(g D−1) 0.1430 L, g/g 0.0904
K, t−1 0.0330 K,(g D−1) 29.5900 K, t−1 0.0165

R2 0.999739 0.999955 0.999998

Among the models studied, the Gompertz model has the highest coefficient of determi-
nation when analyzing the results presented for broilers, which explains the behavior of the
curves, with the Logistic model having the second-best outcome. Considering the results’
correlation, which measures the correspondence between the pairs of values presented
between the sample data and the simulated data, the Gompertz model is more successful,
followed by the von Bertalanffy model. Figure 5 illustrates the simulated curves of the
models with the errors between the database curves for broilers and pigs. The shaded area
is the distance between the actual value and the simulated one.

According to this numerical evidence, the Logistic model improves adherence to the
data sample curve and promotes a more confident prevision of swine and broiler growth.
The numerical evidence of this adherence is available in Table 3.

The boxplot graph (Figure 6) presents the data dispersion from the performance of the
SAGAC algorithm on the standard growth curve models. Detailed data on this performance
are shown in Table 3.

The data shown in Table 7 refer to the SAGAC algorithm’s behavior in 300 optimization
assays to determine the parameter values for the process. It is possible to note that the
average relation between the standard deviations and means measures is equal to 0.83%,
which means that the deviation of the results is small, which means a slight oscillation.
Because the SAGAC results present a slight deviation fluctuation, it explains that the
algorithm is stable.

Table 7. Performance of SAGAC in 300 trials for each model related to the dispersion obtained for
each assay for all models.

Measure

Coefficient of Determination (R2)

Broiler Pig

Gompertz Logistic Von
Bertalanffy Gompertz Logistic Von

Bertalanffy

Mean 0.998872 0.999957 0.999780 0.948674 0.974265 0.903218
Median 0.999279 0.999955 0.999739 0.950769 0.974241 0.914902

Standard Deviation 0.001177 0.000006 0.000076 0.008878 0.000440 0.041319
Minimum 0.993010 0.999955 0.999739 0.931708 0.973787 0.731966
Maximum 0.999998 0.999993 0.999992 0.959962 0.974999 0.949889
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4. Discussion

We tested the metaheuristic hybrid algorithm SAGAC to find the best fit among the
possible models available for pig and broiler growth. The growth curve parameters provide
an opportunity to design selection strategies by modifying either feeding practices or the
genetic makeup of the growth curve shape. The quality of fit of a model of an animal species,
among other factors, is dependent on the number of weight-age parameters evaluated (sex,
breed, management, age of the animal) [22]. The classical Logistic growth equation [2] has
been used as a basis for several extended models. Each is helpful to accommodate physical
growth without the constraint that the maximum growth rate should occur at half of the
carrying capacity in the case of population dynamics or the maximum possible dimension
for the physical growth of the system being tested [29]. Previous experimental research
was carried out to directly assess the genetic variation inherent in the growth parameters
of chickens using a cross-incorporating progeny of both sexes [30]. The authors’ results
indicate a moderate improvement using the genetic modifications, mainly due to biological
limitations. Our results suggest enhancing the animals’ weight prediction by optimizing
the growth curve parameter values. This is reached by the adherence of the simulated
growth curve to the empirical ones.

Vertical management of the poultry and swine industries facilitates product segmen-
tation and a precision approach to optimization solutions for strategic and operational
decisions, such as the ’best combination of parameter values of growth models’ that would
promote slaughter time planning [31]. A comprehensive computational study might solve
the integrated planning problem when considering solutions for optimizing the production
chain. Hatching eggs, allocating broiler flocks on farms, and collecting broilers for slaugh-
ter were applied to accurate data. They showed that value could be added to planning,
improving solutions by 15 to 24% [32].

The metaheuristics algorithms use their strategies to search the result set for a better
possible outcome in a short time of processing. The SAG successfully optimized cassava
starch hydrolysis to produce biofuel [33]. The SAGAC was previously applied to optimize
the pre-processing vacuum cooling of broccoli handling [34]. The refined combination
of SA and GA (SAG) and adding the convergence acceleration function (AC) improved
the performance of the hybrid algorithm (SAGAC) in the optimization process. One
characteristic of SAGAC that could be considered a limitation is that the algorithm does
not have the optimal result for each problem; however, it finds a satisfactory result due
to the complexity of the problem. The computational cost (due to the NP-hardness of the
functions) is often unfeasible if an exact algorithm is used for these problems. Our findings
show that the Logistic model fits live weight data very well for studying the growth of pigs
(R2 = 0.9738). The best-fitted model for the broiler is the Gompertz model (R2 = 0.999998).
This result agrees with [6], who found that the Gompertz model was the best model for
male and female broilers.

The biological interpretations rationalized for parameters from growth functions and
their specific cases have been a primary reason for their popularity [35]. The von Bertalanffy
equation was directly argued from metabolic laws [8]. Biological understandings have
evolved after choosing a mathematical model on empirical grounds, so it is not unexpected
that the functions do not always hold for all models and datasets [36–39]. Therefore, the
curve growth functions vary depending on the species and environmental conditions of
housing. In our study, there is a slight difference in the results; however, using the SAGAC
algorithm decreases that disparity.

There is a constant search for tools and methods to improve production and meat
quality [40]. The forecasting of pig growth to devise the market is optimizing production
planning and management. In the present research, a hybrid metaheuristic algorithm
(SAGAC) was tested to better estimate the model’s parameters for predicting pig and
broiler growth curves, thus promoting greater reliability in the predictive data of the meat
supply chain.
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5. Conclusions

The current models for predicting growth curves for monogastric farm animals are
developed using experimental data (curve fitting), and these models cannot generalize
these curves to other datasets. All tuning of the growth curves using the proposed SAGAC
method for broilers presented an R2 value above 99%, and the SAGAC for pigs presented
an R2 value above 94% for the growth curve. Our study showed that within the three tested
models for each monogastric animal (pig and broiler), there is a prevalence of the Logistic
model for pig production and the Gompertz model for broiler production.

This study proposes applying SAGAC to optimize the growth parameter models
for pigs and broilers, effectively reducing the NP-hardness of the studied functions. Our
results improve prediction reliability and enhance production planning quality, minimizing
production costs.
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