
applied  
sciences

Article

Automated Diatom Classification (Part A):
Handcrafted Feature Approaches

Gloria Bueno 1,*, Oscar Deniz 1 ID , Anibal Pedraza 1 ID , Jesús Ruiz-Santaquiteria 1, Jesús Salido 1 ID ,
Gabriel Cristóbal 2 ID , María Borrego-Ramos 3 ID and Saúl Blanco 3

1 VISILAB-University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain;
Oscar.Deniz@uclm.es (O.D.); Anibal.Pedraza@uclm.es (A.P.); Jesus.RAlegre@uclm.es (J.R.-S.);
Jesus.Salido@uclm.es (J.S.)

2 Institute of Optics, Spanish National Research Council (CSIC), Serrano 121, 28006 Madrid, Spain;
gabriel@optica.csic.es

3 The Institute of the Environment, University of Leon, E-24071 León, Spain; mborr@unileon.es (M.B.-R.);
saul.lanza@unileon.es (S.B.)

* Correspondence: gloria.bueno@uclm.es

Received: 31 May 2017; Accepted: 18 July 2017; Published: 25 July 2017

Abstract: This paper deals with automatic taxa identification based on machine learning methods.
The aim is therefore to automatically classify diatoms, in terms of pattern recognition terminology.
Diatoms are a kind of algae microorganism with high biodiversity at the species level, which are useful
for water quality assessment. The most relevant features for diatom description and classification
have been selected using an extensive dataset of 80 taxa with a minimum of 100 samples/taxon
augmented to 300 samples/taxon. In addition to published morphological, statistical and textural
descriptors, a new textural descriptor, Local Binary Patterns (LBP), to characterize the diatom’s
valves, and a log Gabor implementation not tested before for this purpose are introduced in this
paper. Results show an overall accuracy of 98.11% using bagging decision trees and combinations
of descriptors. Finally, some phycological features of diatoms that are still difficult to integrate in
computer systems are discussed for future work.

Keywords: feature analysis; textural features; morphological features; automatic classification;
handcrafted approaches; diatoms

1. Introduction

Diatoms are a major group of algae and are among the most common microorganisms in marine
and freshwater habitats. They are important contributors to the primary production in aquatic
ecosystems, placed at the bottom of the food chain. The diatoms have been shown to be increasingly
important worldwide in studies related to climate change, as well as in the development of functions
that allow the modeling of such change. Moreover, they are good indicators of environmental
conditions and are commonly used in water quality assessment [1,2].

Diatom indices are known to correlate more significantly with water chemical variables,
within continental waters, while macroinvertebrate- or plant-based methods are more sensitive to
changes affecting structural parameters [3].

Diatoms have several advantages over other indicators that make them ideal as indicators of
water quality. These features are: (a) their ability to spread over a variety of habitats; (b) they are
relatively easy to sample, and such sampling has no impact on the ecosystem during collection; (c) they
have a quick response to variation in environmental conditions; and (d) they are sensitive to changes
in environmental conditions that may not be observed in other communities.
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Diatom cells are enclosed within a unique silica cell wall known as a frustule made up of two
valves, which fit into each other like a pill box. The frustules show a wide diversity of shapes
and sizes, though mainly, they can be divided into centric diatoms (radial symmetry, rounded) and
pennate diatoms (bilateral symmetry, elongated). The main taxonomic features used in diatom
identification are related to the morphology and ornamentation of the frustule. The presence of
raphe and the ornamentation of the frustule, stigmata and other features are important in identifying
these organisms [4].

The diatom size, in the range of 2–2000 µm, is suitable for observation of most species using an
optical microscope. However, diatoms require specialized skills for their classification, that is trained
diatomists (phycologists specializing in diatom taxonomy). As stated in [5], more than 200,000 diatom
species are estimated to exist, although just half of them have been described. Several intercalibration
tests have shown that the results of biological indices based on diatoms are highly sensitive to the
level of accuracy in taxonomic classification [6]. The identification task is very difficult due to the huge
number of species estimated to exist [7].

Classical taxonomic diagnosis is performed using key features or by visual comparison with type
samples or reference iconographies [8]. The conventional approach is to analyze these microalgae using
light microscopy (brightfield, DIC, RIC, etc.). Diatom-based metrics are calculated based on the relative
abundance of different taxa in an assemblage and the autecological parameters characterizing each
species. However, the current manual analysis of images is tedious, requiring highly qualified staff,
and it is time consuming. This is the case when diatoms are used in the context of water quality, as in
this study. According to a European directive, in order to compute an index score, the identification of
a minimum of 400 valves per sample is required [9].

In the case of transparent specimens such as diatoms, brightfield microscopy presents some
difficulties. Some details are barely distinguishable from the background, and some other alternative
modalities such as phase contrast, DIC or dark field need to be considered. There are few species of
the Nitzschia, which are good examples of that (Nitzschia costei, Nitzschia frustulum var frustulum and
Nitzschia inconspicua). This is probably due to a not well-developed silicification process.

Phase contrast microscopy is a suitable technique for visualizing transparent specimens. However,
it produces some artifacts (halos and shading-off) that limit its usefulness in some applications.
Halos are unresolved images with reverse contrast, and shading-off is a contrast-decreasing effect
from the edge of the specimen towards the center of it [10]. DIC microscopy is also a popular method
for improving the contrast of unstained specimens. DIC is absent of the halo effect found in phase
contrast microscopy producing pseudo-relief images that can be understood as the derivative of the
optical path length defined as product of the index of refraction times the specimen thickness. In dark
field microscopy, the specimen is illuminated with a hollow cone of light, which is too wide to enter
the objective lens. Dark field is a suitable modality for diatom visualization that can be a substitute of
phase contrast or DIC in many cases, although both are out of the scope of this work. Scanning electron
microscopy is another suitable modality, especially in taxonomy for revealing structural details [11],
which is also out of the scope of this paper. On the other hand, most of the diatom databases that are
publicly available use brightfield microscopy.

Other difficulties attached to microscopy are: images partially focused and multiple orientations
(views). Both are related to the projection of 3D objects into 2D images. The main challenges faced by
automatic identification and classification methods are due not only to the high number of species
to recognize, but to the great similarities between them and even the presence of polymorphisms
within species. In some cases, analysis is simply unfeasible due to the huge amount of information
and images involved. Advances in digital microscopy and image analysis systems offer a potentially
advantageous solution compared to manual methods of counting and classification.

Before going further, it is worth pointing out the difference between classification and
identification in terms of biology and pattern recognition terminology. In biology, it may be said that
the term identification answers the question: ‘What is the name of the taxon in front of me?’. However,
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classification answers questions of the sort: How is this taxon related to other taxa? According to the
pattern recognition terminology, a class is a set of objects that within a given context is recognized as
similar. Such a class has usually a unique name, the class name. The individual objects within a class
have a label that refers to this name. Additionally, classification is the assignment of a class name to an
object by evaluating a trained classifier for that object. Therefore, in this study, our objects or classes
are the diatoms, and we will classify them to give them a label with their taxon name. Henceforth,
a diatom taxa will be referred to as a class.

A good review of morphometric methods for shape analysis and landmark-based analysis used
in diatom research is presented in Pappas et al. [12]. Another attempt to describe the morphology
and geometry of diatoms is the work of Kloster et al. [13], who developed a system that allows the
segmentation and feature extraction from diatom contours, although it does not provide textural
information about the frustule. As mentioned by Pappas et al. [12], two areas of study may be
identified with regard to the methods used in diatom research, namely shape analysis and pattern
recognition. We will focus on pattern recognition or machine learning methods, but notice that the
traditional machine learning methods are based on a previous definition of a set of features describing
the objects to be classified that may or may not have a biologically-meaningful interpretation.

Methods for diatom detection and identification have been studied in Cairns et al., 1979 [14],
Culverhouse et al., 1996 [15], Pech-Pacheco and Alvarez-Borrego, 1998 [16], Pech-Pacheco 2001 [17].
Cairns et al. [15] have proposed some diatom identification methods based on coherent optics and
holography. However, such work did not have any impact on diatom research mainly due to the
fact that the identification system was too specialized and probably too expensive to be used by
a diatomist community [18]. Culverhouse et al. [15] derived some methods for phytoplankton
identification based on neural networks, but again, they do not provide a fully-automatic method.
Pech-Pacheco et al. [16] have proposed a hybrid optical-digital method for the identification of five
different species of phytoplankton through the use of operators invariant to translation rotation and
scale. Pappas and Stoermer 2003 [19], used form descriptors by Legendre polynomials and principal
component analysis in the identification of the Cymbella cistula species.

An important attempt to automate diatom classification was conducted for the ADIAC project
(Automatic Diatom Identification And Classification) [18,20]. Several accuracy results were reported
with a database composed of different numbers of diatom taxa ranging from 37–55 classes. In ADIAC,
171 features were used for diatom classification. These features are intended to describe the diatom
symmetry, shape, geometry and texture by means of different descriptors, such as: rectangularity,
circularity, compactness, shape of poles, length, width, length-width ratio, size, stria density orientation,
horizontal frequency, Gray-Level Co-occurrence Matrix (GLCM), moment invariants, Gabor wavelets,
Fourier and Scale-invariant Feature Transform (SIFT) descriptors. The classifiers that perform better
are bagging of decision trees and random forest of predictive clustering trees, all of them evaluated
with 10-fold cross-validation (10 fcv). The best results, up to 97.97% accuracy, were obtained with
38 classes using Fourier and SIFT descriptors with random forest. Performance decreased down to
96.17% when classifying 55 classes with the same descriptors and classifier [21].

New techniques based on Convolutional Neural Networks (CNN) have also been explored to
classify sea plankton (Kuang 2015 [22], and Dai et al., 2016 [23]). Note, however, that these images
are different than those studied in this paper since this type of plankton varies from phytoplankton
(diatoms). In [22], a database of 30,000 images belonging to 121 classes was used. The results were poor
with a maximum performance of 73.90%. In [23], a database of 30,000 images belonging to 33 classes
was used. They obtained an accuracy up to 96.3%. The other work related to CNN applied to diatoms
is the one published by the authors (see the next paper companion [24]). The work presented here and
the methodology have been compared to the CNN approach [24].

Thus, most of the efforts are still carried out with handcrafted approaches or “hand-designed”
methods where a set of fixed features is used. That is, the methods rely on expert knowledge to
extract the most relevant features versus CNN approaches that learn features from data. However, still,
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the handcrafted methods present limited results as in [25], where 14 classes were classified with
Support Vector Machine (SVM) 10 fcv, using 44 GLCM features that describe only geometric and
morphological properties. They obtained an accuracy of 94.7%.

Therefore, the automated classification of diatoms (in terms of pattern recognition) or taxon
identification remains a challenge. At present, there is no system capable of taking into account
variations in both the contour and the texture in a relatively large number of species. One of the
reasons is the difficulty in acquiring a big dataset of tagged data with a sufficient number of samples
per species. The classification of diatoms is tedious and laborious, even for an expert diatomist.

In this paper, we present a complete study of relevant features to describe and classify diatoms.
The main purpose is to define the most discriminant features and to make a comparison of classifiers
based on these features versus the CNN approach. For that, we collected an important database of
80 diatom taxa with 300 samples per taxon described in Section 2. The database was composed of
an average of 100 distinct diatoms per class and augmented by means of computational simulations
up to 300 samples per class. In order to extract the main diatom features, we propose in Section 3
a segmentation to apply descriptors to the contour and inner diatom regions. In Section 4, a complete
list of descriptors is provided. Those are handcrafted features that describe, in terms of computer
vision, the discriminant properties of diatoms. Sections 5 and 6 describe classification strategies and
some classifiers. Experimental results are presented in Section 7 where an overall accuracy of 98.11% is
presented, which improves previous related works. Finally, Section 8 concludes the paper addressing
unresolved challenging problems.

2. Materials: Dataset Preparation

Once having collected the diatom samples from the rivers, the chemical treatment of the sample
is carried out in the laboratory with hydrogen peroxide (120 vol.), which causes the digestion of the
organic matter and allows one to obtain suspensions of frustules and valves free of organic remains.
The process is done at a temperature of 70–90 ◦C, to accelerate the reaction. A few drops of the
sample are taken and deposited in a round coverslip. After evaporation of the water, the diatom
frustules remain in the cover-objects. Then, using a synthetic resin (Naphrax) with an optical refractive
index of 1.7, diatoms are attached to the glass slide for later classification under brightfield microscopy
following standard protocols [9].

The 80 diatom species studied here were collected during the years 2003 and 2015 from the
Duero Basin water in Spain [26]. Those are the 80 dominant taxa in terms of relative abundance and
occurrence. A Westbury SP/40 Brunel microscope and a Brunel AMA 050 camera were employed to
capture the images at 60× magnification, with a numeric aperture of 0.85 and a physical resolution of
7.91 pixels/µm. An average of 100 distinct diatom valves per each diatom class were then manually
cropped and labeled by an expert diatomist. The exact number of the cropped diatom valves is shown
in Table 1. To complete the dataset with up to 300 image samples per taxon, a data augmentation
was performed by means of applying rotations of 90◦, 180◦, 270◦ and up-down and right-left flips
to the cropped images. These 6 transformations were performed on the original images and only if
needed, to obtain up to 300 image samples per class. Thus, we end up with 24,000 images to classify
into 80 diatom taxa.

Data augmentation aims at increasing the number of images in the dataset by representing image
data in different orientations. That is, different copies of the same image are made, but from different
perspectives or visual angles. Rotating and mirroring the data in different orientations may eventually
help with identifying a similar object in different orientations. A more robust classifier will be obtained
if the data are randomly rotated in multiple orientations.

In Figure 1, a capture with a manually-selected diatom is shown. The elements that form the
ornamentation of the frustule in a diatom are illustrated in the cropped diatom. Features of the stria are
key in diatom taxonomy, such as: areola and lineolae. Areola is a perforation (or pore) in the diatom
valve, and lineolae are areola elongated in the apical direction. The lineolae density is calculated in ppm
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(pixels per micron). Every sample was manually cropped to ensure the best diatom samples avoiding
as much as possible nearby samples or debris. The list of the 80 species with the number of original
selected images is indicated in Table 1, and some examples are depicted in Figure 2. The number of
the taxon corresponding to the one listed in Table 1 is shown in the upper left corner of each picture.
The database can be obtained by request (see the contact at http://aqualitas-retos.es/en/), and it will
be publicly available at the end of the project. Figure 3 shows the same diatom species at different
views (“valvar view” and “girdle view”) and sizes. Due to the deposition process of the sample,
in most situations, the diatoms appear in valvar view, although sometimes appear in lateral view
(less than 10% of cases).

Figure 1. Diatoms observed by a microscope at 60×magnification and their main elements. The original
image size is 903 × 614 pixels, and the selected diatom sample is 138 × 85 pixels.

Table 1. List of the 80 diatom species analyzed in the current study, showing the number of valves
per class.

1. Achnanthes subhudsonis 123 28. Encyonema minutum 120 55. Gomphonema rhombicum 64
2. Achnanthidium atomoides 129 29. Encyonema reichardtii 152 56. Humidophila contenta 105
3. Achnanthidium caravelense 59 30. Encyonema silesiacum 108 57. Karayevia clevei varclevei 84
4. Achnanthidium catenatum 187 31. Encyonema ventricosum 101 58. Luticola goeppertiana 136
5. Achnanthidium druartii 93 32. Encyonopsis alpina 106 59. Mayamaea permitis 40
6. Achnanthidium eutrophilum 97 33. Encyonopsis minuta 89 60. Melosira varians 146
7. Achnanthidium exile 98 34. Eolimna minima 174 61. Navicula cryptotenella 136
8. Achnanthidium jackii 125 35. Eolimna rhombelliptica 132 62. Navicula cryptotenelloides 107
9. Achnanthidium rivulare 305 36. Eolimna subminuscula 94 63. Navicula gregaria 50
10. Amphora pediculus 117 37. Epithemia adnata 72 64. Navicula lanceolata 77
11. Aulacoseira subarctica 113 38. Epithemia sorex 85 65. Navicula tripunctata 99
12. Cocconeis lineata 81 39. Epithemia turgida 93 66. Nitzschia amphibia 124
13. Cocconeis pediculus 49 40. Fragilaria arcus 93 67. Nitzschia capitellata 123
14. Cocconeis placentula var euglypta 117 41. Fragilaria gracilis 54 68. Nitzschia costei 72
15. Craticula accomoda 86 42. Fragilaria pararumpens 74 69. Nitzschia desertorum 71
16. Cyclostephanos dubius 85 43. Fragilaria perminuta 89 70. Nitzschia dissipata var media 81
17. Cyclotella atomus 99 44. Fragilaria rumpens 49 71. Nitzschia fossilis 76
18. Cyclotella meneghiniana 103 45. Fragilaria vaucheriae 82 72. Nitzschia frustulum var frustulum 226
19. Cymbella excisa var angusta 79 46. Gomphonema angustatum 86 73. Nitzschia inconspicua 255
20. Cymbella excisa var excisa 241 47. Gomphonema angustivalva 55 74. Nitzschia tropica 65
21. Cymbella excisiformis var excisiformis 142 48. Gomphonema insigniforme 90 75. Nitzschia umbonata 91
22. Cymbella parva 177 49. Gomphonema micropumilum 89 76. Rhoicosphenia abbreviata 94
23. Denticula tenuis 181 50. Gomphonema micropus 117 77. Skeletonema potamos 155
24. Diatoma mesodon 115 51. Gomphonema minusculum 158 78. Staurosira binodis 94
25. Diatoma moniliformis 134 52. Gomphonema minutum 93 79. Staurosira venter 87
26. Diatoma vulgaris 88 53. Gomphonema parvulum saprophilum 52 80. Thalassiosira pseudonana 70
27. Discostella pseudostelligera 82 54. Gomphonema pumilum var elegans 128

http://aqualitas-retos.es/en/
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Figure 2. Examples of the 80 diatom taxa classified in this study. Sample images are stretched for
visualization purposes.
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(a)

(b)

(c)

Figure 3. Different views and sizes of the same species: (a) Gomphonema insigniforme; (b) Nitzschia fossilis;
and (c) Rhoicosphenia abbreviata.

3. Valve Segmentation: Binary Thresholding

There are several works about diatom detection mainly related to the above-mentioned ADIAC
project. It is out of the scope of this paper to present all of the segmentation methods; for further
details, the reader is referred to the reviews mentioned in Section 1 [12,13,18]. In this work, we present
an automatic method used to do an initial quick segmentation, which required visual supervision
afterward to include only the correct segmented diatoms. Some of the images have been acquired with
low contrast and background noise, which produces a poor segmentation in terms of valve overlapping
with other structures. That means visual supervision is needed for discarding segmentation errors.
The valve is the most significant region of the diatoms where structural differences can be distinguished.
Therefore, the segmentation process should accurately extract such a region for extracting relevant
features. A proper segmentation of the valve is expected to affect textural, frequential and statistical
descriptors. This segmentation is done here by means of a binary thresholding where the segmented
region is the binary masks where descriptors must be computed.

The process to obtain the binary masks consists of four steps:

1. Binary thresholding: automatic segmentation based on Otsu’s thresholding.
2. Maximum area: calculation of the largest region (area).
3. Hole filling: interior holes are filled if present, using mathematical morphology operators.
4. Segmentation: the ROI is cropped with the coordinates of the bounding-box of the largest

area (Step 2).

Due to the presence of debris and overlapping with different diatom taxa (or debris), the segmentation
was afterward manually checked to discard bad segmented diatoms or finish correction; see some
examples of the segmented diatoms and their masks in Figure 4.
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(a) (b)

Figure 4. Segmented diatoms and their binary mask: (a) Epithemia sorex; (b) Gomphonema minutum.

4. Diatom Handcrafted Feature Descriptors

An effort must be made in translating the knowledge of the diatomists to distinguish the different
diatom species and describe the most relevant features in terms of computer vision and pattern
classification. The goal is to mimic human perception and the ability to recognize a 3D object from a
2D image, in this case diatoms. Even if it is sometimes unclear what features are used by the expert to
distinguish among very similar diatom species, we proposed and described diatom features in terms
of automatic pattern classification.

Along the next subsections, the handcrafted features are presented in groups according to their
formulation with a brief explanation. The different groups of descriptors are indicated in Table 2.
A total of 1460 descriptors is computed, and all of them are calculated uniquely in those pixels
belonging to the segmented binary masks.

Table 2. List of handcrafted feature descriptors divided into categories. LBP, Local Binary Pattern.

CATEGORY HANDCRAFTED FEATURE TOTAL

Morphological Area, eccentricity (3 eccentricities) 7 features
Perimeter, shape, fullness

Statistical

1st order (histogram) 13 features

2nd order (co-occurrence matrix)
19 features

distance = 1, 3, 5 pixels
direction = 0◦ , 45◦ , 90◦ , 135◦

Texture space LBP Stat.241 features

Moments Hu 7 moments

Space-frequency Log Gabor 4 scales (6 orientations)
241 × 4 = 964 features

4.1. Morphological Descriptors

Morphological features related to frustule’s contour and area are computed from the binary masks.

4.1.1. Area

This descriptor is calculated as the sum of pixels in the binary mask (B ∈ (0, 1)) of size MxN:

Area =
N

∑
n=1

M

∑
m=1

B(m, n) (1)

4.1.2. Eccentricity

These descriptors reflect elongation in relation with the binary mask’s center of mass, also called
the centroid and defined as:

(mc, nc) =

 1
Area ∑

(m,n)∈Area
m · B(m, n),

1
Area ∑

(m,n)∈Area
n · B(m, n)

 (2)
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The first Eccentricity1is defined as a quotient of the maximum and minimum distance between
the centroid and binary mask’s border (i.e., frustule’s contour), also called outer and inner
circumference radius.

Eccentricity1 =
Outer− radius
Inner− radius

(3)

Similarly, Eccentricity2 is calculated as the quotient of the semi-axes of the best fitting ellipse for
the mask, and Eccentricity3 is the ratio of the inertia moments of the two semi-axes of the best fitting
ellipse. The moments are defined in Section 4.4.

4.1.3. Perimeter

This descriptor is the number of pixels that belong to the diatom’s outline (i.e., a pixel belongs to
the perimeter if it is nonzero and is connected with at least one pixel equal to zero).

Perimeter =
N

∑
n=1

M

∑
m=1

P(n, m) (4)

where: P(m, n) = 1 i f ∃ B(m± 1, n± 1) = 1 and P(m, n) = 0 otherwise.

4.1.4. Shape

This descriptor is a measure of the elongation of an object. It is given by:

Shape =
4 · π · Area
Perimeter2 (5)

4.1.5. Fullness

This descriptor is the ratio of the mask area to the bounding box area.

4.2. Statistical Descriptors

4.2.1. First Order Statistical: Histogram

These descriptors, listed in Table 3, calculate common statistics in the image histogram h(i)
calculated on a 255-bin H. This group of descriptors is sensible to variations of gray pixel levels,
but they ignore their local correlation.

Table 3. First-order statistical descriptors.

Mean µ = ∑H−1
i=0 i · h(i)

Mode i = argmax(h(i))
Minimum min(h(i))
Maximum max(h(i))
Variance σ = ∑H−1

n=0 (i− µ)2 · h(i)
Range max(h(i))−min(h(i))
Entropy ∑H−1

i=0 h(i) · log(h(i))
1st Quartile µq1 = ∑H

i=3dH/4e i · h(i)

2nd Quartile µq2 = ∑3dH/4e
i=2dH/4e i · h(i)

3rd Quartile µq3 = ∑2dH/4e
i=dH/4e i · h(i)

Interquartile Range µq3 − µq1

Asymmetry 1
σ3 ∑H−1

n=0 (i− µ)3 · h(i)
Kurtosis 1

σ4 ∑H−1
n=0 (i− µ)4 · h(i)

Histogram h(i), bins number H, floor operator d e.
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4.2.2. Second Order Statistical: Co-Occurrence Matrix

The co-occurrence matrix c(m, n), which is defined as the distribution of co-occurring pixel
values at a given distance (d) and direction (◦), can be used for measuring the texture of an image.
The distances and direction used in this study are d equal to 1, 3 and 5 pixels and (◦) equal to 0◦, 45◦,
90◦ and 135◦ (see Table 2). Feature descriptors extracted from co-occurrence matrices are also called
Haralick features (Haralick) [27]. The 19 second order statistical features used in this study are listed
in Table 4.

Table 4. Second order statistical descriptors.

Energy ∑H−1
i=0 ∑H−1

j=0 c(i, j)2

Variance ∑H−1
i=0 ∑H−1

j=0 (i− µ)2 · c(i, j)

Contrast ∑H−1
n=0 n2

(
∑H−1

i=0 ∑H−1
j=0 c(i, j)

)
, |i− j| = n

Dissimilarity ∑H−1
i=0 ∑H−1

j=0 |i− j| · c(i, j)

Correlation 1
σxσy ∑H−1

i=0 ∑H−1
j=0 i · j · c(i, j)− µxµy

Autocorrelation ∑H−1
i=0 ∑H−1

j=0 i · j · c(i, j)

Entropy T = −∑H−1
i=0 ∑H−1

j=0 c(i, j) · log(c(i, j))

Measure of Correlation 1 T−HXY1
max(HX,HY)

Measure of Correlation 2 (1− exp[2 · (HXY2− T)])0.5

Cluster Shade ∑H−1
i=0 ∑H−1

j=0 (i + j− µx − µy)3 · c(i, j)

Cluster Prominence ∑H−1
i=0 ∑H−1

j=0 (i + j− µx − µy)4 · c(i, j)

Maximum Probability max(c(i, j)), i = [0...H − 1], j = [0...H − 1]

Sum Average ∑
2(H−1)
i=0 i · cx+y(i)

Sum Entropy ∑
2(H−1)
i=0 cx+y(i) · log(cx+y(i, j))

Sum Variance −∑
2(H−1)
i=0 (i− SumEntropy)2 · cx+y(i)

Difference Entropy −∑H−1
i=0 cx−y(i) · log(cx−y(i, j))

Difference Variance ∑H−1
i=0 i2 · cx−y(i)

Homogeneity 1 ∑H−1
i=0 ∑H−1

j=0
c(i,j)

1+(i−j)2

Homogeneity 2 ∑H−1
i=0 ∑H−1

j=0
c(i,j)

1+|i−j|2

H bins number, HX and HY entropy of px and py.

µx = ∑H−1
i=0 ∑H−1

j=0 i · c(i, j); µy = ∑H−1
i=0 ∑H−1

j=0 j · c(i, j)

cx(i) = ∑H−1
j=0 c(i, j); cy(j) = ∑H−1

i=0 c(i, j)

σx =
√

∑H−1
i=0 cx(i)(i− µx)2; σy =

√
∑H−1

j=0 cy(i)(i− µy)2

cx+y(k) = ∑H−1
i=0 ∑H−1

j=0 c(i, j); i + j = k, k = [0...2(H − 1)]

cx−y(k) = ∑H−1
i=0 ∑H−1

j=0 p(i, j); |i− j| = k, k = [0...H − 1]

HXY1 = −∑H−1
i=0 ∑H−1

j=0 c(i, j) · log(cx(i) · cy(j))

HXY2 = −∑H−1
i=0 ∑H−1

j=0 cx(i) · cy(j) · log(cx(i) · cy(j))

4.3. Local Binary Patterns

The Local Binary Pattern (LBP) operator is based on the idea that textural properties within
homogeneous regions can be represented as patterns [28–31]. These patterns represent micro-features.
It analyzes a “texture spectrum”, e.g., using a 3 × 3 mask and comparing their values with the
central pixel. The pixels with a lower value than the central one are labeled with “0”, otherwise
with “1”. A linear combination is applied where the labeled pixels are multiplied by a fixed weighting
function and summed to obtain a label: LBP(gc) = ∑7

p=0 s(gp − gc)2p, where {gp|p = 0, . . . , 7} are the

neighbors of gc, and the comparison function is defined as: s(x) =

{
1 if x ≥ 0
0 otherwise.



Appl. Sci. 2017, 7, 753 11 of 22

The mask may be defined using a circular neighborhood [32], denoted by (P, R), where P is the
number of sampling points and R is the radius of the neighborhood. Ojala et al. [32] observed that
over 90% of patterns can be described with few LBP patterns, so they introduced a uniformity measure
U(LBPP,R(gc)) = |s(gP−1 − gc)− s(g0 − gc)|+ ∑P−1

p=1 |s(gp − gc)− s(gp−1 − gc)|, which corresponds
to the number of transitions (0/1) in the labeled LBP.

In this way, the uniform-LBP (LBPuni
P,R) can be obtained as:

LBPuni
P,R (gc) =

{
∑P−1

p=0 s
(

gp − gc
)

if U (LBPP,R (gc)) ≤ 2
P + 1 otherwise

(6)

After the LPB operator, a labeled image is obtained. Once this process is completed, the pixel-wise
information from the labeled image is encoded as a histogram, so that it can be interpreted as a
fingerprint of the analyzed diatom area. LBPuni

P,R produces (P + 2)-bin histograms [33] where the
statistical descriptors are computed. As far as the authors know, LBP has never been tested before for
diatom classification. Figure 5 shows some examples of LBP corresponding to some diatom species.

(a) (b) (c) (d)

Figure 5. LBP images corresponding to the following species: (a) Cymbella excisa var angusta;
(b) Cyclostephanos dubius; (c) Gomphonema insigniforme; (d) Achnanthes subhudsonis.

4.4. Hu Moments

Image moments provide a shape description both morphologically and statistically [34].
Hu moments are invariant with respect to translation, scale and rotation and can be generated from
the central moments. The central moments for an image g(m, n) can be formulated as follows:

µpq = ∑
m

∑
n
(m−mc)

p · (n− nc)
q · g(m, n) (7)

where mc = M10
M00

and nc = M01
M00

are the components of the centroid and Mpq raw moments Mpq =

∑m ∑n mp · nq · g(m, n).
The seven Hu moment invariants are given by:

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11
φ3 = (η30 − 3η21)

2 + (3η21 − η03)
2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

(8)

where ηrs =
µrs
µ00 and γ = r+s

2 + 1, r + s = 2, 3, . . . , inf.

4.5. Texture Descriptors in the Space-Frequency Domain

The previously-introduced statistical descriptors are calculated in the space-frequency domain.
It is assumed that features, somehow hidden, arise with higher visibility in this domain. Thus,
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some transformations must be applied to the image to analyze its properties in this domain. In this
study, a log-Gaborfilters were used to characterize the texture of diatoms. Then, for every transformed
domain or sub-band, a total number of 964 statistical descriptors is calculated; see Section 4.2.

Log Gabor Transform

Log-Gabor filters are defined in the frequency domain as Gaussian functions shifted from the
origin to avoid the singularity of the log function. In addition, the Gaussian envelope is modulated by
a complex exponential with even and odd phases, which is effective for characterizing edges. Here,
log Gabor filters proposed by Fischer et al. [35] have been used. The log Gabor descriptor is based on
the energy calculated at every scaled level:

Gaborl = ∑O
o=1 ∑U,V

u=1,v=1 |F−1 (Glo · I) · B(u, v)|, , l ∈ {1, .., L}

Glo = exp
(
− 1

2

(
ρ−ρl

σρ

)2
)

exp
(
− 1

2

(
θ−θpl

σθ

)2
)

(9)

where F−1 is the inverse Fourier transform, Glo is the log Gabor filter with L scales and O orientations
in log-polar coordinates and (ρ, θ) and (σρ, σθ) are the angular and radial bandwidths; see [35] for
more details. Again, L = 4, O = 6, and the residual DC-component is discarded. Figure 6 shows the
log Gabor filters (four bands: G1, G2, G3 and G4) applied to a diatom example.

G1 G2 G3 G4
(a)

G1 G2 G3 G4
(b)

Figure 6. Log Gabor filters applied to diatom samples: (a) Cyclostephanos dubius; (b) Gomphonema insigniforme.

5. Discriminant Analysis

The handcrafted feature descriptors described previously produce 1460 characteristics. However,
not all of the features are discriminating for the problem we are faced with, due to the fact that they
are describing properties that are widely spread along all classification groups or because they are
redundant (correlated) with respect to other features. In that case, such descriptors provide useless
information that will likely impair classification not only in terms of performance and accuracy, but also
in terms of speed due to the higher dimensionality [36,37]. Therefore, a feature selection process is
required to remove redundant information. To this end, we used the correlation coefficient as the
similarity measure between two or more features.

5.1. Correlation

The entire bank of first and second order statistical descriptors is calculated and extracted from the
LBP labeled image and from each decomposition band of the log Gabor transformed image. This means
that the total number of descriptors becomes four-times larger given a four-level decomposition
transform. This approach increases the workload and may cause highly correlated variables.
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Correlated variables have been calculated for unsupervised feature selection using the maximal
information compression index as the feature similarity measure [38]. The maximal information
compression index is defined as the smallest eigenvalue, λ, of the covariance matrix of the set of
variables under consideration. λ is zero when the features are linearly dependent and increases as
the amount of dependency decrease. A threshold value equal to 95% is used from which features are
considered redundant. Classification accuracy, according to calculations, was not significantly affected
if varying the threshold from 95–99%.

An overall 81% dimensionality reduction was achieved with this technique. Thus, the 1460 initial
descriptors were reduced to 273.

5.2. Sequential Forward Feature Selection

In order to elucidate the most discriminant descriptors, a discriminant analysis was done by
means of a Sequential Forward Feature Selection (SFFS), also known as the floating search method [39].
The algorithm selects a subset of features that best predict the objects to be classified. Thus, features are
sequentially added to an empty candidate set until the addition of further features does not decrease
the misclassification error rate (i.e., the number of misclassified observations divided by the number of
observations) of a learning algorithm (quadratic discriminant analysis). Another variant of the method
is Backward Selection (SBS), in which features are sequentially removed from a full candidate set until
the removal of further features increases the misclassification error.

This methodology gives a list of features ordered by discrimination capacity. In Table 5, such a list
is shown for the first 100 most discriminant handcrafted features. The percentage of morphological
descriptors is only 4%, although two of them are on the top. For the rest of descriptors, the percentages
are as follows: statistical (28%); logGabor (40%) and LBP (30%).

Table 5. The 100 most discriminant handcrafted features listed in decreasing order of importance.
LBP stands for Local Binary Patterns, M for Morphological, S for Statistical and Gn for log Gabor band
n = 1 . . . 4.

1 M Shape 35 LBP Contrast (d = 3, 0◦) 69 G1 Contrast (d = 1, 90◦)
2 S 1st Quartile 36 G4 Correlation 1 (d = 1, 90◦) 70 S ΣAverage (d = 1, 45◦)
3 M Asymmetry 37 G4 Correlation 1 (d = 1, 135◦) 71 G4 Entropy
4 S Contrast (d = 1, 45◦) 38 S Energy (d = 1, 0◦) 72 LBP Cluster Prominence (d = 1, 0◦)
5 S Energy 39 S Correlation 1 (d = 3, 45◦) 73 G4 Cluster Shade (d = 1, 0◦)
6 S Contrast (d = 1, 0◦) 40 S Homogeneity 1 (d = 1, 45◦) 74 LBP Correlation 1 (d = 3, 0◦)
7 G4 Correlation 1 (d = 3, 90◦) 41 S Correlation 1 (d = 3, 90◦) 75 S Entropy
8 S Interquartile Range 42 LBP ∆Variance (d = 1, 0◦) 76 G3 ∆Entropy (d = 1, 45◦)
9 G4 ∆Entropy (d = 1, 90◦) 43 G3 Correlation 1 (d = 3, 0◦) 77 LBP Correlation (d = 1, 45◦)

10 LBP 1st Quartile 44 G2 Contrast (d = 1, 90◦) 78 LBP Contrast (d = 1, 90◦)
11 LBP Correlation 1 (d = 3, 135◦) 45 LBP Correlation 1 (d = 3, 45◦) 79 G3 Energy (d = 1, 0◦)
12 LBP Max. Probability (d = 1, 45◦) 46 LBP Correlation 1 (d = 3, 135◦) 80 G4 Correlation 1 (d = 5, 0◦)
13 LBP Contrast (d = 3, 45◦) 47 LBP Max. Probability (d = 1, 0◦) 81 LBP Homogeneity 1 (d = 1, 135◦)
14 S Variance 48 S Correlation 1 (d = 5, 90◦) 82 G4 ∆Variance (d = 1, 90◦)
15 LBP Correlation 1 (d = 1, 45◦) 49 G4 ∆Variance (d = 1, 45◦) 83 LBP Max. Probability (d = 3, 135◦)
16 S Kurtosis 50 S 3rd Quartile 84 G4 Entropy (d = 1, 0◦)
17 LBP Autocorrelation (d = 3, 135◦) 51 S Correlation 1 (d = 5, 90◦) 85 G4 Correlation 1 (d = 1, 90◦)
18 G4 ∆Entropy (d = 3, 0◦) 52 S Dissimilarity (d = 5, 135◦) 86 G3 ∆Variance (d = 1, 45◦)
19 S Autocorrelation (d = 1, 0◦) 53 S Max. Probability (d = 1, 0◦) 87 G4 Correlation (d = 1, 0◦)
20 G4 Dissimilarity (d = 1, 135◦) 54 S Homogeneity 1 (d = 1, 90◦) 88 LBP Correlation 1 (d = 3, 90◦)
21 G3 ∆Entropy (d = 1, 90◦) 55 S Correlation (d = 1, 0◦) 89 G3 Correlation 1 (d = 1, 90◦)
22 LBP Contrast (d = 1, 135◦) 56 G4 Correlation 1 (d = 3, 0◦) 90 G3 Contrast (d = 1, 90◦)
23 LBP Contrast (d = 5, 45◦) 57 S Correlation 1 (d = 3, 135◦) 91 G4 Cluster Prominence (d = 1, 0◦)
24 LBP Contrast (d = 3, 90◦) 58 LBP Contrast (d = 5, 90◦) 92 G3 Correlation (d = 1, 90◦)
25 S Sum Average (d = 1, 0◦) 59 LBP Correlation 1 (d = 5, 135◦) 93 G4 Contrast (d = 1, 90◦)
26 LBP Contrast (d = 5, 0◦) 60 G4 Correlation 1 (d = 5, 90◦) 94 M Area
27 G4 Correlation 1 (d = 1, 45◦) 61 LBP Correlation 1 (d = 1, 90◦) 95 G3 Cluster Shade (d = 1, 0◦)
28 G4 Dissimilarity (d = 1, 45◦) 62 S Correlation1 (d = 1, 45◦) 96 G2 Dissimilarity (d = 1, 135◦)
29 S Homogeneity 1 (d = 1, 0◦) 63 LBP Homogeneity 1 (d = 3, 135◦) 97 G3 Correlation 1 (d = 3, 135◦)
30 G4 Kurtosis 64 LBP Homogeneity 1 (d = 3, 45◦) 98 M Eccentricity
31 G4 Dissimilarity (d = 1, 45◦) 65 G3 Correlation (d = 1, 45◦) 99 LBP Max. Probability (d = 3, 45◦)
32 G4 Energy (d = 1, 0◦) 66 G3 Correlation 1 (d = 1, 135◦) 100 LBP Correlation 1 (d = 1, 0◦)
33 LBP Homogeneity 1 (d = 1, 0◦) 67 G3 Kurtosis
34 G3 Dissimilarity (d = 1, 135◦) 68 S 2nd Quartile
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6. Classification

A classifier is a function that maps the features extracted from descriptors to an output probability.
This output is the probability that the input features belong to a given class. There are many approaches
to develop these functions; it is out of the scope of this paper to explain these methods in detail. For this,
the reader is referred to [40]. The purpose here is to find a suitable set of discriminant features and
the classifier that best maps these features to the correct taxon. Thus, we have compared an extensive
range of classifiers like nearest-neighbor, k-means and SVM, Decision Trees (DT) by means of random
forest and bagging trees, the quadratic Bayes normal classifier and the Fisher classifier. The methods
used here are all supervised learning methods. The best results were obtained with SVM and bagging
decision trees. SVM achieved an accuracy up to 95.38% and bagging DT up to 98.11%; therefore,
we show here the results of the latest method.

To train and test the algorithms, a 10-fold cross-validation has been applied, that is the full set
of images was split into a training and a test set, where nine folds was used for training and the
remaining one in each iteration for testing. Both the training and test processes are based on a random
selection of samples; therefore, the ordering of the taxa does not affect the accuracy. Experiments with
leave-one-out were done for 20 classes, and the results were very similar, with just 0.04% less accuracy
than using 10 fcv; however, since the process takes too long for more classes, we decided to report the
widely-used 10 fcv for the 80 classes.

Bagging Trees

A Decision Tree (DT) is a method in which classification is performed through a tree graph.
The input feeds an initialization node (root node) from which a given test sample is tested at each stage
(internal node) of the classification tree, all the way down through the leaves or internal node to the
end of a tree branch or terminal node. The ‘path’ followed by the sample depends on the conditions
associated with each internal node. These conditions are established during training rather manually
or automatically. To select automatically the optimal conditions, DT algorithms consist of testing all
potential variables and selecting the variable that maximizes a given criterion.

The bagging tree classifier is used to improve robustness and classification accuracy.
Bagging improves variance by averaging/majority selection of the outcome from multiple fully-grown
trees on variants of the training set. It uses bootstrap with replacement to generate multiple training
sets. All trees are fully-grown binary trees (unpruned), and at each node in the tree, one searches over
all features for splitting a node, that is to find the feature that best splits the data at that node [41].
In this study, a bagging tree with 200 learners and 30 splits provided the best results. All of the
experiments were done using the classification learner apps of MATLAB R2016a.

7. Results

The results are organized into several experiments to show concrete aspects of descriptors and
classifiers. To this end, the list of handcrafted feature descriptors (1460 in total) after feature reduction
with 95% correlation (273 features) and the selected classifier (bagging DT) are used. Notice that the
morphological, statistical and moment-based features are invariant to rotation and mirroring, but not
the LBP and log Gabor features used in this study. Therefore, in total, only 255 features out of the 1460
are invariant to rotation and mirroring. This is reduced to 42 features after the correlation process,
which means that only 15% of features are invariant to the data augmentation performed.

While data augmentation may introduce some bias in the experiments, mainly related to the
invariant features, our aim in adding the augmentation was to compare classic methods with deep
learning (see [24]), for which the same augmentation is done. Moreover, as mentioned above,
most features (85%) are not invariant to rotation and mirroring, and therefore, data represented
with these features can be considered without bias.
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7.1. Experiment 1: Comparing Descriptor Types

All handcrafted feature descriptors mentioned above were tested here according to their category
(see Table 2). The selected classifier was bagging DT.From the plot in Figure 7, most descriptors
lead to similar classification results when they operate individually, with an overall accuracy around
95% for bagging DT. Furthermore, two of them are above the average (95%); these are LBP and
statistical, though the moments are very low. This supports morphological and textural features.
Thus, it corroborates that macro-features’ analysis obtained from morphological descriptors and
textural patterns already provides competitive accuracy compared to local micro-feature analysis
done by spatio-frequential descriptors. Experiment 1, shown in Figure 7, has been carried out with
100 samples per class to avoid any bias of the data. A similar conclusion was obtained with 300 samples
per class.

90 91 92 93 94 95 96 97 98 99 100

Log Gabor

Hu Moments

LBP

Statistical

Morphological

Classification (Acc.) [90%-100%]

Bagging DT

Figure 7. Comparison of different categories of descriptors under the bagging DT classifier.

7.2. Experiment 2: Combinations of Descriptor Types

The discrimination capacity of the classifiers may be enhanced by the combination of different
types of descriptors. In Figure 8, morphological and statistical descriptors provide high accuracy rates.
These descriptors bring together the two main handcrafted discriminating features: shape and texture.
Thus, morphological and statistical descriptors constitute a baseline for comparison. The results
show that statistical descriptors combined with morphological descriptors provided together an
improvement of 3%. The combination of statistical with texture (LBP) improves the performance
of the morphological descriptors. This proves the relevance and importance of textural features
versus morphological properties. The combination of statistical with the space-frequency descriptors
provided an overall accuracy improvement of 2%, while the combination of all features (textural +
morphological + frequency + statistical) is the most accurate with an improvement of 4%. Note that the
moments were discarded due to the low individual performance they gave and also the low relevance
obtained when calculating the SFFS (see Section 5.2).

Thus, the combination of morphological + textural + space-frequency + statistical descriptors
provided the lowest error rate, with an overall accuracy (Acc.) equal to 98.11% using a bagging DT
with 10 fcv. The combination of textural and space-frequency (LBP + Log Gabor), that is using the data
represented without any augmentation bias, provided an overall accuracy of 97.63% using bagging DT
with 10 fcv. This is highlighted in Figure 8.
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94 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99

All

Log Gabor + Stat.

LBP + Stat.

LBP + Log Gabor

Morphological + Stat.

Classification (Acc.) [94%-99%]

Bagging DT

Figure 8. Accuracy performance combining descriptor types and using 300 samples per class.

7.3. Experiment 3: Dataset Dimension

Some questions arise at this point about the database dimensionality. How does this affect the
performance? Is the classifier able to learn more with a higher number of samples? Is the classifier
able to get the same performance with a lower number of data, that is without the use of augmented
data? Thus, we tested with several subsets of 20 diatom types and 40 diatom types with 300 samples
per diatom; a subset with the 35 classes that had a minimum of 100 samples per diatom; as well as
with 80 diatom types with 2000 samples per diatom versus the previous dataset with 300 samples per
diatom. To extend the dataset, a data augmentation with rotations every 2◦ was performed.

Figure 9 shows the results when classifying with the bagging DT and 10 fcv. It represents the
minimum and maximum Acc. value obtained in the different trials. The decrease in the number
of classes with 300 samples per class increased its accuracy, though not significantly. Additionally,
the increase in the number of samples lowered the error. The use of 100 samples per class classifying
35 classes with no data augmentation decreased accuracy to 96.25% versus 98.11% with 300 samples
per class. A similar decrease happens when classifying 20 classes, where an accuracy of 97.56%
(100 samples/class without data augmentation) is obtained versus 98.82% (300 samples/class with
data augmentation).

Results are usually illustrated with confusion matrices. Each column of a confusion matrix
represents the instances in a predicted class while each row represents the instances in an actual class.
Since there are many classes in this study, heat maps have been used to display the % of correct and
incorrect classifications. A heat map displays the confusion matrix as an image whose color intensities
reflect the magnitude of its values. In this case, green values indicate the % of correct classifications
and pink-red values indicate the % of instances incorrectly classified. These percentages, as well as the
true positive rate (green column) and false negative rate (pink-red column) for each class are shown
when no more than 20 classes are classified, as well as the true positive rate (green column) and false
negative rate (pink-red column).

The confusion matrix heat map for the classification of the 80 diatom classes with the bagging
tree is shown in Figure 10. Figure 11 shows the confusion matrix heat map for the classification
of the diatom classes without data augmentation. Figure 11 shows 20 classes chosen randomly for
visualization purpose. The confusion matrix heat map of several trials done with the 20 classes is
shown in Figure 12. The main diagonal of Figure 12 shows how some classes obtained 100% correct
classification.

Figure 13 shows those diatoms species that produce the major misclassification errors,
i.e., Nitzschia costei, Gomphonema angustatum, Gomphonema micropumilum, Gomphonema minusculum and
Gomphonema minutum. Automation methods may be a tool to help both the expert and the non-expert,
but in difficult cases, it should always be the expert who makes the final decision. We believe that it is
the diatomist who must consider if an automatic classification system is acceptable, assuming a certain



Appl. Sci. 2017, 7, 753 17 of 22

level of accuracy to classify different taxa. A reject option is also possible, so that only difficult cases
are presented to the diatomist, while the easy ones are classified automatically.

Notice that this methodology may be applied to other taxa not included in this study. Moreover,
it is currently being applied to another 20 different taxa not shown in this study, and similar results are
being obtained.

94.5 95 95.5 96 96.5 97 97.5 98 98.5 99

20 Classes (100 samples)

20 Classes (300 samples)

20 Classes (2000 samples)

35 Classes (100 samples)

35 Classes (300 samples)

80 Classes (300 samples)

80 Classes (2000 samples)

Classification (Acc.) [94.5%-99%]

Max.
Min.

Figure 9. Accuracy performance with different numbers of classes using the bagging DT classifier.
No data augmentation is applied when using 100 samples per class.

Figure 10. Confusion matrix classifying 80 classes with the bagging tree classifier 10-fold cross-validation (10 fcv).
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Figure 11. Confusion matrix classifying 20 classes out of the 35 classes with 100 samples per class with
no data augmentation and using the bagging tree classifier 10 fcv.

Figure 12. Cont.
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Figure 12. Confusion matrix map classifying 20 classes with the bagging tree classifier 10 fcv.

(a) (b) (c) (d) (e)

Figure 13. Diatoms species that produce the major misclassification errors: (a) Gomphonema angustatum;
(b) Gomphonema micropumilum; (c) Gomphonema minusculum; (d) Gomphonema minutum; and (e) Nitzschia costei.
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8. Conclusions

The main contributions of this work are: (a) big database collection: a big database of diatoms
composed of 80 diatom types with an average of 100 distinct diatom valves per type manually
cropped has been collected; this database is being extended to 100 types; and (b) the study of the main
handcrafted features to classify diatoms, proposing an efficient method for classification.

Thus, the state of the art in morphological, statistical and texture descriptors has been exhaustively
tested for classifying 80 diatom types. Some of them, like texture based on LBP and log Gabor
descriptors, had not been evaluated before in this field. The combination of these features provided
an improvement up to 98.11% accuracy compared to previous related works. We concluded that
the combination of different descriptors categories, such as morphological and statistical descriptors,
together with space-frequency representations, specifically log Gabor and texture by means of LBP,
provided the best classification accuracy rates.

Along this research, we also come across several other challenging issues, such as the classification
of the same diatom type during its life cycle and from different views. A diatom type may
present different appearances according to its view with respect to the z-view, and consequently,
its morphological and also statistical descriptors can drastically vary. This causes the morphological
descriptors to not always analyze the most discriminating features. This could be solved by having
more data representing all possible cases or alternatively by using a hierarchical tree classification.
Thus, it could be recommended to simplify the classification using morphological refinement in two
classes: centric diatoms and pennate diatoms. Afterwards, depending on the taxon, the search would
focus on some other details, like texture, striae density (number of stria per micron), lineolae density
(pixels per micron), etc. It should be noted that some diatom taxa are almost the same, even for experts,
which proves the difficulty of this task.

Precise segmentation is a critical point for the whole classification process. This is a limitation
for handcrafted feature approaches. Effectively, segmentation should be done accurately, although
our purpose in the current study focuses on comparing descriptor’s discriminant capacity. Therefore,
we do not pursue perfect binary masks, but suitable enough to be equally shared by all descriptors.

In order to handle the above-mentioned difficulties, the authors suggest to explore new classification
techniques based on deep learning (Convolutional Neural Networks (CNN)) able to learn further
from larger datasets and without segmentation. In this study, it has been proven that the accuracy in
traditional methods does not always improve with augmented data (it is also counterproductive due to
orientation-invariant features and possible overfitting). An accuracy up to 97.56% was obtained
classifying 20 classes with no data augmentation (100 samples/class) versus 98.82% with data
augmentation (300 samples/class).
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