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Simple Summary: Fishes represent a useful model for evolutionary studies, given their diversity
of species and habitats. In this study, we investigate the chromosomes of three unexplored Harttia
fish species from the Amazonian region and compare the obtained data with previous analyses. Our
data reveal that both Harttia dissidens and Harttia sp. 3 exhibit the same number of chromosomes
in their cells (54), but that they differ in the karyotype organization. Harttia guianensis possesses
58 chromosomes, being thus the first representative from north Brazil to present this feature for
both sexes. Although otherwise rather common in Harttia species, we observed no chromosomal
differences between sexes in all but one species. Namely in Harttia sp. 3, we revealed signs of initial
differentiation between homologues of one chromosome pair in males but not in females. Altogether,
our data bring new evidence strengthening the view that Harttia spp. represent an informative model
for studying patterns of karyotype and sex chromosome dynamics in teleost fishes.

Abstract: A remarkable morphological diversity and karyotype variability can be observed in the
Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the
evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex
chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization,
the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic
divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization,
we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions
in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in
H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of
chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA)
sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution
of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex
chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one
single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-
derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation.
Thus, our data support already previously outlined evidence that Harttia is a vital model for the
investigation of teleost karyotype and sex chromosome dynamics.

Biology 2021, 10, 922. https://doi.org/10.3390/biology10090922 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-5699-5789
https://orcid.org/0000-0003-4441-9615
https://orcid.org/0000-0003-1672-3054
https://orcid.org/0000-0001-8638-0515
https://orcid.org/0000-0002-8172-0725
https://orcid.org/0000-0002-2962-4541
https://orcid.org/0000-0003-3913-9889
https://orcid.org/0000-0003-4340-1464
https://doi.org/10.3390/biology10090922
https://doi.org/10.3390/biology10090922
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10090922
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10090922?type=check_update&version=2


Biology 2021, 10, 922 2 of 16

Keywords: chromosomes; comparative genomic hybridization (CGH); repetitive DNA; sex
chromosomes

1. Introduction

With more than 35,000 species [1], fishes have the richest biodiversity among verte-
brates [2,3]. The evolutionary success of ray-finned and especially teleost fishes seem to be,
at least partially, related to a higher plasticity of their genomes when compared to other
vertebrates [4–7], going hand in hand with their propensity towards polyploidization and
hybridization events [8,9]. Another factor at play is the wealth of aquatic niches fishes adapted
to [2,10–12], and the geomorphological parameters affecting the dispersion and populational
dynamics in particular species (e.g., [13,14]). In effect, at the level of genome organization,
fishes present a wide range of chromosome counts and genome sizes [15,16] and the karyotype
dynamics may differ considerably among lineages [17]. Finally, fishes encompass astounding
variability in mechanisms of sex determination and differentiation [18–22].

Siluriformes (Teleostei, Ostariophysi) represent a lineage with high diversification,
comprising more than 3000 species distributed among 39 families [1]. Inside Siluriformes,
the family Loricariidae whose representatives are commonly known as “armored catfishes”
(due to ossified plates covering their bodies; [23]) encompasses 1015 recognized species
included in more than 100 genera [1]. It is hence the most species-rich siluriform fam-
ily. These fishes are distributed throughout the Neotropical region, but with the greatest
diversity being found from north Costa Rica to south Argentina [24]. Notably, the di-
versification is associated with huge karyotype variability in Loricariidae, with diploid
chromosome numbers (2n) ranging from 36 in Rineloricaria latirostris to 74 in Sturisoma cf.
nigrirostrum [25–27]. Additionally, several types of sex chromosome systems including
standard, derived, and multiple ones have been described for Loricariidae, as exemplified
by Hypostomus genus with different ZW and XY cases [28–31], XX/XY, XX/X0, ZZ/ZW,
and Z1Z1Z2Z2/Z1Z2W1W2 in several Ancistrus species (reviewed in ref. [32]), and three
male-heterogametic systems in the genus Harttia (see below).

In this context, the genus Harttia can be recognized as a remarkable model for cyto-
genetic studies, especially to investigate the evolutionary processes related to sex chro-
mosomes, diversification and karyotype dynamics [33–36]. Harttia harbors 27 recognized
species [1,37], of which only 14 have been cytogenetically analyzed to date, along with
several other Harttia spp. waiting for proper taxonomic description (summarized in [35]).
This genus also encompasses the second-largest variation in the 2n among Loricariidae,
ranging from 2n = 52 (females)/53 (males) in Harttia carvalhoi [33] to 2n = 62 in H. absaberi
and Harttia sp. 2 [35,38]. Furthermore, three different male-heterogametic sex chromosome
systems are known or have been suggested to exist among Harttia species: XX/XY1Y2 in
H. carvalhoi, H. intermontana, and Harttia sp. 1 [33,35], X1X1X2X2/X1X2Y in H. punctata,
H. villasboas, and H. duriventris [34,36], in addition to a putative XX/XY in H. rondoni [36].

Harttia kronei was the first species analyzed cytogenetically in the genus [39] and,
for a long time, a single representative of Harttia was studied from this perspective in
the northern Brazilian region: the species H. punctata [34]. However, this gap has been
progressively closed with our previous studies on Harttia duriventris, H. rondoni, and H. vil-
lasboas [36]. Here, we aim to cytogenetically investigate another three representatives from
this region. For this, we applied C-banding, repetitive DNA mapping, and comparative
genomic hybridization (CGH) experiments in H. dissidens, H. guianensis, and Harttia sp. 3.
Our results highlight the high chromosomal dynamics within the investigated species and
a putative early stage of sex chromosome differentiation, particularly in Harttia sp. 3.
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2. Materials and Methods
2.1. Sampling

Three collection sites in the Brazilian Pará state (Figure 1, Table 1) were accessed,
allowing the sampling of three species: Harttia dissidens, H. guianensis, and another yet
undescribed taxon herein referred to as Harttia sp. 3.
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Figure 1. Brazilian territory (green), and the Harttia species cytogenetically analyzed in former reports [34–36,38] (white
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coding system is presented in the white frame on the right.

Table 1. Geographic coordinates of the collection sites and the number of specimens per species analyzed in this study. The
number codes placed before the species names correspond to the numbering system in Figure 1.

Species Locality n

3-Harttia dissidens Upper section of Grim waterfall, Tambor stream,
Rurópolis–PA, Brazil (4◦5′37.8′′ S 55◦0′30.2′′ W) 25♂, 07♀

6-Harttia guianensis Paraíso stream (formerly known as Inferno stream),
Alenquer–PA, Brazil (1◦29′02.2′′ S 54◦50′31.2′′ W) 10♂, 06♀

17-Harttia sp. 3 Rio do Peixe, Cachoeira da Serra, Altamira–PA
(08◦39′20.7′′ S 55◦09′24.1′′ W) 15♂,11♀

Sampling was done with the authorization of the environmental agency ICMBIO/
SISBIO (License 48628-14) and SISGEN (A96FF09). The species Harttia dissidens and H. guia-
nensis were identified by Dr. Lúcia Helena Rapp-Py Daniel, curator of the fish collection
of the Instituto Nacional de Pesquisa da Amazônia (INPA) and deposited there under the
voucher numbers INPA-ICT 059577 and INPA-ICT 059584, respectively. The specimens
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of Harttia sp. 3 were scientifically described by Dr. Oswaldo Takeshi Oyakawa, from the
Museu de Zoologia da Universidade de São Paulo (MZUSP).

2.2. Chromosome Obtainment and C-Banding

The living animals were anesthetized with Eugenol before the anterior kidney ex-
traction for the obtainment of mitotic chromosomes following the classical air-drying
protocol [40]. Experiments followed the ethical conducts approved by the Ethics Commit-
tee on Animal Experimentation of the Universidade Federal de São Carlos (Process number
CEUA 1853260315). The detection of constitutive heterochromatin regions followed the
C-banding protocol [41]. The C-banding procedure was performed on the slides previously
used for the mapping of ribosomal DNAs, to allow a sequential analysis of the same
metaphase plates.

2.3. Fluorescence In Situ Hybridization (FISH)-Based Experiments

Ribosomal DNA (rDNA), microsatellite, and the telomeric (TTAGGG)n sequences
were used as probes for chromosomal mapping by FISH. The 5S rDNA probe was prepared
according to Pendás et al. [42] from Hoplias malabaricus genome, containing a 120-base pair
(bp) segment of the 5S rDNA transcribed region and 200 bp of a non-transcribed spacer
(NTS). This probe was red-labeled with ATTO550-dUTP using the Nick-Translation mix
kit (Jena Bioscience, Jena, Germany). The 18S rDNA probe, containing a 1400 bp-long
segment of the transcribed region was also isolated from H. malabaricus following Cioffi
et al. [43] and green-labeled with AF488-dUTP using the Nick-Translation mix kit (Jena
Bioscience). The microsatellites (A)30, (CA)15, and (GA)15 were selected based on their
abundance and patterns of chromosome distribution encountered in previous studies in
different fish species [36,44], and the corresponding probes were directly labeled with
Cy3 (Sigma-Aldrich, Darmstadt, Germany) during their synthesis, as described in [45].
Telomeric sequence (TTAGGG)n was in situ located using the DAKO Telomere PNA FISH
Kit/FITC (DAKO, Glostrup, Denmark). High stringency conditions described in [46] were
used in all FISH experiments. As a final step for all fluorescence assays, chromosomes were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI), and the slides were mounted
in an antifade solution (VECTASHIELD; Vector Laboratories, Burlingame, CA, USA). Two
sets of comparative genomic hybridization (CGH) experiments were designed to seek for
the occurrence of sex chromosomes, both following the protocol of Sember et al. [47], with
adaptations on probe/C0t−1 DNA ratio based on previous Harttia studies [35,36]. In the
first set of experiments, male and female genomic probes were co-hybridized to the male
chromosomes (i.e., the expected heterogametic sex), in each species separately, to detect
regions with specific or biased hybridization of male probe which might point to regions
with sex-specific repetitive DNA accumulation on sex chromosomes. For this experimental
scheme, male and female-derived whole-genome DNAs (gDNAs) of all analyzed species
were extracted from the liver tissue by the standard phenol-chloroform-isoamyl-alcohol
method [48] and labeled with ATTO550-dUTP (male gDNA in red) and AF488-dUTP
(female gDNA in green) using the Nick Translation mix kit (Jena Bioscience). To block
the excess of shared repetitive sequences, an unlabeled C0t-1 DNA, obtained from each
species according to Zwick et al. [49] was included in the final probe mixture. For each
slide, male and female genomic probe (500 ng each) and 25 µg of female-derived C0t−1
DNA from the respective species were co-precipitated in 96% ethanol, and the dry pellets
were resuspended in 20 µL of the hybridization buffer containing 50% formamide, 2×SSC,
10% dextran sulfate, and Denhardt’s buffer (pH 7.0). In the second CGH assay, the genomes
of H. dissidens and H. guianensis were compared to one of H. villasboas, which possesses
an X1X1X2X2/X1X2Y sex chromosome system and whose chromosome preparations were
previously obtained by our research group [36]. For this purpose, male-derived gDNAs
from H. dissidens, H. guianensis, and H. villasboas were extracted as described above and
labeled with fluorochromes emitting green (AF488-dUTP), cyan (ATTO425-dUTP), and red
(ATT0550-dUTP) fluorescence, with the Nick Translation mix kit (Jena Bioscience). The
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final probe mixture was composed of 500 ng of male-derived gDNA of each species and
10 µg of female-derived C0t−1 DNA of each species. This probe was then hybridized to
the male metaphase plates of H. villasboas.

2.4. Image Analysis and Processing

The 2n, karyotype structure, distribution of repetitive DNAs, and CGH results were
confirmed by the evaluation of results in at least 30 metaphase spreads per individual. Im-
ages were captured using an Olympus BX50 microscope (Olympus Corporation, Ishikawa,
Japan), coupled with a CoolSNAP camera, and processed using Image-Pro Plus 4.1 soft-
ware (Media Cybernetics, Silver Spring, MD, USA). Chromosomes were classified as
metacentric (m), submetacentric (sm), subtelocentric (st), or acrocentric (a) according to
their arm-ratios [50]. Figures were organized with Adobe Photoshop CC 2020.

3. Results

Harttia dissidens and Harttia sp. 3 exhibited the same 2n = 54 chromosomes but
differed in the karyotype composition: 20m + 26sm + 8a and 16m + 18sm + 14st + 6a,
respectively. On other hand, H. guianensis differed from the other two species both in 2n
and karyotype constitution: 2n = 58, and 20m + 26sm + 2st + 10a chromosomes (Figure 2).
In H. dissidens and H. guianensis, constitutive heterochromatin was located preferentially
in the pericentromeric and terminal regions of several chromosomes, but with distinct
patterns of distribution between the species. In turn, Harttia sp. 3 differed by having
larger C-positive bands, with signals distributed in the pericentromeric regions of almost
all chromosomes (Figure 2). The mapping of the 18S rDNA sequence revealed a single
chromosome pair bearing these sites in all three species (pair 24 in H. dissidens, pair 25
in H. guianensis, and pair 1 in Harttia sp. 3). The 5S rDNA cluster was found in a single
chromosome pair in H. dissidens (pair 19) and Harttia sp. 3 (pair 15), and in two chromosome
pairs (4 and 25) in H. guianensis. It is also notable that both 5S and 18S rDNA sites present a
syntenic location on chromosome pair 25 in H. guianensis (Figure 3b).
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The mapping of three microsatellite sequences revealed a similar pattern for (CA)15
and (GA)15, with accumulation at the terminal regions of all chromosomes. The last studied
motif, (A)30, presented a dispersed distribution throughout the chromosome complement
of H. dissidens and H. guianensis, while it was accumulated in the pericentromeric regions of
few chromosome pairs in Harttia sp. 3 (Figure 4). The mapping of the telomeric (TTAGGG)n
sequence revealed only the standard pattern in all the three species, i.e., positive signals at
the physical ends of all chromosomes (Figure A1).
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The CGH-based experiments between sexes in each of the three analyzed species
showed approximately equal binding of both male- and female-specific probes to the vast
majority of chromosomes in the male complement, with preferential location to regions
with high content of repetitive DNA (yellow signals, i.e., combination of green and red
fluorescence). In Harttia dissidens and H. guianensis, CGH failed to reveal any region with
predominant or exclusive hybridization of the male-specific probe, thus we did not observe
any signs of potential sex chromosome molecular differentiation at the level detectable
by this methodological approach. In Harttia sp. 3, however, the male genomic probe
predominantly (but not exclusively) marked the pericentromeric region of one large-sized
metacentric chromosome pair (Figure 5).
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of both genomic probes are yellow (i.e., combination of green and red). Asterisks highlight the regions with preferential
accumulation of male gDNA probe when compared to patterns of a female gDNA probe hybridization. Scale bar = 10 µm.

We further performed a second CGH assay with hybridization of the male genomic
probes from Harttia dissidens, H. guianensis, and H. villasboas against the chromosomal set
of H. villasboas (i.e., the species previously reported to have X1X1X2X2/X1X2Y multiple
sex chromosome system; see ref. [36]). We found uniform hybridization patterns of both
H. dissidens and H. guianensis probes across the chromosome complement of H. villasboas
males. The H. villasboas male probe seldom predominantly highlighted the regions of
high repetitive content, pointing to the fact that the other two compared genomes do not
(qualitatively or quantitatively) share this specific portion of H. villasboas repetitive DNA
classes (Figure 6).



Biology 2021, 10, 922 9 of 16Biology 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 6. Mitotic metaphase from Harttia villasboas male after interspecific comparative genomic hybridization (CGH). 
Chromosome spreads were probed with male-derived genomic probes from Harttia villasboas (red) (b), H. dissidens (green) 
(c), and H. guianensis (light blue) (d). The composed image (e) contains all three merged genomic probes and DAPI coun-
terstaining (a). The genomic regions with shared excessive hybridization of applied male genomic probes are yellowish. 
Scale bar = 10 µm. 

4. Discussion 
4.1. New Pieces into the Chromosomal Evolution of Harttia  

In a previous chromosomal study in Harttia species, 2n = 58 was proposed as the 
likely ancestral 2n for this genus [34]. A few years later, the karyotype diversity among 
Harttia species was described as the result of three different evolutionary pathways: (i) the 
maintenance of the ancestral 2n = 58 up to today; (ii) the elevation of 2n by centric fissions, 
and (iii) the 2n reduction by fusions [35]. Here, we add new pieces to this puzzle by ana-
lyzing the karyotypes of another three Harttia species. 

In the most recent phylogenetic analysis of the subfamily Loricariinae [51], the exist-
ence of three clades within the Harttia genus was proposed. The earliest-diverging clade 
is composed of H. guianensis, H. tuna, H. fluminensis, and H. surinamensis which inhabit 
waters from the Guiana shield. The two more recently diverging clades display a well-
defined and non-overlapping geographical distribution. Their species are found in south-
east and south Brazilian regions, which are separated from the northern rivers. Until the 
present study, cytogenetical investigations only comprised fishes from the latter two 
clades [34–36].  

The description of the H. guianensis karyotype in the present study reinforces the pro-
posal of 2n = 58 as the ancestral 2n for the genus [34]. If we keep in mind that this species 
is basalmost in the clade, as pointed by phylogenetic reconstructions [51,52], and that it 
shares the same 2n with other Harttia species from other clades, such as H. gracilis, H. 
longipinna, and H. punctata, such hypothesis is still valid but lacks profound reconstruction 
analysis. Furthermore, although not a common occurrence, the syntenic organization of 
at least some sites of both rDNA classes is also considered as a basal karyotype feature for 
Loricariidae fishes [53]; this is a pattern that we also found in the karyotype of H. guianen-
sis, in which 5S and 18S rDNA site share the location on the chromosome pair 25. Inter-
estingly, all three Harttia species under study share one 5S rDNA site, which might be 
hypothetically located on homeologous chromosomes (pairs 19, 4, and 15 in H. dissidens, 
H. guianensis, and Harttia sp. 3, respectively). The mentioned chromosome pairs only show 
mild changes in shape and size between species and they differ also regarding the position 
of an 5S rDNA site (terminal vs. more proximal), which could be explained by paracentric 
inversions. The second extra 5S rDNA site found in H. guianensis only, i.e., the one found 
in synteny with 18S rDNA cluster on chromosome pair 25 is a karyotype trait that has 
been so far reported only for two other Harttia species: H. carvalhoi [34] and Harttia sp. 1 

Figure 6. Mitotic metaphase from Harttia villasboas male after interspecific comparative genomic hybridization (CGH).
Chromosome spreads were probed with male-derived genomic probes from Harttia villasboas (red) (b), H. dissidens (green)
(c), and H. guianensis (light blue) (d). The composed image (e) contains all three merged genomic probes and DAPI
counterstaining (a). The genomic regions with shared excessive hybridization of applied male genomic probes are yellowish.
Scale bar = 10 µm.

4. Discussion
4.1. New Pieces into the Chromosomal Evolution of Harttia

In a previous chromosomal study in Harttia species, 2n = 58 was proposed as the
likely ancestral 2n for this genus [34]. A few years later, the karyotype diversity among
Harttia species was described as the result of three different evolutionary pathways: (i) the
maintenance of the ancestral 2n = 58 up to today; (ii) the elevation of 2n by centric fissions,
and (iii) the 2n reduction by fusions [35]. Here, we add new pieces to this puzzle by
analyzing the karyotypes of another three Harttia species.

In the most recent phylogenetic analysis of the subfamily Loricariinae [51], the exis-
tence of three clades within the Harttia genus was proposed. The earliest-diverging clade is
composed of H. guianensis, H. tuna, H. fluminensis, and H. surinamensis which inhabit waters
from the Guiana shield. The two more recently diverging clades display a well-defined and
non-overlapping geographical distribution. Their species are found in southeast and south
Brazilian regions, which are separated from the northern rivers. Until the present study,
cytogenetical investigations only comprised fishes from the latter two clades [34–36].

The description of the H. guianensis karyotype in the present study reinforces the pro-
posal of 2n = 58 as the ancestral 2n for the genus [34]. If we keep in mind that this species is
basalmost in the clade, as pointed by phylogenetic reconstructions [51,52], and that it shares
the same 2n with other Harttia species from other clades, such as H. gracilis, H. longipinna,
and H. punctata, such hypothesis is still valid but lacks profound reconstruction analysis.
Furthermore, although not a common occurrence, the syntenic organization of at least some
sites of both rDNA classes is also considered as a basal karyotype feature for Loricariidae
fishes [53]; this is a pattern that we also found in the karyotype of H. guianensis, in which
5S and 18S rDNA site share the location on the chromosome pair 25. Interestingly, all
three Harttia species under study share one 5S rDNA site, which might be hypothetically
located on homeologous chromosomes (pairs 19, 4, and 15 in H. dissidens, H. guianensis, and
Harttia sp. 3, respectively). The mentioned chromosome pairs only show mild changes in
shape and size between species and they differ also regarding the position of an 5S rDNA
site (terminal vs. more proximal), which could be explained by paracentric inversions. The
second extra 5S rDNA site found in H. guianensis only, i.e., the one found in synteny with
18S rDNA cluster on chromosome pair 25 is a karyotype trait that has been so far reported
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only for two other Harttia species: H. carvalhoi [34] and Harttia sp. 1 [35]. Given the position
of H. guianensis at the base of Harttia phylogeny [51], it seems probable that this second
5S rDNA site has been eliminated during evolution in many Harttia species while it was
retained in a subset of them.

The 5S rDNA site has been either entirely eliminated or reduced in copy number of
repeats below the resolution of the standard FISH protocol. Based on tracking the location
of the 18S rDNA site, we may infer that particularly this linkage group underwent a
dynamic evolution (see below). Based on the comparison of 18S rDNA patterns, it is highly
probable that the chromosome pair bearing the 18S rDNA site was involved in a fusion
event in H. dissidens and Harttia sp. 3. This may be inferred from the terminal location of
18S rDNA site on a rather middle-sized chromosome pair in H. guianensis vs. an interstitial
position of 18S rDNA cluster on large-sized chromosomes in the remaining two species.
While the presence of a large metacentric pair in Harttia sp. 3 supports centric fusion
as an underlying mechanism, the large 18S rDNA-bearing chromosome in H. dissidens
is acrocentric and hence either tandem fusion took place here or the situation was more
complex (i.e., involving more consecutive rearrangements).

For loricariid genomes, it was proposed that the evolutionary breakpoint regions
occur adjacent to rDNA sites, promoting double-strand breaks and the reorganization of
these sequences in Ancistrus [54], Harttia [35,36], and Rineloricaria [55]. The number of
studies showing rDNA sites inside or nearby a predicted fusion points is steadily growing
for fishes [56–59] and a high potential of rDNAs to facilitate chromosome rearrangements
has also been shown in mice and humans (e.g., [60,61]). A possible explanation for rDNA
instability might be a high transcriptional activity of tandemly arrayed rDNA genes due
to the necessity to synthetize high amounts of ribosomes in the cell [62]. Long stretches
of transcriptionally active euchromatin might be prone to double-strand breaks [63,64].
Interestingly, mapping of telomeric repeats did not reveal any interstitial telomeric sites
(ITSs), which could point to regions of former rearrangements, in our case specifically
fusions or inversions; therefore, it seems that the mechanisms of these rearrangements in
Harttia usually do not preserve these sequences in the fusion points [65,66].

The two species analyzed herein, H. dissidens and Harttia sp. 3, share the same
chromosome count (2n = 54) as was previously only described in H. rondoni [36], a species
that also inhabits the northern Brazilian region. Indeed, H. dissidens occurs in the Tapajós
river basin [67], and H. rondoni inhabits the Xingu River basin [68]. The range of distribution
of Harttia sp. 3 cannot be inferred from the current data. This suspected new Harttia species
was collected in a small rocky-bottom river located on the edge of Serra do Cachimbo,
700 m highlands dividing the Tapajós and Xingu basins. Therefore, it is not yet known
whether it flows into the Tapajós River basin or the Xingu River basin.

Although the karyotypes of H. dissidens, H. rondoni, and Harttia sp. 3 share 2n equal
to 54 chromosomes, notable differences can be found between the species at the level of
karyotype composition, and distribution of repetitive DNA classes–either specific ones or
the uncharacterized repetitive DNA fraction revealed by CGH. Taking an important role in
the initial steps of sex chromosome differentiation, in post-zygotic reproductive isolation,
or by contributing to local adaptation in certain populations, chromosomal inversions can
suppress the recombination, especially around the rearrangement breakpoints [69–77]. In
addition, repetitive DNAs may also play an important role in promoting biodiversity, in the
differentiation of sex-specific chromosomal regions, and speciation of diverse eukaryotic
organisms including fishes [78–81]. As evidenced in our present study, the differences in
karyotype organization and number and distribution of rDNA sites are instrumental as
chromosomal markers for the determination of Harttia species with 2n = 54 chromosomes.
The fixation of such karyotype differences might be facilitated by vicariant events after
the Serra do Cachimbo uplifting [36]. This event seems to have played a significant role
in the diversification of Harttia species, as pointed out by the position of the clades in the
phylogenetic reconstruction of this genus. Species from Xingu and Tocantins-Araguaia
basins, which have at least two different sex chromosome systems [36], form a sister clade
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to the branch which encompasses species from the Tapajós basin [57]. One member of the
latter group investigated herein, H. dissidens, does not present a cytologically detectable
sex chromosome system. Additionally, H. punctata, a species from the Tocantins-Araguaia
basin which possesses an X1X1X2X2/X1X2Y multiple sex chromosome system, corresponds
to the sister group of all those above-mentioned species in their phylogenetic reconstruction
([52], Figure 7).
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4.2. Sex Chromosomes in Harttia species

At least nine distinct sex chromosome systems are described among fishes, so far
known to be distributed in approx. 1% of teleost species (440 cases according to [83]). Many
of these systems present only subtle genetic differentiation, which is not detectable by
standard cytogenetic methods [19,83].

Until now, Harttia has presented three distinct male-heterogametic sex chromosome
systems: (i) X1X1X2X2/X1X2Y found in H. punctata [34], H. duriventris and H. villasboas [36],
(ii) XX/XY1Y2 found in H. carvalhoi [33,34], H. intermontana and Harttia sp. 1 [35], and
(iii) the putative XX/XY sex chromosome system at an early stage of differentiation pro-
posed for H. rondoni [36]. Consequently, Harttia can be recognized as a taxon with high
karyotype dynamics, which is prone to formation of multiple sex chromosome systems. Up
to now, 75 cases of multiple sex chromosomes with predicted 60 independent origins have
been reviewed by Sember et al. [83] and another two systems have been concomitantly
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described in Harttia [35]. Together with Nothobranchius, Harttia is the genus with highest
number (N = 6) of multiple sex chromosomes (reviewed in ref. [83]).

Interestingly, although largely different from many viewpoints, both mentioned teleost
taxa (Harttia and Nothobranchius) share the evolution in small allopatric populations with
restricted gene flow and propensity to fusions and fissions. It is becoming increasingly
apparent that Robertsonian rearrangements might have a significant effect on the nuclear or-
ganization of chromosomes along with gene evolution and expression (e.g., [84]). Although
present in seven out of the 14 karyotyped species, differentiated sex chromosomes are
still intensely discussed concerning the ancestral karyotype of Harttia. For this, two main
scenarios have been already proposed [36]. The first one—“the proto-XY hypothesis”—
considers both X and Y chromosomes to differ only by amplification or contraction of tan-
dem repeats, thus representing an early stage of sex chromosome differentiation. Following
this presumption, a proto-XY sex chromosome system, like the one found in H. rondoni,
could be present in the ancestral karyotype and, consequently, would have originated the
X1X2Y sex chromosome system found in H. duriventris, H. punctata, and H. villasboas via
centric fissions [36]. A possible second hypothesis, named “the neo-XY system”, considers
the fusions of ancestral X and Y chromosomes with an autosome pair, thus leading to the
formation of neo-XY sex chromosomes accompanied by the reduction of 2n [36]. A third
hypothesis partially overlaps with the second one and it can be considered for the south-
east Brazilian clade of Harttia, which does not present any proto-sex, or heteromorphic
XY sex chromosomes identified so far. In this case, similar CGH patterns and the phy-
logenetic relationships between H. torrenticola (without differentiated sex chromosomes)
and H. carvalhoi (with an XY1Y2 sex system), point to a Robertsonian fusion originating
the X-chromosome of H. carvalhoi, H. intermontana, and Harttia sp. 1, as well as the first
chromosome pair of H. torrenticola [35]. Such hypotheses, especially the first two of them,
were proposed assuming the scenario in which all species from the northern Brazilian
region present differentiated sex chromosomes in their karyotypes. However, this is not
the case, as the present CGH experiments confirmed that H. dissidens and H. guianensis
do not possess differentiated sex chromosomes, at least not at the stage which could be
detected by CGH [47,85]. These data suggest rather early steps of differentiation in the
Harttia species with XX/XY1X2 sex chromosome system when compared to the karyotypes
with homomorphic sex chromosomes in the clade from northern Brazilian region.

Recent genomic studies continue to reveal homomorphic sex chromosome systems
among fishes, thus pointing to a potentially gross underestimation regarding the counts of
fish sex chromosomes cases by previous cytogenetic reports [86,87]. This might especially
apply to the Harttia genus, where several cryptic and undescribed species occur, in addition
to the scarcity of cytogenetic (and a complete absence of genomic) data, especially for
species from both northern Brazil and Guyana shield. Our CGH experiments utilizing male
and female genomic probes to be compared on the male chromosome background in Harttia
sp. 3, revealed a specific pericentromeric region in one metacentric pair (pair 2) highlighted
more (but not exclusively) by the male genomic probe. This observation might point to a
nascent region of suppressed recombination on homomorphic sex chromosomes [47], bear-
ing in mind that specific repetitive DNA accumulations might happen on corresponding
regions of both sex chromosomes [88]; however, we cannot entirely discard the possibility
of intraspecific variability in the copy number and distribution of certain repetitive DNAs.
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