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Abstract: In contrast to the well-studied West Siberian sector of frozen bogs in the Russian Arctic,
the frozen mound bogs (so-called “palsas”) on the highlands of Southern Siberia have not yet been
studied, but they are suspected to be even more sensitive to ongoing climate change. This article
provides the pilot study on palsa mire Kara-Sug in the highland areas of Western Sayan mountain
system, Tuva Republic. The study focuses on the current state of palsa mire and surrounding land-
scapes, providing wide range of ecological characteristics while describing ongoing transformations
of natural landscapes under a changing climate. The study used a variety of field and laboratory
methods: the integrated landscape-ecological approach, the study of peat deposits, geobotanical
analysis, and modern analysis of the chemical composition of water, peat, and soils. The study shows
that highland palsa mires are distinguished by their compactness and high variety of cryogenic
landforms leading to high floristic and ecosystem diversity compared with lowland palsa mires. This
information brings new insights and contributes to a better understanding of extrazonal highland
palsa mires, which remain a “white spot” in the global environmental sciences.

Keywords: highland palsa mire; climate change; ecosystem diversity; natural landscapes/ecosystems

1. Introduction

Palsa mire (from Finnish—palsa) is poorly drained lowland underlain by organic sed-
iments, which contains perennially frozen peat bodies: peat plateau or peat mounds [1].
Palsas are caused by permafrost and protrude above the surface of the surrounding peat-
land. The height of these mounds may vary from about one meter up to several meters and
they may be several hundreds of square meters in area, so that the large palsas may form
the peat plateau [2,3]. The palsa is the type of mire that occurs in the Northern Hemisphere,
and it represents one of the most marginal permafrost features at the outer limit of the
permafrost zone [2]. It makes palsa mires extremely sensitive to climate change [2,4–8].
The southern limit for palsa formation in Europe coincides with the 1 ◦C isotherm of mean
annual air temperature [3,5,9]. In Western Siberia, the isotherm for the palsa-type mires
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varies from 6.9 ◦C (at the southern limit) up to 7.6 ◦C (at the northern limit) due to the
strong climate continentality [10].

In Russian scientific publications, the term “mound bogs” is conventional for the
palsa-type mires. Two types of palsa mires have been defined [1,11–15]: (i) the large mound
palsa, with dome-shaped tall mounds 2–5 (7) m height embedded into surrounding fens;
and (ii) the flat mound palsa, with vast low plateaux (0.5–1.5 m) surrounded by numerous
thermokarst landforms and lakes. In the lowland areas, such as Western Siberia, the large
mound palsas occur at the southern limit of mound bogs. They represent the typical
landscapes at the southern border of the northern boreal (taiga) region, also propagating to
the north of northern taiga region and to the dry river valleys in forest tundra. Basically,
the large mound palsa geographical region is located to the south of the flat mound palsa
region and it corresponds to 56% (194,000 km2) of the total area in Western Siberia. The
flat mound palsa occupy large areas in the north of the northern taiga and in the forest
tundra, with certain extent in the southern parts of tundra zone. The flat mound palsa
mires correspond to ~8% (240,000 km2) of the total area in Western Siberia [1,8,12].

Extensive studies of natural ecosystems in the cryolithozone in terms of their current
state and modern dynamics under conditions of climate change started in the early 2000s.
The studies were conducted in the areas of both continuous and discontinuous permafrost
in the Alaska Peninsula and in the Northern Eurasia (including its European part, Western
Siberia, and Eastern Siberia) [16–26]. A wide range of recent studies have convinced the
noticeable and relatively rapid transformations of permafrost mire landforms, leading to
dramatic decrease in an areal extent of frozen plateau peatlands and heaving mounds
(palsas), as observed in the Northern Eurasia [1,3,7,8,16,27] and in the northern part of
North America [28]. Degrading of permafrost in the Arctic and Subarctic peatlands was
extensively observed as the result of global climate change [27,29–33].

In Russia, the studies of permafrost and thermokarst processes in mire ecosystems
have been implemented since the second half of the 20th century, with a primary focus on
the vast flat terrains [1,8,34–39]. Evidently, it was found that a fairly large number of frozen
mounds in permafrost peatlands were either degraded at some certain extent, or they have
been completely destroyed over the past 100 to 200 years, especially those near the southern
range of permafrost distribution [39,40]. At the same time, there was clear evidence for
the formation and further growth of a number of individual mounds, as driven by local
factors, such as migration of river beds, changes in the configuration of lakes, or even such
exotic as the activity of beavers, who affect the site and soil hydrology [41]. There was some
evidence of the current growth of frozen mounds, as well as on-going increase of their areal
extent, both in the southern and northern parts in permafrost regions [42,43].

In the mountain regions, the dynamics and direction of cryogenic (permafrost) pro-
cesses in the frozen mires are closely related to local environmental conditions, including
the meso- and microtopography, the features of lateral flow of mire waters. In addition,
the mountain mires strongly depend on climatic conditions: The small areal extent and
shallow peat deposits both lead to their vulnerability to hydroclimatic and environmental
changes [44].

Nevertheless, the mountain mires, including those in the Altai-Sayan region, have
not been well studied up to date, compared to the mires spread over the flat terrains in
the northern parts of northern hemisphere. Hereby, we present the first results of the
field studies of the current state and on-going transformations of the unique palsa-type
mire ecosystems (and a wide range of surrounding natural landscapes) in the south of the
geographical region of Middle Siberia (a part of Central Asia), the first ever accomplished
in the Russian Sayan Mountains in the Tuva Republic, Russian Federation.
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2. Materials and Methods
2.1. Study Region and Sites

The study site is located in the Barun-Khemchik administrative region of the Tuva
Republic in the basin of the Ak-Sug river at the Alash highlands of the southern flank of
the Western Sayan mountain range of the Altai-Sayan mountainous region (Figure 1).
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Figure 1. Location of study site at the map of administrative regions of Russian Federation; and the
orographic scheme of the Republic of Tuva. The red dots depict the location of meteorological stations.

The Alash Highland is a rocky plain (plateau) with separate alpine peaks, dissected by
deep valleys of the Alash and Ak-Sug rivers. The absolute heights of the highlands in the
Ak-Sug river basin vary from 1120 to 3122 m asl. The study site is located in the mid-high
mountain belt [45].

In general, a strong continental climate is common in Tuva. The complex topography
of the region is a main driver of variable high-altitude zonal climatic conditions. The
climate of the study site is typical climate of the Central Tuva steppe regions and the middle
mountain taiga regions of the Western Sayan; it differs from sharp continental climate of the
central Tuva [46]. The Alash Highlands are located in the rain shadow of the Western Sayan
and Altai mountains, so annual precipitation in low mountain regions is no more than
300 mm, but it can be in a range of 500–1000 mm in higher mountains and on windward
slopes. The winter is cold with shallow snow depth, and frequently invaded by anticyclone
systems. The multi-year average temperature in the middle of 20th century was at the
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range of −7 to −5 ◦C, with the average temperature in July of +18 ◦C, and that in January
of −33 ◦C with frequent events of temperature inversions [47,48]. The annual amplitude
of air temperature exceeds 50 ◦C, and the diurnal amplitudes exceed 25 ◦C (especially
in March). A special feature of the local climate is the fast cross of the average daily air
temperature over 0 ◦C.

According to (common in Russian science system of) soil-geographical division, the
study site is considered as part of the sub-boreal region (Tuva-South-Transbaikalian soil
province) [49].

The Alash Highlands belongs to the alpine and subalpine belts of continuous and dis-
continuous permafrost [50]. The presence of permafrost and seasonal frost in different land-
scapes of Tuva determines the development of cryogenic processes. The permafrost phe-
nomena occur at the flat watershed terrains, same on the slopes of high mountains, where it
forms the mountain terraces, stone rivers, cryogenic landforms, and landforms elaborated
by solifluction. Alpine-type topography, with wide-spread nival and erosion/denudation
processes, are the cause of avalanches, landslides, bottom erosion, and mudflows. Frost
cracks, heaving mounds, ice mounds and thermokarst subsidence are widely developed in
the river valleys and at flat areas of low mountains.

Our observations in Adyr-Khem river valley, the right tributary of the Kara-Sug river
(Ak-Sug river basin) in the northwestern part of the Alash Highlands (Figure 2), have
revealed the presence of frost heaving mounds (palsa) mires, possibly the result of both
cryogenic heaving and thermokarst processes.
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Figure 2. The key site (palsa mire) marked with black bound in Adyr-Khem river valley (on topo-
graphic map and satellite image Sentinel-2B, shooting date 27 August 2019). Coordinates of the
boundaries of the key site: the westernmost point 89.9357 51.6917; the easternmost point 89.9543
51.6914; the northernmost point 89.9468 51.6964; southernmost point 89.9418 51.6902.

2.2. Study Methods in the Field

The field research adopted an integrated landscape-ecological approach. This includes
the studies of wetland/peatland topography, hydrological regime at wetland sites, floris-
tic diversity, vegetation/land cover and spatial heterogeneity of natural landscapes, the
structure of soil cover, and stratigraphy of peat sediments [44].

At the study site, the test plots were chosen for further in situ studies based on available
geographical maps, the data of satellite imagery, and other cartographical materials, as well
as chosen in the field based on an expert assessments at the most representative ecosystems.
The field studies included: cleaning the walls of heaving frozen mounds, description of
soil profiles, taking the photos, sampling of water, soil, and ice, geobotanical descriptions,
sampling of plants for taxonomical identification, taking peat samples from the cores with
Russian peat corer, and taking the probes to figure out actual distribution of permafrost
over the wetland site (with Russian peat corer; about 100 probes).

The vegetation of the Alash plateau was formed under the influence of two main
factors: (i) its location on the ways of ancient migration of plant species and (ii) altitudinal
zonality. As a result, the flora of the region is mainly presented by widespread boreal
elements with some endemic upland species. This kind of heterogeneity is the evidence
for common genesis of all those landscapes as a part of the old trans-Asian mountain sys-
tem [51]. The land cover of the Alash plateau comprises the elements of steppe, forest and
alpine-type vegetation presented at different altitudes in the mountain regions. The forest
formations presented by larch (Larix sibirica), cedar (Pinus sibirica), spruce (Picea obovata), fir
(Abies sibirica), birch species (Betula pendula, Betula microphylla), aspen (Populus tremula), and
field laurel (Populus laurifolia). The steppe formations presented by wormwood-grass and
forb-feather grass communities, but large areas presented by rocky outcrops and placers.

The vegetation survey in the field was conducted using plot-based method according
to Mueller–Dombois and Ellenberg [52] and Kuznetsov [53]. For each plot, the note of
geolocation recorded by GPS. Geobotanical descriptions (relevés) were made at each type
of habitat and separately for the various elements of mire complex (for example, hum-



Atmosphere 2022, 13, 32 6 of 27

mock/hollow or mound/lake). The relevés were taken from square plots the size of 4 to
100 m2 depending on the type of plant community: Moss-dominated micro-landscapes
required some smaller plots than that of shrub-dominated micro-landscapes. The species’
cover/abundance visual estimation, further analysis of the relevés, and preliminary ordina-
tion of plant communities and the vegetation classification followed the Braun-Blanquet
methodology [54].

An integrated approach was applied for the study of thermokarst lakes and the Adyr-
Khem river, which originates from palsa mire. In situ measurement and water sampling
were carried out in October 2020. Dissolved oxygen, pH, electrical conductivity, and
temperature profiles were measured in situ using a WTW Multi 3320 multimeter with
data loggers: Cell Ox 325 (0 to 50 mg/L, ±0.1 mg/L), pH-Electrode Sen Tix 41 (−2.0 to
19.9 pH; ±0.03 pH), and WTW Tetra Con 325 (0.0 µS·cm−1 to 1 S·cm−1, ±1 µS/sm, and
0 to 90 ◦C; ±0.1 ◦C). Measurements of CO2 dissolved in stream waters and open water
bodies were carried out using a data recorder with underwater sensor GM70, Vaisala® (0 to
3000 ppm; ±0.1 ppm). For microbiological studies, the samples of water were collected in
sterile containers.

In this pilot study, we analyzed the data collected at four water bodies: the Ak-Sug
river (the left tributary of Khemchik river), the Adyr-Khem river originated from the palsa
mire (Figure 2), and two thermokarst lakes on palsa mire (Table 1).

Table 1. Location of test sites for physicochemical and microbiological analysis in the open water bodies.

The Name of Water Body Latitude, (N) Longitude, (E) Water Surface Area
of Lakes, m2

Ak-Sug river 51.44055 90.33989 N/A
Adyr-Khem river 51.691500 89.951536 N/A

Untitled Thermokarst Lake 1 51.692867 89.952174 330
Untitled Thermokarst Lake 2 51.692095 89.951761 102

2.3. Laboratory Analysis

The macrofossil analysis of peat sediments and the study of soil profiles (physics and
chemistry of the grounds, including the loss on ignition (LOI)) were performed in the
laboratory according to international standard protocols [55].

The list of the plant species resulting from all the relevés was used to analyze the
taxonomical structure of the flora. New findings of the plant species were checked according
to previous studies; for example, see in [44]. In total, 130 samples of bryophytes and lichens
were collected and identified. The collection is kept at the Tomsk State University, Russia.
The names and nomenclature of species and other taxa for vascular plants are given
according to Tcherepanov [56], for mosses—according to the “Check-list of mosses of East
Europe and North Asia” [57]; for liverworts—according to the “Liverworts and hornworts
of Russia” by Potemkin and Sofronova [58].

The chemical analysis of soils (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO,
Fe2O3) was carried out in a certified laboratory of the Analytical Center for Shared Use
of Geochemistry of Natural Systems of Tomsk State University using quantitative X-ray
fluorescence analysis on a device X-ray fluorescence energy dispersive spectrometer Oxford
ED-2000 (analyzed elements: from Na (11) to U (92); number of analyzed elements: up to
75 elements in one set; the size of the analyzed sample from 0.2 to 200 mm in diameter (up
to 85 mm high); accuracy in the concentration range 10−2 . . . 100%—no more than 5%; in
the concentration range 3 × 10−4 . . . 100%—no more than 1%).

Estimation of total number of bacteria accomplished by staining preparations made
from a soil suspension with a fluorescent two-component dye L7012 (LIVE/DEAD BacLight
bacterial viability kit®) in accordance with standard manufacturer’s protocols. Further, the
total number of bacteria counting was made according to standard manufacturer’s protocol
using a luminescent microscope, Zeiss Axio Imager Z2.



Atmosphere 2022, 13, 32 7 of 27

Interpretation of satellite imagery (Sentinel-2b, 10 m/pix resolution) along with images
obtained with a drone Autel Evo ii 6k pr implemented to investigate the current state of
natural ecosystems and to create the map of open water bodies. In addition, the data from
free map services (Google Maps and Yandex Maps), and a set of topographic maps (1:50,000
and 1:100,000 scales), as well as numerous pictures taken during field trips in 2020 and 2021
were used as Appendix A. Landscape classifications (and land-cover maps) were created
using the fully functional ArcGIS 10.3 software package; MS Excel software packages were
used for processing materials.

3. Results
3.1. Landscapes and Ecological Characteristics of Study Area

The key site in Adyr-Khem river valley is a wetland site (Figure 3). Spread in line
from west to east, it is represented by elevated and depressed topographical features. The
elevations are 1800–1820 m asl. The meandering course of Adyr-Khem river with a large
number of lakes indicates the valley underlying the sediments of different origins: loam,
sandy loam, pebble, and crushed stone.
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region, Republic of Tuva, Russia (photo by Kvasnikov, 30 July 2020).

Fine fractions of sediments were formed in lake basins and at river valleys with low
rates of water flow, which could provide favorable conditions for the processes of heaving
in river floodplains during the period of perennial freezing [59].

The flat mounds alternating with local depressions, i.e., hollows, lacustrine depres-
sions, and meanders, are the main micro-landscapes in the Adyr-Khem river basin. The
tops of the mounds rise above the surrounding flat wetlands to the height of 1.5 to 10 m. The
majority of mounds have an oval-elongated shape; but some of them have a horseshoe-like
shape. The slopes of the mounds range from gentle to steep; the last drops to the stream
bed. The active development of thermokarst processes is the main driver in creation of
numerous cracks and micro-depressions on the surface of frozen mounds (Figure 4a,b).
The depth of cracks ranges from 10–15 to 60 cm; the width of the cracks varies from 10
to 50 cm. On the slopes of large mounds, the cracks in several rows represent a complex
micro-topography.

One frozen mound located in the eastern part of the study site has the dimensions of
20 × 40 m and the high of 1.5–2.0 m. A detailed description of the soil profile at this test
plot presented in Figure 5.
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The value of the loss on ignition (LOI) and the concentration of macro-elements are
shown in Figure 6. In the middle depth of the soil profile, the lowest LOI values were
observed due to presence of rubble. Then, there was a slight increase in the LOI to the
upper and lower layers of soil profile; and a dramatic increase by about 5.5 times at a depth
of 1.2 m. The same trend was observed in the content of CaO, S, and P2O5.
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Figure 6. Loss on ignition (LOI); the content of calcium, sulfur, and phosphorus in the soil profile at
palsa key site.

At all test plots set up in this study, the layers of peat (20 to 50 cm of thickness) with
different rates of decomposition were observed. The frozen grounds (permafrost) were
found at the depth of 31 to 135 cm.

The satellite data revealed about 200 lakes within the study site (Figure 7); the largest
lakes presented on the diagram (Figure 7). The total area of the open water bodies within
the study site accounted for 63,400 thousand m2. Basically, the majority of lakes are small
in size, except those 12 with the area exceed 10 m2. Many lakes are connected with the
Adyr-Khem river. Most of the lakes have a rounded, oval-elongated and lobed shape, with
lake shores. The largest lake is located in the eastern part of the study site (Figure 7; center
part of Figure 8; and Figure 9). Its water surface accounted for 15.9 thousand m2, and the
length of the shoreline is 1.3 thousand meters. The basin of this lake differs from other
lakes by specific (rounded-blade-elongated) shape, which we suspect could be resulted
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from thermokarst processes, but also detachment of the Adyr-Khem meander draining
the valley.
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Figure 7. The open water bodies at the study site compiled for the reference date: 15 July 2021. Adyr-
Khem river valley at Alash plateau; southern slope of the Western Sayan montane region, Republic
of Tuva, Russia. The marks L.1 and L.2 refer to location of (untitled) thermokarst lakes studied
in Section 3.3. An assessment based on interpretation of satellite imagery (Sentinel-2b, 10 m/pix
resolution) along with images obtained with a drone Autel Evo ii 6k pr.
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Figure 9. A system of lakes in the Adyr-Khem river valley at Alash plateau; southern slope of the
Western Sayan montane region, Republic of Tuva, Russia. (photo by S. Kirpotin, 5 August 2021).

3.2. Vegetation at the Key Site

The vegetation at the Adyr-Khem study site is rather complex, mainly affected by
regional topography, the presence of permafrost, floodplain erosion, and alluviation, as
well as climatic factors. In turn, the location of study site at the flat bottom of intermountain
depression determines large constrains of temperature inversions, which, along with
topography, are the main factors of complexity observed in land cover and diversity of
vegetation (Figure 10).
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Figure 10. Flow (water) channel at the Adyr-Khem key site (photo by Volkov, 2021). On the slope, a
forest belt is formed, which has two thermal boundaries—the “classical” upper forest line and the
lower boundary associated with the sinking of cold air to the bottom of the Adyr-Khem valley.

The vegetation is mainly presented by shrubs spread in floodplains, as well as
cryophilic steppe meadows and open mires. Floodplain meadows are sparse and small in
the area; they represent pioneer vegetation.
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Shrub vegetation is dominated by round-leaved birch (Betula rotundifolia)—dwarf
birch formations (so-called “yernik”) in the mountains of South Siberia. The shrubs (Be-
tula fruticosa, Dasiphora fruticosa, Lonicera altaica, Salix glauca, Spiraea alpina) and various
herbaceous plants contribute to the list of plant species in yerniks. This type of vege-
tation community is the most widespread in the region. It could be presented on the
mineral- and peat-heaving mounds, as in the floodplains. The diversity is assured by
grass-shrub, moss-shrub, lichen-shrub, and shrub swamp plant communities under the
category of bushes.

Cryophilic steppe meadows resemble the same type of vegetation in high altitudes
with the main dominants as follows: Bistorta officinalis, Bistorta vivipara, Schulzia crinita,
Gentiana algida, Festuca kryloviana, Kobresia myosuroides, Pachypleurum alpinum, and others.
The presence of typical alpine species Dryas oxyodonta, Viola altaica, Thalictrum alpinum,
Saxifraga sibirica, Salix berberifolia, Sajanella monstrosa let us consider this vegetation under
the category of highlands. Bryophytes also correspond to highlands—they are presented
by typical species of mountain tundra and rocky substrates: Racomitrium canescens, Aula-
comnium turgidum, Polytrichum strictum. Basically, this vegetation occurs on relatively dry,
lined surfaces, and on mineral heaving mounds (lithic palsa).

The frozen mires were of great interest in this study, in terms of understanding of their
dynamics under the pressure of climate change.

The large areas of the Adyr-Khem study site consist of mires on shallow peat deposits
(Figure 11). According to the geomorphological classification of mountain mires [60], these
sites refer to the “valley mires”. The mire sites vary from minerotrophic (rich fen) to
meso-oligotrophic (bog) mires.
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The study site presented by complex mire landscape via compound mosaic of plant
communities with a few levels of patterns. The elevated micro-landscapes presented by
frozen mounds with dwarf shrub-moss plant communities (Figure 12a). Dwarf birch (Betula
rotundifolia) with some separate willows makes a dense cover of shrubs over the mounds.
The cover of grasses (Carex altaica, Kobresia myosuroides) could be either large or small, but
they normally contribute no more than 10%, although the bryophytes have the capacity to
cover a whole land surface (Figure 12b–d). The main dominants of Sphagnum mosses are: S.
russowii, S. angustifolium, S. rubellum; and green mosses: Aulacomnium palustre, A. turgidum,
Polytrichum strictum, P. commune, Tomenthypnum nitens, species of Hylocomium and Dicranum.
The surface of 50-cm height mounds dominated by dwarf birch-moss communities looks
like it was formed by micro-hummocks of mosses of one species but with different heights.
Thus, mosses often form a small, but well-defined mosaic of spots (4–5 cm in diameter).
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Figure 12. The main types of mires at the Adyr-Khem key site: (a)—dwarf shrub-moss mires,
(b)—small fragment of dwarf shrub-moss mire dominated by Sphagnum mosses, (c)—on top of a
hillock on shrub-moss mire dominated by green mosses, (d)—complex moss cover in dwarf shrub-
Sphagnum mire, (e)—micro-subsidence on the surface of hillock with lichens, (f)—fen with sod
tussocks (Deschampsia cespitosa) and green mosses (photos by Volkov, 5 August 2021).
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The permafrost layers in frozen mounds are located at various depths (normally, at
30–40 cm) within the study site, and they are reflected in the type of vegetation community.

The land surfaces degraded with permafrost formations (turned-over turf, micro-
cavity) have been quickly taken by green mosses (Paludella squarrosa, Calliergon) and liver-
worts (Scapania and Lophozia). In addition, the lichens often settle on the frozen mounds,
right over the turf of green mosses (Polytrichum and Dicranum) (Figure 12e). The settle-
ment of green mosses and lichens is clear evidence of slowdown and interruption of peat
accumulation, reflecting the sites of mire degradation through the formation of so-called
“regressive mire complex” [61]. This kind of degradation is not due to decrease in the
moisture content on-top of the mire system, as it is usually the case at a certain stage of
developments of raised bogs in the lowland Western Siberia, but the result of permafrost
degradation, thermokarst, cryoturbation, and exposure of the peat surface.

The wetland-type (mire) land surfaces dominated by green mosses (Drepanocladus,
Warnstorfia, and Calliergon) take place in between frozen mounds with dwarf shrub-moss
communities. The same communities dominated by green mosses occupy the hollows and
swamps in the runoff troughs (Figure 12f).

Dwarf birch-Sphagnum ridges with a sparse and low cover of cloudberries (Rubus
chamaemorus) (Figure 13a) occupy small area plots on the periphery of the Adyr-Khem key
site. They are formed by a continuous carpet of Sphagnum russowii and S. angustifolium,
with sporadically distributed curtains (diameter of 30–40 cm) made by Polytrichum strictum,
and with small patterns of Arcto-Alpine moss species Dicranum angustum. The expansion
of lichens has already begun on the spots of Polytrichum.
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Figure 13. The main types of mire ecosystems at the Adyr-Khem key site: (a)—dwarf birch-Sphagnum
ridges; (b)—plant community with dwarf willow (Salix rectijulis) and green moss (Paludella squarrosa);
(c)—plant community with Comarum palustre; (d)—plant community dominated by cotton grass
(Eriophorum polystachyon); (e)—hummock fen dominated by Deschampsia cespitosa; (f)—willow-herb-
green moss community (photos by Volkov, 5 August 2021).

The flat topographical units (carpets) are often made by Paludella squarrosa, with a small
fraction of green mosses (Meesia triquetra) and liverwort (Mylia anomala), sometimes with
Sphagnum mosses on the periphery of plant community, contributed by the surrounding
dwarf birch-moss mounds. Carex altaica, in low abundance, is a very common herb. On one
site in the community, the small creeping willow (Salix rectijulis) makes up to 50% of land
cover (Figure 13b).

We marked an area within the key site, where in small hollows a community was formed
with the domination of marsh cinquefoil (Comarum palustre) and Dicranum (Figure 13c), which
make a fairly dense land cover: up to 80%, and up to 100%, respectively. Sometimes, the
sedge Carex altaica co-dominates cinquefoil (Comarum palustre) in this plant community, and
the rest contributed by cotton grass (Eriophorum polystachyon) and sedge (Carex canescens).
Another version of this community is dominated by Carex altaica and marsh cinquefoil
(Comarum palustre) with Sphagnum species in the dense land-cover, found nearby the two
described above.

The deep hollows with stagnant water are made of cotton grass, which forms the
tussocks on the Warnstorfia carpet (Figure 13d). Paludella squarrosa is a dominant of the
moss layer of the floating mats.

The tussocks made by Deschampsia cespitosa with a diameter of 20–30 cm and the height
of 20 cm are the main topographical features of the fen (Figure 13e). The shrub layer is not
presented; the Salix and Pentafilloides fruticosa make less than 5% of land cover, but there is
a dense layer of grasses that contribute to land-cover of about 95%. Deschampsia is the main
dominant species in the grass layer, complemented by Swertia, Bistorta vivipara, Cardamine
species, and Carex altaica. The micro-depressions are inhabited by Saxifraga hirculis. The
moss cover is developed both in the micro-depressions (Paludella squarrosa and Aulacomnium
palustre) and on elevated micro-topographical units, or hummocks (Sphagnum russowii).

The tussocks made of Carex canescens; the plain moss carpet consists of Calliergon
stramineum and Aulacomnium palustre in same abundance, and with a minor fraction of
other green and Sphagnum mosses.

The shores of numerous lakes at Adyr-Khem key site made of sedge (Carex rostrata),
often with contribution of cotton grass (Eriophorum polystachyon).

Shrub willow–herb–green moss plant communities (Figure 13f) occupy large areas of
the key site. The willow plants (Salix glauca), about 40-cm in height, grow in dense clumps,
alternating with dwarf birch curtains and Pentaphylloides fruticosa. The micro-topography
presented by numerous hummocks (30-cm-high and 70 cm in diameter) of irregular shape,
with presence of thermokarst subsidence of the soil. In contrast to above-mentioned dwarf
birch communities on the frozen peat mounds with high diversity of mosses and lichens,
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the willow bushes on shallow peat soils with mineral horizons are easy of access to plant
roots represent the communities with high diversity of vascular plants. Some rare plants
included into the Red Book, such as Rhodiola rosea, have been presented. The common
herbaceous species in the willow bushes are: Bistorta vivipara, B. officinalis, Ligularia sibirica,
Swertia obtusa, all are in small abundance, while the sedge Carex altaica is an absolute
dominant species. All together, the herbs make about 75% of the projective land cover,
but moss layer is rather sparse and composed of both the species common in the mires
(Sphagnum russowii, Aulacomnium palustre, Calliergon stramineum) and in the forest (Mnium
rugicum, Polytrichum strictum, P. commune). All of them have very low abundancy. The
forest moss (Sanionia uncinata) and mire herbaceous plants (Eriophorum polystachyon and
Saxifraga hirculis) settled in small thermokarst subsidences at the mounds.

A whole list of species contributed to floristic diversity of ecosystems at Adyr Chem
highland palsa mire sites (I) as well as relative richness of plant species in the most typical
plant communities (II) presented in Appendix A Table A1.

3.3. Water Bodies at the Key Site

The results of physicochemical and microbiological analysis of lake and river waters
in Tuva compared to natural water bodies of thermokarst lakes in Western Siberia are
presented in Table 2.

Table 2. Рhysico-chemical and microbiological characteristics of lake and river waters.

The Name of Water Body pH
Electrical

Conductivity,
µS·cm−1

CO2 (µmol·L −1) O2 (DO%)
Total Number of

Bacteria, Mln
Cells/mL

Untitled Thermokarst Lake 1 8.5 ± 0.4 56.6 ± 19.0 169.0 ± 97,6 97.6 ± 29.3 1.8 ± 1.5
Untitled Thermokarst Lake 2 8.3 ± 1.2 19.1 ± 1.3 521.5 ± 419.3 95.5 ± 25.2 3.5 ± 0.5

Ak-Sug river 8.1 ± 0.2 124.4 ± 7.9 542.0 ± 103.2 84.4 ± 9.9 1.1 ± 0.1
Adyr-Khem river 8.0 ± 0.6 95.9 ± 5.8 2872.5 ± 173.2 88.5 ± 16.3 1.5 ± 0.2

Thermokarst lakes in Altai
mountain region * 8.5 ± 0.5 260.0 ± 165.2 no data 67.1 ± 49.5 no data

Thermokarst Lakes in Western Siberia **
Isolated permafrost 4.5 ± 0.5 18 ± 3.6 86.2 ± 24.0 no data no data
Sporadic permafrost 4.4 ± 0.2 26 ± 7.9 156 ± 251.0 no data no data

Discontinuous permafrost 4.7 ± 0.5 23 ± 8.2 139 ± 128.0 no data no data
Continuous permafrost 6.6 ± 0.6 24 ± 8.9 17.0 ± 75.0 no data no data

* The data of Volkova et al. [22] ** The data of Manasypov et al. [62].

In all studied water bodies, the pH was alkaline. The pH values ranged from 8.0 to 8.5,
with the maximum value found in the waters of the smallest lake formed with thermokarst,
which was also found to have a minimum electrical conductivity. In all other water bodies,
the electrical conductivity was found at low values. The waters are ultra-fresh, while the
waters in rivers have been more mineralized than that of the waters in thermokarst lakes.
Somewhat high pH values were previously documented for thermokarst lakes in Altai
region [22], but the waters in thermokarst lakes at the flat plains (non-mountain regions) in
Western Siberia, were found to have fairly high acidity.

The waters are saturated with oxygen (the concentrations varied from 84.4 to 97.6%),
which in general represent typical values for thermokarst lakes in mountain regions [22].
Consequently, the waters in Tuva region contain some low values of CO2. The lowest
values (169.0 and 521.5 µmol·L−1) were found in the waters of thermokarst lakes; these
values have been somewhat higher than that in the waters of thermokarst lakes in Western
Siberia [62]. Moreover, the value of CO2 in the smallest lake with the largest total number
of bacteria is much higher. Overall, the gas composition is normally dependent on the area
of thermokarst lakes [62]. The highest values of CO2 were found in the waters of small
river Adyr-Khem, and that could be resulted from accumulation of runoff from the entire
wetland region.
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3.4. Climatology and Thermal Regime over the Region

There is no permanent meteorological station operating in the Alash Highlands; thus,
we used the data from a number of nearby stations for the period of 1938–2019 (Figure 14).
The data from meteorological stations in Tuva and Krasnoyarsk indicate an increase of
the average annual temperature and an increase in the amount of precipitation, especially
during the warm season [45,63,64]. Teeli and Ust-Usa stations are not included in the list of
mandatory meteorological data exchange, therefore, some part of the time series is difficult
to access. For the analysis of climatic parameters, archival reference data on the climate of
1967, 1992 (printed editions) and the data at daily resolution for stations were used, which
are stored in the Territorial Administration for Hydrometeorology and Environmental
Monitoring (Roshydromet Regional Branch).
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red) and Teeli (in blue).

In accordance with the WMO methodological recommendations [65], three time inter-
vals were analyzed for the data of Ust-Usa meteorological station (1938–1960; 1961–1990;
and 1991–2019) and the last two time intervals were analyzed for Teeli meteorological
stations (operated since 1960).

The data obtained for the referenced time periods reveals the trend in both the mean
annual air temperature and the minimum air temperature. Namely, when one comparing
the two time periods, the average annual temperature recorded at all stations increased by
1.7–2.1 ◦C; and especially, for Ust-Usa station, the temperature increase was found +3.4 ◦C
for all time periods. Thus, it can be concluded that the change in thermal parameters within
the study area coincides with both regional trend of climate and global warming.

The thermal regime is formed under the influence of climatic factors at different scales.
The local conditions (topography, exposition of slopes, the features of vegetation/land
cover, and others) also play an important role in the formation of local climate in the
Alash Highlands.

An increase in annual surface air temperature by another 20% with the reference to
the calculated periods is expected by the year of 2029 for the Altai and Sayan Highlands.
According to this forecast, the annual air temperature by the reference year 2029 will be
about −1.99–1.00 ◦C over the region of Alash Highlands [66].
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4. Discussion
4.1. The Features of Paludification and Palsa Mire Formations in the Mountain Regions

One important environmental driver of mire formation in mountain regions is temper-
ature inversions, which is very common condition in intermontane depressions or basins.
The temperature inversions cause appearance of so-called reverse altitudinal (or elevational)
zonation: The bottoms of the basins are made by tundra-type vegetation communities,
while forest-type communities are widely presented at the higher positions of the slope,
where they form so-called “forest belt” (Figure 10). The forest belt normally has two ther-
mal boundaries—one is “classic” upper boundary—forest line, and another is the “lower”
boundary originated from cold air moving to the bottom of the mountain basin. Besides,
the temperature inversion causes freezing of uppermost soil horizons, so that these become
watertight horizons. Along with low temperatures, which reduce evaporation from soil
surface, this watertight horizon contributes to paludification and further mire formations.

Because of short growing season and severe climate, as well as low productivity of
plant communities, the accumulation of peat in mountain mires is relatively slow [67,68]
(Figure 11), though even shallow peat deposits prevent permafrost thawing and free water
movement. On the other hand, the process of moisture accumulation can be a trigger
for the development of permafrost heaving processes. The water penetrates through
shallow peat deposits and accumulates in underlying mineral soil horizons. As a result,
in cold conditions, ice lenses are formed, which lead to soil swelling and the “litho-palsa”
(synonyms: lithic palsa, lithalsa) mound appearing.

With the accumulation of more-or-less evident peat deposits, a number of ice lenses
appear, resulting in frozen peat mound formation, as it was found in the marginal parts of
the Tyuguryuk mire in the South Siberia (Terekta ridge, the Altai Mountains) [69]. At sites
with limited spread of mire formations, the ice lenses are formed both in lake sediments
and in underlying mineral soil horizons of alluvial nature.

One might suspect that no signs of peat accumulation suggest formation of frozen
mounds, but we believe it is often the consequence of persistent processes of water accumu-
lation. Moreover, this kind of permafrost landforms is usually located along the edges of
mire, probably due to the high heat capacity of peat deposits. This helps ensure long-term
retaining of warm conditions in underlying soils.

In terms of land cover, if the current climate warming persists, the surface of the peat
mounds will continue degrading, and the features accompanying this process manifested
in increasing abundance of lichens and the area of bare ground spots tend to expand.

Thus, there are a few drivers of cryogenic phenomena in highland (mountain) mires:
the process of mire formation (paludification), as well as the properties of underlying soils,
including permafrost formations, the slope of the surface, the features of local topography,
and a wide range of other factors affecting hydrology of ground waters at mire sites.

4.2. Current State of Permafrost and Adjacent Vegetation

The mountain mires exist in close relation with permafrost processes [35,70] and
the local environmental conditions [71–74]. In addition, the limited areal extent and
shallow peat deposits of permafrost mountain mires make them of special subject to
climate change [35]. The complex mosaics of landforms observed at Adyr-Khem mire
site reflects the diversity of habitat conditions, namely, the water and mineral supply, the
structure of soil cover, the micro- and meso-topography, the features of thermokarst, the
content of carbon in mineral soils underlying peat deposits, and the human (anthropogenic)
impact. All of these, along with various stages of autogenous succession at different parts
of the key site, led to the formation of very complex land cover and vegetation patterns,
which remain hard task for systematic integration. The diversity of mire landscapes within
a relatively small area determines rather high floristic diversity at the Adyr-Khem key site.

In line with previous studies in mountain regions of Siberia [44], our study has revealed
that the plant communities of bryophytes could be better indicators of environmental
conditions than that of the vascular plants. The relative contribution of bryophytes to plant
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diversity, net primary production of mires, and ecosystem functions increases towards
colder climates, and local permafrost of the mountain palsa mire accelerate this effect [75].

The area of the key site could be of great importance for conservation of plant biodi-
versity as it hosts both plant species common for wetland (bog and fen) ecosystems, such
as cloudberries (Rubus chamaemorus), marsh cinquefoil (Comarum palustre), a few Sphagnum
moss species, and a number of rare and protected species common for mountain ecosys-
tems, among them Aconitum biflorum, which is an endemic species in Tuva and Rhodiola
rosea, the Red Book species.

At the same time, the current state of the Adyr-Khem palsa mire is of our great concern.
The same concern as many other mountain mires in highland regions [76], it seems affected
by on-going climate change. There is thermokarst subsidence and increase in the water
level clearly observed at the mire site. In the events of the withering away of dwarf birch
bushes that surround thermokarst subsidence lakes, which remain drainless and relatively
shallow (about 1 m depth) until they reach a certain size. If the current trend of rising
temperature persists, it is going to lead to reinforcement of thermokarst processes, resulting
in rise the number and areal extent of thermokarst subsidence and, in general, the areal
extent of open water bodies.

Increasing the extension of thermokarst lakes will contribute to drastic change in water
runoff in the frozen grounds, and further, to the descent of the local water table, as it was
documented for tundra ecosystems in Western Siberia [1].

We suspect that increase in global air temperatures will act to further intensify the
process of permafrost degradation [77], providing favorable conditions for active propaga-
tion of swamp ecosystems, while the dwarf shrub-moss communities can be projected to
shrink its areal extent. The latter could serve as a focus point to monitor of mire ecosystem
dynamics in current conditions of climate change.

Compared to lowland palsa mires, the highland palsa mires could be distinguished
by their compactness and a wide variety of cryogenic landforms (mineral and peat heave
mounds, thermokarst depressions and subsidenses, solifluction terraces, medallions, etc.)
leading to high environmental diversity [36,78].

5. Conclusions

A whole range of natural ecosystems at the Adyr-Khem key site came up as a result
of temporal dynamics of natural ecosystems, involving alluvial processes, paludification
(mire formation), and cryogenic (thermokarst, solifluction, cryosuction, etc.) processes.
The increased dynamism of the environment is also reflected in the heterogeneity of
vegetation/land cover: We observed a variety of plant communities, which correspond to
different stages of natural successions.

High diversity of natural ecosystems together with high diversity of environmental
conditions (micro- and meso-topography, water and mineral supply, soil cover, carbonate
content of the mineral soils underlying peat deposits, thermokarst), along with high diver-
sity of autogenous stages of successions, represent all factors defined a complex mosaic of
natural ecosystems of the highland palsa mire at Adyr-Khem key site in Western Sayan. In
total, the investigated flora accounts for 111 vascular plants and 21 bryophytes species, and
that makes the highland palsa mire ecosystems consist of much richer floristic biodiversity
compared with floristic diversity of the palsa mires in the northern taiga of Western Siberia
(with 26 and 11 species, respectively).

Preservation of diversity of natural mire ecosystems is a main factor providing con-
ditions for preservation of diversity of rare and unique plant species and unique natural
ecosystems, which up to date remain at the state of unstable equilibrium under chang-
ing climate. In this context, the local development of thermokarst leads to substantial
transformation of modern state of the natural ecosystems.

The high diversity of micro-landscapes we found at the highland palsa mires, includ-
ing rare plant species and plant communities, suggests the high ecological value of this
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ecosystem for the conservation of biodiversity and carbon fluxes, but also as an important
key site we propose for environmental monitoring in the mountain region of South Siberia.

6. Perspectives for Further Studies

In 2020 the following equipment developed by the Institute for Monitoring of Climatic
and Ecological Systems of the SB RAS were installed at the Adyr-Khem key site:

- A standard meteorological station AMK-03 (SAM-TT) for measurements of air tem-
perature, atmospheric pressure, air humidity, wind speed, wind direction, amount of
liquid precipitation, and solar radiation;

- Soil moisture sensors (at depths of 10, 20, and 40cm) and the multi-sensor temperature
probes (thermal sensors at the depth of 50 cm with 5-cm measurement interval, then
with 10-cm measurement interval till the depth of 100 cm; and at 120 and 140 cm in
soil profile).

By 2023, the first 3-year-long dataset of these parameters will be gathered. It is going
to contribute to identifying some short-term trends in the seasonal and in annual dynamics
of these parameters for the Adyr-Khem geographical region.

In the water bodies of palsa mire, the study for the inter-seasonal dynamics of carbon
fluxes and the migration of carbon-related macro- and microelements will be implemented.

The landscape catena was set up at the macro-slope of Kara-Sug river basin in the
mountain region to monitor the spatial and temporal variability of the upper range of the
larch forest.

A number of actions will be implemented to ensure detailed studies of biodiver-
sity issues at (i) ecosystem level, and (ii) to provide comprehensive assessment of plant
species diversity.
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Appendix A

Floristic diversity

The list of flora (plant species) at Adyr-Chem palsa mire site (Ak-Sug river basin,
Sayan Ridge)

(1) Vascular plants

Aconitum biflorum Fisch. ex DC.
Aconitum glandulosum Rapaics
Aconitum septentrionale Koelle
Aconogonon alpinum (All.) Schur
Aegopodium alpestre Ledeb.
Allium schoenoprasum L.
Alopecurus aequalis Sobol.
Alopecurus turczaninovii O.D. Nikif.
Anemonastrum crinitum (Juz.) Holub
Antennaria dioica (L.) Gaertn.
Barbarea vulgaris R. Br.
Betula rotundifolia Spach
Betula fruticosa Pall.
Bistorta officinalis Delarbre
Bistorta vivipara (L.) Delarbre
Callianthemum sajanense (Regel) Witasek
Campanula dasyantha M. Bieb.
Campanula rotundifolia L.
Cardamine bellidifolia L.
Carex aterrima Hoppe
Carex spicata Huds.
Carex altaica (Gorodkov) V.I. Krecz.
Carex canescens L.
Carex rostrata Stokes
Cerastium holosteoides Fr.
Cerastium pauciflorum Steven ex Ser.
Cerastium pusillum Ser.
Chrysosplenium sibiricum (Ser. ex DC.) A.P. Khokhr.
Claytonia joanneana Schult.
Comarum palustre L.
Dasiphora fruticosa (L.) Rydb.
Deschampsia cespitosa (L.) P. Beauv.
Dianthus superbus L.
Dichodon cerastoides (L.) Rchb.
Dracocephalum grandiflorum L.
Dryas oxyodonta Juz.
Eleocharis palustris (L.) Roem. & Schult.
Epilobium palustre L.
Equisetum palustre L.
Erigeron flaccidus (Bunge) Botsch.
Eriophorum angustifolium Honck.
Eriophorum scheuchzeri Hoppe
Festuca kryloviana Reverd.
Gentiana algida Pall.
Gentiana aquatica L.
Gentiana grandiflora Laxm.
Gentianopsis barbata (Froel.) Ma
Geranium krylovii Tzvelev
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Hedysarum consanguineum DC.
Heracleum dissectum Ledeb.
Kobresia myosuroides (Vill.) Fiori
Koenigia islandica L.
Lagotis integrifolia (Willd.) Schischk.
Lamium album L.
Larix sibirica Ledeb.
Ledum palustre L.
Ligularia sibirica (L.) Cass.
Lonicera altaica Pall.
Luzula multiflora ssp. sibirica V.I. Krecz.
Luzula nivalis (Laest.) Spreng.
Luzula spicata (L.) DC.
Macropodium nivale (Pall.) R. Br.
Micranthes aestivalis (Fisch. & C.A. Mey.) Small
Micranthes melaleuca (Fisch. ex Spreng.) Losinsk.
Minuartia verna (L.) Hiern
Myosotis palustris (L.) L.
Oxyria digyna (L.) Hill
Pachypleurum alpinum Ledeb.
Parnassia palustris L.
Patrinia sibirica (L.) Juss.
Pedicularis anthemifolia Fisch. ex Colla
Pedicularis compacta Stephan
Pedicularis oederi M. Vahl
Petasites frigidus (L.) Fr.
Poa attenuata Trin.
Polemonium caeruleum L.
Primula nivalis Pall.
Pyrola incarnata (DC.) Freyn
Ranunculus natans C.A. Mey.
Ranunculus sceleratus L.
Rhodiola algida (Ledeb.) Fisch. & C.A. Mey.
Rhodiola rosea L.
Ribes nigrum L.
Rubus arcticus L.
Rubus chamaemorus L.
Rumex acetosa L.
Rumex acetosella L.
Sajanella monstrosa (Willd. ex Spreng.) Soják
Salix berberifolia Pall.
Salix glauca L.
Salix rectijulis Ledeb. ex Trautv.
Saussurea stubendorffii Herder
Saxifraga hirculus L.
Saxifraga sibirica L.
Schulzia crinita (Pall.) Spreng.
Solidago virgaurea ssp. dahurica (Kitag.) Kitag.
Spiraea alpina Pall.
Stellaria dahurica Willd. ex Schltdl.
Stellaria irrigua Bunge
Stellaria peduncularis Bunge
Swertia obtusa Ledeb.
Tephroseris praticola (Schischk. & Serg.) Holub
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Thalictrum alpinum L.
Thymus altaicus Klokov & Des.-Shost.
Trifolium eximium Stephan ex DC.
Vaccinium vitis-idaea L.
Vaccinium uliginosum L.
Veratrum lobelianum Bernh.
Vicia cracca L.
Viola altaica Ker Gawl.
Viola biflora L.

(2) Bryophytes

Aulacomnium palustre (Hedw.) Schwägr.
Aulacomnium turgidum (Wahlenb.) Schwägr.
Straminegron stramineum (Dicks. ex Brid.) Hedenäs
Dicranum angustum Lindb.
Drepanocladus polygamous (Bruch et al.) Hedenäs
Hylocomium pyrenaicum (Spruce) M.Fleisch.
Lophozia ventricosa (Dicks.) Dumort.
Meesia triquetra (Jolycl.) Ångstr.
Mnium rugicum Laur.
Mylia anomala (Hook.) Gray
Paludella squarrosa (Hedw.) Brid.
Polytrichum commune Hedw.
Polytrichum strictum Brid.
Racomitrium canescens (Hedw.) Brid.
Scapania paludicola Loeske et Müll.
Sphagnum angustifolium (C.E.O.Jensen ex Russow) C.E.O.Jensen
Sphagnum rubellum Wilson
Sphagnum russowii Warnst.
Tomenthypnum nitens (Hedw.) Loeske
Warnstorfia exannulata (Bruch et al.) Loeske
Warnstorfia fluitans (Hedw.) Loeske

Table A1. Vegetation, landscape elements and average richness of species in the most typical plant
communities of the Adyr-Chem key site (palsa mire).

Vegetation
Type Surface/Landscape Topography Micro-Topography Plant Community Type

Species Richness
(No Lichens

Counted)

Shrubs River banks Shrub willow-herb-green moss 21

Cryophilic
steppe meadows Lithic palsa mounds 27

Frozen mires Frozen peat mounds Dwarf shrub (Betula rotundifolia)-moss 10

Degraded land surfaces
(with permafrost formation)

Green mosses (Paludella squarrosa,
Calliergon) and liverworts 5

Ridges Dwarf birch-Sphagnum 8

Carpets Green moss (Paludella squarrosa) 2

Small hollows Marsh cinquefoil (Comarum
palustre)-green moss (Dicranum) 8

Large hollows Cotton grass-green moss (Warnstorfia) 5

Floating mats Green moss (Paludella squarrosa) 4
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Table A1. Cont.

Vegetation
Type Surface/Landscape Topography Micro-Topography Plant Community Type

Species Richness
(No Lichens

Counted)

Tussocks

Deschampsia cespitosa 13

Micro-depressions
Herb-green moss (Saxifraga hirculis,

Paludella squarrosa and Aulacomnium
palustre)

5

Elevated
micro-topographical
units, or hummocks

Sphagnum russowii 3

Tussocks
Sedge-green moss (Carex canescens

Calliergon stramineum and
Aulacomnium palustre)

9

Lake shores Sedge (Carex rostrata) and cotton grass
(Eriophorum polystachyon)-sedge 3
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