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Abstract: Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microal-
gae are an auspicious source of vital bioactive compounds. In this review, the existing research
regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial
compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endo-
phytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described.
Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target
multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights
the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceuti-
cal, and pharmaceutical applications. However, more investigations are required to isolate, separate,
purify, and characterize these bioactive compounds and transfer these primary drugs into clinically
approved antibiotics.

Keywords: bacteriocins; lipopeptides; halocin; chlorellin; filamentous fungi; microalgae

1. Introduction

For the last few decades, antibiotics have saved millions of lives, but the prevalence
of multidrug resistance (MDR) in microbial strains, nullifying the effects of antibiotics is
an expected consequence of antibiotic abuse. The emergence and prevalence of antibiotic-
resistant microbial strains remain one of the major health issues of the 21st century, creating
pressure on natural microbiota. The ESKAPE pathogens (Enterococcus faecium, Staphylo-
coccus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species) are one of the greatest challenges faced by medical practices as many
of them are multidrug-resistant isolates [1]. The US Centres for Disease Control and
Prevention (CDC) classified the most concerning antimicrobial resistance (AMR) threats,
cataloguing carbapenem-resistant P. aeruginosa, Clostridium difficile, and A. baumannii; MDR
Neisseria gonorrhoeae and carbapenem- and cephalosporin-resistant Enterobacteriaceae as
“urgent” threats [2], requiring urgent measures to deal with the situation. Pendleton
et al. [3] provide a contemporary summary and clinically relevant information on the ES-
KAPE pathogens. In contrast, a detailed description regarding the antimicrobial resistance
mechanisms of ESKAPE pathogens was illustrated by Santajit and Indrawattana [1], and
can be used as a tool and applied to emerging MDR pathogens. Mulani et al. [4] highlight
the use of therapies, including the combination of antibiotics, bacteriophages, antimicrobial
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peptides, nanomedicines, and photodynamic light therapy to overcome the limitations
of individual therapy. These advanced and combinatorial therapies could be used as an
alternate solution to combat AMR.

Due to the increased consumption of livestock products in middle-income countries,
antimicrobial consumption will increase up to 67%, and up to two-fold in India, Brazil,
China, Russia, and South Africa, by 2030 [5]. The current review recapitulates the microbial
metabolites, counting growth hormones, pigments, antibiotics, etc., that have become signif-
icant sources for life-saving drugs. Most microbial metabolites hold specific antimicrobial
potential and act at particular target sites (Figure 1); thereby, they can be an attentive source
for biotechnological applications, specifically for pharmaceuticals and nutraceuticals [6].
During the late 1980s, a shift from chemical synthesis in drug discovery from nature to the
laboratory bench occurred, resulting in the discovery of approximately 50% natural drugs
from 1981 to 2010 [7]. One of them was prodigiosin, an antimicrobial pigment produced by
the marine bacterium Vibrio ruber, which induces autolytic activity in the Bacillus subtilis.
Similarly, lantibiotics from Gram-positive bacteria were bioengineered to increase their
effectiveness against a wide range of bacterial strains and to improve their stability while
transmitting through the gastrointestinal (GI) tract making them protease-resistant [8].

Biofilms formed by bacteria are ubiquitous and are a part of their survival mecha-
nisms. Biofilms have been involved in many clinical infections, such as atherosclerosis,
pharyngitis, laryngitis, pertussis, bacterial vaginosis, etc. [9]. Although many bacterial
strains are responsible for causing infections and diseases, bacterial antimicrobial com-
pounds are reported as antifungal, antiviral, etc. We briefly highlighted the bacteriocins
from lactic acid bacteria (LAB) which can disrupt the cell membrane integrity or inhibit
cell wall synthesis, protein, and nucleic acid synthesis in pathogens. A recent study by
Ting et al. [10] updated the epidemiology of the infectious keratitis (IK), the leading cause
of corneal blindness; its causative microorganisms including bacteria, virus, fungi, para-
sites, and polymicrobial infections are major risk factors associated with the treatment of
IK. Antimicrobial compounds such as vinaceuline, bafilomycin, antimycin, and other anti-
methicillin-resistant S. aureus (MRSA) compounds synthesized by Streptomyces spp., which
act antagonistically against different microbial strains are discussed in the present review.
The current review also focuses on the halocins and sulfolobicin reported from archaea in a
later section. Furthermore, the antimicrobials reported from endophytic, filamentous and
marine-derived fungi along with mushrooms and microalgae are summarized. Microalgae
act as a potential source of antimicrobial substances due to the synthesis of indoles, aceto-
genins, terpenes, phenols, and volatile halogenated hydrocarbons, which are also discussed.
Hence, this review documents the potential antimicrobial compounds discovered from all
possible microbial resources, including microorganisms inhabiting extreme habitats.
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2. Bacteria

Bacterial antimicrobial compounds have been used traditionally for numerous reasons,
including delaying the spoilage of food material or crops by plant pathogens in agriculture, and
extending the shelf life of products in the food industry [12]. Compared to terrestrial bacteria,
marine bacteria have many unique secondary metabolites due to their more complex and
biologically competitive environment and their unique pressure, temperature, salinity, oxygen,
light, and pH conditions. These factors make them a rich source of effective antibiotics.

Many researchers have isolated and identified various antimicrobial compounds from
marine bacteria against drug-resistant pathogens [13]. Marinomonas mediterranea, a marine
bacterium isolated from the Mediterranean Sea at the Murcia coast has antagonistic activity
against Pseudomonas sp. and S. aureus resistance to ceftazidime and meticillin antibiotics,
respectively [14]. Ayuningrum et al. [15] isolated isatin from the marine bacterium Pseu-
doalteromonas rubra TKJD 22 associated with a marine tunicate, which has antibacterial
activity against MDR pathogens including MDR E. coli, B. cereus, Micrococcus luteus, and
B. megaterium. Ieodoglucomide and ieodoglycolipid isolated from the ethyl acetate ex-
tract of a marine-derived Bacillus licheniformis bears antifungal activity against the plant
pathogens Colletotrichum acutatum and Botrytis cinerea, along with the human pathogen
Candid albicans [16]. Similarly, janthinopolyenemycin A and B polyketides were isolated
from the proteobacterium Janthinobacterium spp., strains ZZ145 and ZZ148, respectively, by
Anjum et al. [17], who found that they hinder the growth of C. albicans. Schulze et al. [18]
utilized a genome-assisted discovery strategy to isolate three macrolactams, lobosamides
A, B, and C from Micromonospora sp. RL09-050-HVF-A. Among them, lobosamides A
and B have antagonist activity against the microbial agent of African trypanosomiasis i.e.,
Trypanosoma brucei, whereas, lobosamide C has no bioactivity. Zhang et al. [19] reported
Streptoseomycin, a macrolactone from the Streptomyces seoulensis A01, having specific
activity against microaerophilic bacteria Helicobacter pylori. Bacicyclin, a cyclic peptide,
was isolated from a Bacillus sp. strain BC028 associated with mussel (Mytilus edulis), it
was found that it inhibits the growth of Enterococcus faecalis and S. aureus with minimal
inhibitory concentration (MIC) values of 8 and 12 µM, respectively. In addition, it is used
to design analogs with increased antibiotic efficacy [20].

Bacillus strains from both marine and terrestrial environments are widely known
to produce extensive biocontrol metabolites, which include the ribosomally synthesized
antimicrobial peptides (bacteriocins) [21], as well as non-ribosomally synthesized peptides
(NRPs) and polyketides (PKs) [22].

2.1. Ribosomally Synthesized Antimicrobial Peptides (Bacteriocins) and Bacteriocin-Like Inhibitory
Substances (BLIS)

Bacteriocins are antimicrobial ribosomal peptides reported from all major lineages of
bacteria and some members of archaea. Gram-negative intestinal bacteria Escherichia coli
produces bacteriocidal proteins, colicins, larger than 20 kDa which are antagonistic against
zoonotic strains and might establish a defence line against multidrug-resistant strains. [23].
Bacteriocins have attracted increasing attention because of their use as a food preservative
and therapeutic antibiotic. Furthermore, they have also received attention because they
have a rapid-acting mechanism by forming pores in the membrane of target bacterial cells,
even at very low concentrations (Figure 2). The recently reported bacteriocins along with
their characteristics are presented in Table 1.

Hoyt et al. [24] isolated the first marine bacteriocin from Vibrio harveyi after screening
795 strains of Vibrio sp. from Galveston Island (Texas, USA). This laid the foundation for
multiple studies focused on the identification and biochemical characterization of new
bacteriocins and bacteriocin-like compounds. Genera of marine bacteria producing bacte-
riocins include Aeromonas, Bacillus, Burkholderia, Lactococcus, Pseudomonas, Photobacterium,
Pediococcus, Enterococcus, Stenotrophomonas, Carnobacterium, Pseudoalteromonas, Streptomyces,
etc. The major difference between marine and terrestrial bacteriocins is that marine bacteri-
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ocins are resistant to high and low temperatures, osmotic stress, and various proteolytic
enzymes and organic solvents, whereas terrestrial bacteriocins are not [25].

Bacteriocins from lactic acid bacteria (LAB) have gained significant attention due to
their food-grade quality and industrial significance. LAB are live microorganisms which
when administered in acceptable quantities in a host, trigger a health benefit by promoting
and sustaining a strong immune system. Thus, LAB benefits consumers nutritionally and
acts as an immunity booster against diseases and infections. LAB and its by-products are
generally regarded as safe (GRAS) as a human food component by the U.S. Food and Drug
Administration (FDA). Hence it is safer to use LAB bacteriocin to constrain the growth
of pathogenic/undesirable bacteria [26]. Lozo et al. [27] isolated the bacteria Lactobacillus
paracasei from customarily homemade white-pickled cheese and reported that it produces
bacteriocin 217 (Bac217), exhibiting antimicrobial activity against P. aeruginosa, Bacillus
cereus, Salmonella sp., and S. aureus.

A study by Drissi et al. [28] suggests that bacteriocins are widespread across the hu-
man GI tract, with 317 microbial genomes encoding maximum bacteriocins of class I (44%)
as compared to classes II (38.6%) and III (17.3%). Furthermore, they elaborated the bacteri-
ocins produced by gut microbiota, i.e., class I bacteriocins display low antimicrobial activity,
whereas maximum class II bacteriocins were reported from bacteria not occurring in the
gut. Similarly, Leite et al. [29] described BLIS produced by B. cereus LFB-FIOCRUZ 1640
with activity against Listeria monocytoges and other Bacillus sp. in pineapple pulp and found
that it can be used as a potential food bio preservative. Recently, Pircalabioru et al. [30]
comprehensively reviewed bacteriocins’ potential as an antimicrobial agent against infec-
tions mainly due to resistant pathogens i.e., MRSA. In contrast, Jawan et al. [31] suggest
that BLIS from L. lactis Gh1 inhibits the growth of L. monocytogenes and can be used in
the food industry as functional foods for the preparation of starter culture and probiotic
products. In addition, BLIS from B. subtilis BSC35 inhibits Clostridium perfringens; therefore,
it can be used to control C. perfringens in fermented foods [32].

Table 1. List of recently reported Bacteriocins.

Type Characteristics Example Producer Mode of Action References

Bacteriocin
type I

Lantibiotics, very small (<5 kDa)
peptides containing lanthionine and

β-methyllanthionine

Nisin Z and Q,
Enterocin W

Nukacin ISK-1

Lactococcus
lactis

Membrane
permeabilization

forming pore
[33]

Bacteriocin
type II

Small (<10 kDa), non-lanthionine-
containing peptides

IIa

heat-stable peptides
synthesized as a
precursor and

processed after two
glycine residues,
antilisterial, bear

consensus sequence
YGNGV-C at the

N-terminal

Enterocin
NKR-5-3C,

Enterocin A,
Leucocin A,
Munditicin

Pediococcus
pentosaceus,

P. Acidilactici
and L. sakei

Membrane
permeabilization

forming pore
[34]

IIb

Two-component
systems: two different

peptides work
together and generate

an active poration
complex

Lactococcin Q,
Enterocin

NKR-5-3AZ,
Enterocin X

L. lactis sub sp.
cremoris,

L. plantarum

Membrane
permeabilization

forming pore
[30,35]

IIc

N- and C- termini are
covalently linked,

generating a circular
bacteriocin

Lactocyclicin Q,
Leucocyclicin Q

L. gasseri,
Enterococ-
cusfaecalis,
L. garvieae

Membrane
permeabilization

forming pore
[36]
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Table 1. Cont.

Type Characteristics Example Producer Mode of Action References

IId

Other class II
bacteriocins,

including unmodified,
sec-dependent

bacteriocins and
leaderless,

non-pediocin-like
bacteriocins

Lacticin Q and Z,
Weissellicin Y and
M, Leucocin Q and
N, Bactofencin A,

LsbB

L. salivarius, L.
lactis

Sub sp. Lactis
[30,37]

Bacteriocin
type III Large peptides, sensitive to heat

L. crispatus, L.
helveticus,
E. faecalis

[38]

IIIa 27 kDa, heat-labile
protein

Lysostaphin and
enterolysin A

S. simulans
biovar

Staphylolyti-
cus,

Enterococcus
faecalis

Cell-wall degradation [39]

IIIb Helveticin J Lactobacillus
helveticus

Disrupt membrane
potential, which

causes ATP efflux
[40]

Unfortunately, many factors cause a reduction in BLIS antimicrobial activity affecting
the efficacy of bacteriocins. Such factors include the advent of bacteriocin-resistant strains,
conditions that are destabilizing its biological activities such as oxidation processes, poor
solubility, proteases or inactivation by other additives, and pH or temperature. Therefore,
it is necessary to develop an antimicrobial system that minimizes these drawbacks and
maximizes bacteriocins’ bioprotective potential.

Nisin belongs to type I bacteriocin and is the first antimicrobial peptide from Lac-
tococcus and Streptococcus sp., it has been regarded as GRAS by both the FDA and the
WHO [41]. Nisin has been used to inhibit microbial growth in beef, ground beef, sausages,
liquid whole eggs, and poultry. It was reported that when nisin was crosslinked to chi-
tosan, minimum inhibitory concentration (MIC) decreased from 48 µg/mL to 40 µg/mL
for Staphylococcus aureus ATCC6538. The antimicrobial activity of nisin increased after
crosslinking with a lesser concentration of chitosan i.e., the ratio of 200:1, thereby allowing
better penetration into the lipid membrane [42]. The antibacterial constancy of nisin was
successfully enhanced after its conjugation with gellan. Therefore, this conjugate can be
an encouraging biomaterial for wound dressings and transplant coatings [43]. A study
revealed the proficiency of nisin in combination with polymyxin in combating P. aeruginosa
biofilms and reducing the dose of polymyxin required to interrupt P. aeruginosa biofilms [44].
Polymyxin might facilitate the transfer of nisin to its target. Along with nisin’s synergistic
action with polymyxin and clarithromycin against P. aeruginosa and other non–β-lactam
antibiotics against MRSA [45] and strains of vancomycin-resistant enterococci [46] were
also reported. Webber et al. [47] embedded 0.89 µg cm−2 of positively charged nisin
Z within polyelectrolyte multilayers (PEMs) i.e., nine layers of carrageenan (CAR) and
chitosan (CS), forming a 4.5 bilayer film with antimicrobial activity against S. aureus and
MRSA. Therefore, the antimicrobial potential of CAR/CS multilayers helps to realize its
applicability within food, pharmaceutical, and biomedical industries [47]. Although nisin
has a broad range of biomedical applications and is used in food bio preservation, further
justification of nisin’s practicality and evaluation of its efficacy in biomedical fields will
require in vivo and in vitro studies.

The mechanism of action of bacteriocins depends on the bacteriocin receptor molecules
used. All bacteriocins from the same class do not follow a similar mode of action. Bacteri-
ocins might utilize the same receptors but their mode of interaction with these receptor
molecules and the aftereffect on the target cell could be quite different. For example, as
described by Kjos et al. [48], bacteriocins lactococcin A and lactococcin Z share 55.6%
similarity in the N-terminal region, both use IIC and IID components of mannose phospho-
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transferase system (man-PTS) as receptor molecules on target cells. As depicted in Figure 2,
lactococcin A results in pore formation and dissipates the cell membrane potential, whereas
lactococcin Z kills target cells without following any of these mechanisms. Lozo et al. [49]
comprehensively represented the bacteriocins classification-based receptor molecules in
target cells according to structural similarity within the same receptor molecule.
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Figure 2. Mode of action of bacteriocins. Inhibition of cell wall synthesis: class II bacteriocins
(e.g., lactococcin) cross the cell wall and bind with the pore-forming receptor in the mannose-
phosphotransferase (man-PTS), resulting in the pore formation in the cell membrane. Pore formation:
class I bacteriocins, (e.g., nisin) can follow both mechanisms. Nisin generated pores in the cell
membrane resulting in the efflux of ions (K+ and Mg2+), amino acids (glutamic acid, lysin), generating
proton motive force dissipation and ultimately causes cell death. Adapted from: [50,51].

Class I bacteriocins are cationic lantibiotics (e.g., nisin) that electrostatically bind
with the negatively charged membrane phospholipids II, allowing further interaction of
bacteriocin′s hydrophobic domain with the target cytoplasmic membrane (lipid II), thereby
preventing the biosynthesis of peptidoglycan [30,52]. Similarly, class III bacteriocins, en-
terolysin A with N-terminal endopeptidase domain and a C-terminal substrate recognition
domain, exhibit antimicrobial activity against streptococci by cleaving the peptidoglycan
cross-links between l-alanine and d-glutamic acid of the stem peptide and between l-lysine
of the stem peptide and d-aspartic acid of the interpeptide bridge of the target cell [53].

2.2. Non-Ribosomal Synthesized Peptides (NRPs) and Polyketides (PKs)

NRPs and PKs include a range of cyclic, linear, and branched compounds, synthesized
by composite enzymes viz. non-ribosomal peptide synthetases (NRPS), polyketide syn-
thetases (PKS), and hybrid of NRPS/PKS, respectively [22,54]. Lipopeptides (LPs) are NRPs
produced by Bacillales; LPs have significant antimicrobial activity [55]. LAB is considered
the primary producer of ribosomally synthesized antimicrobial peptides, as reviewed by
Alvarez-Sieiro et al. [53] and Pircalabioru et al. [30]. However, the classification scheme
for antimicrobial compounds produced by Bacillus is not explored in comparison to LAB.
Caulier et al. [22] reviewed and updated the antimicrobial metabolites classification from
the B. subtilis group based on biosynthetic pathway and chemical nature. Zhao et al. [21]
acknowledged 31 types of PKs, NRPs, and NRPS/PKS hybrid synthesized antimicrobials
using antiSMASH.

2.3. Lipopeptides (LPs)

LPs occur naturally and are of bacterial origin, contain a hydrophobic long alkyl chain
that associates with a hydrophilic polypeptide, and they form a cyclic or linear structure.
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Traditional LPs including the iturins, surfactins, and fengycins (Table 2) produced from
Bacillus species are homologs that differ in length, branching pattern, and saturation of their
acyl chain. LPs comprise anionic (e.g., surfactin and daptomycin) or cationic (e.g., colistin
and polymixin B) peptide motif, dictating the range of their activity. As demonstrated
by Perez et al. [56] Bacillus sp. P5 synthesize LPs iturin A, bacteriocin subtilosin A, and
surfactin exhibiting antimicrobial activity against L. monocytogenes and B. cereus, along
with the antifungal activity. A study by Kourmentza et al. [57] reported that a mixture
of mycosubtilin and mycosubtilin/surfactin LPs inhibit the growth of filamentous fungi
Byssochlamys fulva and Paecilomyces variotti, with MICs of 1–16 mg/L and Candida krusei
with MIC of 16–64 mg/L.

Table 2. Various types of LPs and their characteristics.

Type Characteristic
Features

Molecular
Weight Chemical Structure Producer Applicability References

Surfactin

Cyclic
heptapeptide is

an antibiotic
with seven

amino acids i.e.,
Glu-Leu-Leu-

Val-Asp-
LeuLeu

(ELLVDLL).
A, B, and C

types varying
according to
their amino

acid sequences.

~1.03 kDa
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Cyclic heptapep-

tide is an antibi-

otic with seven 

amino acids i.e., 

Glu-Leu-Leu-

Val-Asp-LeuLeu 

(ELLVDLL). 

A, B, and C types 

varying accord-

ing to their 

amino acid se-

quences. 

~1.03 kDa 

 

B. subtilis MSH1 

and B. amyloliq-

uefaciens ES-2 

Antimicrobial, an-

tifungal, insecti-

cidal, antimyco-

plasma, hemoly-

sis, and formation 

of ion channels in 

lipid membranes. 

[58] 

B. subtilis
MSH1 and B.
amyloliquefa-

ciens
ES-2

Antimicrobial,
antifungal,
insecticidal,

antimy-
coplasma,
hemolysis,

and
formation of
ion channels

in lipid
membranes.

[58]

Iturin

Contains two
major parts: a
peptide part

composed of 7
amino acid

residues (Asn-
Tyr-Asn-Gln-
Pro-Asn-Ser)

and 11-12
carbons

hydrophobic
tail. Example

Iturin A,
Bacillomycin D,
Bacillomycin L,
Mycosubtilin

~1.04 kDa
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Surfactins, a cyclic heptapeptide that formulates a lactone bridge with β-hydroxy
fatty acids, are the most potent biosurfactant. They display an array of activities including
hemolytic, antiviral, anti-mycoplasma, and antibacterial [61]. Surfactin WH1 fungin from
Bacillus amyloliquefaciens WH1 is an antifungal inhibiting glucan synthase that reduces
the synthesis of callose on the fungal cell wall and binds to ATPase on the mitochondrial
membrane, ultimately inducing apoptotic markers to stimulate the extracellular apoptotic
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pathway [62]. Many researchers claim that after inserting into the lipid bilayers, sur-
factin acts by forming voltage-independent channels in biofilms, distorting the membrane
integrity and permeability of ions, i.e., K+ and Ca2+, causing membrane disruption [63].

Iturins are comprised of A, C, D, and E isoforms, bacillomycin D, F and L, and
mycosubtilin that inhibit bacterial growth in the same manner as class I and class II bacteri-
ocins [64]. A marine-derived Bacillus velezensis 11-5 produced a cyclic lipopeptide (CLP)
iturin A, which is considered an antagonist against Magnaporthe oryzae, a rice pathogen [65].
Fengycin, an anti-fungal lipopeptide, isolated from Bacillus sp. is also called plipastatin.
Both iturins and fengycins act as biocontrol agents preventing plant diseases and inhibiting
the progression of a wide variety of plant fungal pathogens including Aspergillus flavus,
Rhizoctonia solani, Fusarium graminearum, Botritis cinerea, and Penicillium expansum [66].
However, there is no doubt that LPs are a novel class of antibiotics exhibiting a wide range
of activities. Therefore, detailed structural and functional knowledge is required to exploit
them as potent antimicrobials, feed additives, and drug delivery systems.

3. Actinomycetes

Approximately 75% of the known industrial antibiotics and economically important
compounds were obtained from the Streptomyces species [67]. Actinomycetes can synthe-
size antifungal, antiviral, antitumor, anti-inflammatory, antioxidants, immunosuppressive,
plant-growth-promoting, and herbicidal compounds [68]. Among actinomycetes, Strep-
tomyces is the most dominant because of a broad range of bioactive metabolites. Genus
Streptomyces is classified into the family Streptomycetaceae based on its morphology and
cell wall chemotype. Streptomyces spp. have filamentous hyphae, allowing them to ef-
ficiently utilize nutrients in the rhizosphere, enabling them to colonize and carry out
a complex life cycle. Streptomyces spp. catabolizes complex molecules and substances,
such as cellulose, lignocellulose, xylan, lignin, etc. to produce well-known bioactive com-
pounds. The genus Streptomyces alone contributes approximately 7500 of the 10,000 known
compounds from actinomycetes, whereas the other genera including Actinomadura, Mi-
cromonospora, Nocardia, Saccharopolyspora, Actinoplanes and Streptosporangium contribute
approximately 2500 compounds [69]. Marine or terrestrial actinomycetes utilize enzymes
polyketide synthases (PKS) or non-ribosomal peptide synthetases (NRPS) for the synthesis
of metabolic bioactive compounds [70].

Pacios et al. [71] reviewed the importance of the Streptomyces genus as a prodigious
producer of bioactive metabolites that act as a biological control against phytopathogenic
bacteria. Widowati et al. [72] reported a new strain of marine actinomycetes, NPS12745
associated with marine sediment from the coast of San Diego, California, and after using
16S rRNA gene sequencing, NPS12745 was confirmed to be a fruitful strain of genus Marin-
ispora, which produced ample new chlorinated bisindole pyrroles and their derivatives,
including chromopyrrolic acid, which was earlier isolated from Chromobacterium violaceum.
The first halogenated bisindole derivative was lynamicins A–E, having activity against
several Gram-positive and Gram-negative bacteria, i.e., MSSA (methicillin-susceptible
Staphylococcus aureus), MRSA, S. epidermidis, and Enterococcus faecalis, signifying a possible
cure for nosocomial infections [73]. Siddharth and Vittal [69] isolated Streptomyces sp.
S2A from the Gulf of Mannar, which have antagonistic activity against bacterial (Micro-
coccus luteus, S. epidermidis, Klebsiella pneumoniae, Bacillus cereus, and S. aureus) and fungal
(Fusarium moniliforme and Bipolaris maydis) pathogens. A unique prenylated-indole deriva-
tive known as 3-acetonylidene-7-prenylindolin-2-one, hybrid isoprenoids, 3-cyanomethyl-
6-prenylindole, 7-isoprenylindole-3-carboxylic acid, and 6-isoprenylindole-3-carboxylic
acid were extracted from the Streptomyces sp. neau-D50. These antifungal compounds
prevent the growth of phytopathogenic fungi Corynespora cassiicola, Phytophthora capsica,
Colletotrichum orbiculare, and Fusarium oxysporum [74]. Djinni et al. [75] described Strepto-
myces sundarbansensis WR1L1S8, an endophyte sequestered from brown algae, yields an
innovative anti-MRSA compound, [2-hydroxy-5-((6-hydroxy-4-oxo-4H-pyran-2-yl)methyl)-
2-ropylchroman-4-one] beside three already reported polyketides, namely phaeochromycin
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B, C, and E, which are active against Gram-positive pathogenic MRSA. Sebak et al. [76]
isolated Streptomyces sp. MS. 10 from Egyptian soil and reported the presence of saturated
fatty acid through 1H NMR spectroscopy, which bears broad-spectrum antimicrobial activ-
ity against MRSA. Recently, Qureshi et al. [77] identified compounds, Actinomycin X2 and
D, from Streptomyces smyrnaeus UKAQ_23 collected from the mangrove-sediment, with
MIC of 1.56–12.5 µg/mL for non-MRSA and 3.125–12.5 µg/mL for MRSA, respectively.

Yang et al. [78] isolate vinaceuline, a cyclopeptide, activity against bacteria, from the
broth culture of endophytic Streptomyces sp. YIM64018 allied with Paraboea sinensis. The
same team isolated a new benzamide, 2-amino-3, 4-dihydroxy-5-methoxybenzamide in
2015, from Streptomyces YIM67086 that attacks E. coli and Candida albicans (MICs of 64 and
32 µg/mL, respectively). Ding et al. [79] reported that 7, 3’-di-(c,c dimethylallyloxy)-5-
hydroxy-40-methoxyflavone, an antifungal compound, from the broth culture of Strepto-
myces sp. MA-12 obstructs the growth of plant pathogens Penicillium citrinum, Gibberella
zeae, and Colletotrichum musae.

Lee et al. [80] isolated 87 actinomycetes species including Streptomyces pluripotens
MUSC135T, that inhibit MRSA. This antibacterial metabolite-producing ability was con-
firmed by PKS (polyketide synthetase) and NRPS (non-ribosomal polyketide synthetase)
gene detection process. Streptomyces sp. colonizing on root tissues produce ample an-
tifungal and antibacterial compounds i.e., antimycin A18, phaeochromycin B, C and E,
diastaphenazine, 3-acetonylidene-7-prenylindolin-2-one, and staurosporine, some of which
are represented in Table 3. Similarly, Jaroszewicz et al. [81] isolated Streptomyces sp. M4_24
and M5_8 strains and identified the presence of dichloranthrabenzoxocinone and 4,10- or
10,12-dichloro-3-O-methylanthrabenzoxocinone, which are putative antimicrobial com-
pounds. A newly discovered lipopeptide NRPS/PKS-derived colibrimycins, from Strep-
tomyces sp. CS147, isolated from Attini ant niche displayed antagonism against virus
protease [82]. An endophytic actinomycetes, VITGV01, isolated from a farm tomato plant
produced different antibiotics on different media which were active against Gram-positive
and Gram-negative bacteria including B. subtilis, S. aureus, E. coli, and Klebsiella pneumo-
niae [83]. The unique properties of rhizospheric actinomycetes which allow them to produce
a diverse range of bioactive metabolites with antagonistic outcomes toward pathogens
have led them to be a potent agent ensuring plant health.

Cycloserin, an antibiotic produced by Streptomyces orchidaceus, blocks protein syn-
thesis and is used to treat tuberculosis in conjunction with other drugs [84]. Robertsen
and Musiol-Kroll [85] reviewed the actinomycetes-derived polyketide drugs, such as ery-
thromycin A, tetracyclines, rifamycin, tylosin, monensin A, amphotericin B, etc. with
antimicrobial activity, including the source of the compounds, their structure, the biosyn-
thetic mechanisms, and mode of action. However, the increasing rate of MDR requires the
rediscovery of compounds from potential producers. However, many organisms require
special cultivation conditions, therefore, many strategies need to be developed in order to
overcome such barriers. Hug et al. [86] described the strategies and innovative methods
such as advanced cultivation methods, genomics, metabolomics, and metagenomics-based
approaches used to explore the new reservoir of actinomycetes and improve the efficacy of
antimicrobial compounds. Hence, it was concluded that Streptomyces spp. can be used as a
promising candidate with the potential to be scaled up for industrial production, which
could benefit both the agricultural and pharmaceutical industry.
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Table 3. Bioactive compounds from endophytic actinomycetes.

Endophytic
Actinomycetes Host Bioactive

Compounds Structure Bioactivity References

Streptomyces sp.
YIM64018 Paraboea sinensis Vinaceuline - Antibacterial activity [87]

Streptomyces sp.
neau-D50 Glycine max

3-acetonylidene-7-
prenylindolin-2-one,
7-isoprenylindole-3-

carboxylic
acid
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4. Archaea

Archaeocins, is a proteinaceous antibiotic produced from archaea which mark the
chronicled beginning in the series of antimicrobial compounds. The term “archaeocin”
was used to differentiate the archaeal peptide and protein-based antibiotics from those
produced by bacteria [95]. Only two phylogenetic groups have produced archaeocins
(Table 4); one is euryarchaeal producing “halocins”, whereas the other group is crenar-
chaeal genus Sulfolobus producing “sulfolobicin” [96]. Valera et al. [97] reported halocins,
the first proteinaceous antimicrobial compound from halophilic members of the archaeal
domain. Archaeal protein VLL-28, from Sulfolobus islandicus, is the first archaeal antimi-
crobial peptide, possessing a broad-spectrum antibacterial and antifungal activity [98].
Until recently, very few reports were available on the characterization of antimicrobial
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compounds from archaea. Besse et al. [99] comprehensively reviewed the archaeocins and
sulfolobicins antimicrobial peptides ribosomally-synthesized by archaea belonging to the
order Halobacteriales and Sulfolobales, respectively. However, until recently halocin A4,
G1, R1, H1 [100]; H2 [37]; H3, H5 [97]; H4 [101]; H6 [102]; C8 [103]; S8 [104]; HalR1 [105];
and Sech7a [106] have been considered up to their molecular level, however, their mode
of action is not yet clearly understood [107]. Only some workers reported that halocins
kill the indicator organisms by altering the cell permeability at membrane level followed
by cell lysis. However, to date, only the mode of action mechanism of halocin H6/H7
produced by Haloferax gibbonsii was characterized. HalH6 specifically inhibits Na+/H+

antiporter and proton flux ultimately causing cell lysis and death [108].
H1 and H4 are proteinaceous halocins of roughly 30–40 kDa [109], whereas C8, H6, H7, R1,

U1, and S8 are microhalocins which are smaller than 10kDa. Microhalocins are more vigorous
than proteinaceous halocins since they are resistant to varying temperature, salinity, exposure to
organic solvents, acids, and bases [109]. Halocins have wide-ranging activity against haloarchaea
and members of the family Halobacteriaceae [110]. Mainly halocin production is prompted
during the progression between exponential and stationary phases, with H1 being an exception,
produced during the exponential phase of the growth cycle [111]. Recently, Sahli et al. [112]
screened 81 halophilic strains collected from solar salterns of Algeria’s northern coast for the
production of antimicrobial compounds, through partial 16S rRNA gene sequencing, these strains
were recognized to belong to the Haloferax (Hfx) sp.

Table 4. Archaeocins reported from halobacteria.

Halocin Producers Size
(kDa) Origin Active Against Mode of Action References

HalH1 Haloferax mediterranei
Xia3 31 Solar salterns,

Alicante, Spain
Members of the
Halobacteriales

Alter membrane
permeability [99]

HalH4 Hfx. mediterranei R4 34.9 Solar salterns,
Tunisia

Members of the
Halobacteriales,

Strains of Sulfolobus
sp.

Alter macromolecular
synthesis, cell wall
conformation, and
Na+/H+ antiport

inhibitor

[113]

HalH6 Hfx. gibbonsii Ma2.39 32 Solar salterns,
Alicante, Spain

Members of the
Halobacteriales

Alter intracellular
osmotic balance,

Na+/H+ antiport
inhibitor

[99]

HalS8
Haloarchaeal strain
S8a, Halobacterium

salinarum strain ETD5
3.58

Great Salt Lake,
(Utah, United

States)

Halobacterium
salinarum NRC817,
Hbt. sp. strain GRB
and Hfx. gibbonsii

ND [104,114]

HalC8 Natrinema sp. AS7092 7.4
Chaidan Salt

Lake in Qinghai
province, China

ND [111,115]

HalR1 Hbt. salinarum GN101 3.8 Guerrero
Negro, Mexico

Members of the
Halobacteriales,

Strains of Sulfolobus
sp.,

Methanosarcina
thermophile

ND [37,99]

Sulfolobicins Sulfolobus
Islandicus HEN2/2

33.9 pro-
protein),

3.6
(mature)

Solfataric fields,
Iceland

Strains of Sulfolobus
sp. ND [116]

Note: ND: Note Detected or Not Reported.

Roscetto et al. [117] reported that VLL-28 damages the cell wall of Candida albicans and C.
parapsilosis by binding to their cell surface. Kumar and Tiwari [118] purified halocin HA1 from
Haloferax larsenii HA1 and HA3 from H. larsenii HA3; both were halocidal against H. larsenii
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HA10, instigating cellular distortion, releasing cell contents, and finally causing cell death.
Because of these properties, it can be used for the preservation of leather hides and salted
foods in the leather and food industries. Ghanmi et al. [114] isolated Halobacterium salinarum
ETD5, H. salinarum ETD8, and Haloterrigena thermotolerans SS1R12 of the order Halobacteriales
and reported that their antimicrobial activity is due to the production of a halocin, HalS8, a
hydrophobic peptide. Quadri et al. [119] isolated archeal strain, Natrinema gari, the common
producer of antimicrobial compounds, which after partial purification and characterization
resembles the microhalocin HalC8. Besse et al. [115] confirmed that Natrinema sp. synthesizes
Halocin C8, a 7.4 kDa peptide involving the genes halC8.

Although many studies characterized the synthesis of halocins, the research concern-
ing their structure and mode of action is still far behind in comparison to the antibiotics
produced by other domains. Nowadays, when archaea gain more attention, it becomes
necessary to explore their metabolites’, biosynthetic pathways, mode of action, etc., using
the latest available technology.

5. Fungi

In 1929, Alexander Fleming discovered the mold juice ‘Penicillin’ from Penicillium no-
tatum fungus with an antibacterial activity [120]. Afterwards, several researchers started to
search for a better strain to attain higher yields in easier growth conditions. After extensive
research, Penicillium chrysogenum strains were considered for the commercial production
of penicillin [121]. Revilla reported in 1986 the formation of the intermediate isopenicillin
N in the course of penicillin G production in P. chrysogenum cultures [122], thereafter the
formation of isopenicillin N/penicillin N and its late transformation to cephalosporin C
in Acremonium chrysogenum [123]. Cephalosporins, a known antimicrobial agent, were
purified from a marine fungus, Cephalosporium acremonium [124]. Recently, Li et al. [125] re-
ported that pneumocandins, a lipohexapeptides of the echinocandin family, were produced
by wild-type fungi Glarea lozoyensis and Pezicula (Cryptosporiopsis) species. Pneumocandins
non-competitively bind to a catalytic unit of β-1,3-glucan synthase, resulting in osmotic
uncertainty and cell lysis.

5.1. Endophytic Fungi

Huang et al. [126] discovered ten-membered lactones from endophytic fungus Phomop-
sis sp. YM 311483, with antifungal activity against Aspergillus niger, Fusarium, and Botrytis
cinere. Endophytic Fusarium sp. from Selaginella pollescens collected from the Guanacaste
conservation area of Costa Rica inhibit C. albicans [127]. The number of antimicrobial
compounds were reported from the endophytic fungi, some of which are listed in Table 5.

Table 5. Antimicrobial compounds extracted from endophytic fungi.

Compound Chemical
Structure Producer Active Against Host References

e 1, 4-
naphthoquinone

derivatives
- Talaromyces sp.

SK-S009 Pseudomonas sp. Kandelia obovata [128]

Clavatol
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of China, roots of
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[132]

5.2. Marine-Derived Fungi

In 2015 Meng et al. [133] discovered pyranonigrin F from fungus Penicillium brocae
MA-231 allied with the Avicennia marina, a marine mangrove plant. Pyranonigrin F in-
hibits S. aureus (Gram-positive), Vibrio harveyi, and Vibrio parahemolyticus (Gram-negative
bacteria), with considerably lower MIC values in comparison to the positive control
(chloromycetin). Likewise, it is active against plant fungal pathogens Alternaria brassi-
cae and Colletotrichum gloeosprioides, with improved MIC values compared to the positive
control (bleomycin). Wu et al. [134] discovered Lindgomycin from Lindgomyces strains
LF327 and KF970, reported from a sponge in the Baltic Sea, Germany, and Antarctica,
respectively. Lindgomycin displayed antimicrobial activity against S. aureus, S. epidermidis,
and methicillin-resistant S. epidermidis (MRSE). However, the inhibiting potential was two
times less than the positive control chloramphenicol. It also constrains plant pathogenic
bacterium Xanthomonas campestris. There is a never-ending list of antimicrobial compounds
from marine fungi; a few of which are listed in Table 6, which displays their host, producer
species, and bioactivity.

Table 6. Antimicrobial compounds extracted from marine fungi.
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fungus) with a MIC of 4.0 µg/mL and 32.0 µg/mL, respectively [138]. Communol A,
G, and F extracted from P. commune 518 displayed antibacterial activities against E. coli
with MIC values of 4.1, 23.8, and 6.4µM, respectively, and also against E. aerogenes [136].
Pyrrospirones were produced by marine-derived fungus Penicillium sp. ZZ380, isolated
from Pachygrapsus crassipes which is a wild crab found on the seaside rocks of Putuo
Mountain (Zhoushan, China). Pyrrospirones C-F, H, and I inhibit MRSA and E. coli
having MIC values of 2.0–19.0 µg/mL [155]. Song et al. [156], following the previous lead,
separated penicipyrrodiether A from a cultured marine fungal strain Penicillium sp. ZZ380
which inhibits E. coli and S. aureus with MIC of 34.0 and 5.0 µg/mL, respectively. These
laboratory studies need to be directed toward developing the efficiency and effectiveness
of isolated compounds that could benefit society in the long-term.

5.3. Mushrooms

Mushrooms are colonizing fungi belonging to division Eumycota and subdivision
Basidiomycetes, characterized by the formation of basidiospores. Most of these macrofungi
are edible, with culinary, nutritional, and medicinal characteristics, but many of them are
not palatable or are poisonous [157]. Besides the nutritional and culinary properties, their
antimicrobial activities attracted researchers seeking natural solutions to deal with the ur-
gent requirements of food safety. Mushrooms have been publicly consumed for thousands
of years due to their medicinal and nutritional properties. Secondary metabolites and
extracts from mushrooms have recently attained considerable attention due to their anti-
cancer, antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and immunomodulatory
properties. Approximately 1069 mushroom species have been consumed by people [158].
To date, numerous antimicrobial peptides have been acknowledged from mushrooms.
Plectasin (endogenous peptide antibiotics), an antibacterial peptide, was extracted from
Pseudoplectania nigrella. Mygind et al. [159] demonstrated the potent activity of recombinant
plectasin against some Gram-positive Streptococcus pneumoniae. Wong et al. [160] described
an antifungal peptide, cordymin isolated from medicinal mushroom Cordyceps militaris,
which repressed mycelial growth of Bipolaris maydis, Mycosphaerella arachidicola, Candida
albicans, and Rhizoctonia solani with IC50 values of 50 µM, 10 µM, 0.75 mM, and 80 µM,
respectively. They also reported the remarkable pH stability (pH 6–13), thermostability
(100 ◦C), and metal ion stability (10 mM Mg2+ and 10 mM Zn2+) of cordymin. An inves-
tigation by Gebreyohannes et al. [161] revealed that chloroform, ethanol, and hot water
extract of Auricularia and Termitomyces sp. promisingly inhibited E. coli, K. pneumoniae,
C. parapsilosis, and S. aureus. Poompouang and Suksomtip, [162] isolated an antifungal com-
pound of 17 kDa from fruiting bodies of edible mushroom, Lentinus squarrosulus, inhibiting
Trichophyton mentagrophytes and T. rubrum, a human fungal pathogen. More recently, Irshad
et al. [163] comprehensively reviewed the synthesis and mode of action of polysaccha-
rides silver nanoparticles (NPs) from Pleurotus mushroom. They characterized the NPs
through ultraviolet-visible (UV–Vis), Fourier transformation infrared spectroscopy (FT-IR),
scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission
electron microscopy (TEM), etc., and disclosed their promising antimicrobial efficiency.
However, further studies are required in order to fortify and test these extracts and NPs
against human and plant pathogenic microorganisms coupled with the purification and
characterization of the compounds from mushrooms.

Hamamoto et al. [164] screened the volatile compound, 3,4-dichloro-4-methoxy ben-
zaldehyde (DCMB) from mycelia of Porostereum spadiceum. It remarkably inhibited the
plant-pathogenic bacteria (Clavibacter michiganensis and Ralstonia solanacearum) and in-
hibited the conidial germination of plant-pathogenic fungi (Alternaria brassicicola and
Colletotrichum orbiculare). However, further studies are essential to investigate its effects
on plant-pathogens in vivo. Subrata et al. [165] reported that edible wild mushrooms’
methanolic extracts exhibited different levels of antimicrobial activities. A recent study
by Sevindi [166] analysed the phenolic content of the wild edible mushroom Melanoleuca
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melaleuca (Pers.) Murrill had antimicrobial activities inhibiting Gram-negative E. coli,
Pseudomonas aeruginosa, and Acinetobacter baumannii.

5.4. Filamentous Fungi

Yeasts mainly occur in milk, meat, food, and products such as fruit, yogurt, jams,
sausage, and cheeses. Generally, antimicrobial compounds produced from yeasts inhibit
the evolution/growth of pathogenic organisms (bacteria or molds) in food products. Some
classes of yeasts secrete toxins, thereby naming them killer yeasts. Killer yeasts naturally
occur in rotten vegetables and fruits and constrain the growth of other yeast strains and also
inhibit microbial growth [167]. Saccharomyces cerevisiae (baker’s yeast), unicellular yeast,
is the most widely studied microorganisms involved in many biotechnological practices
because of its good fermentation capacity [168]. The inhibitory mechanism of S. cerevisiae
killer strains was discovered in 1963 by Bevan and co-worker’s, and the phenomenon is
related to the secretion of a protein toxin, k1, and k28 from the host that kills sensitive target
pathogenic cells in a receptor-mediated approach without direct cell-to-cell contact [169].
Other genera producing killer toxins include Cryptococcus, Candida, Kluyveromyces, Williopsis,
Pichia, Debaromyces, and Zygosaccharomyces [170]. The anti-bacterial capability of S. cerevisiae
is attributed to:

(a) Secretion of inhibitory proteins,
(b) Production of extracellular protease,
(c) Stimulation of immunoglobulin A,
(d) Procurement and eradication of secreted toxins,
(e) Killer toxins, sulfur dioxide, etc.

Sequential re-pitching of Saccharomyces biomass is a common process during brew-
ing. Therefore, yeast is reused many times before its final dumping [171]. Hence, yeast
develops an adaptive response against oxidative stress like that of human cells, leading
to the accumulation of vitamins (B6 and B12) and minerals (enzyme co-factors including
zinc, manganese, and copper) in the yeast cell. Phenolic compounds are also adsorbed
by Saccharomyces from the exterior medium, which increases the phenolic content and
antioxidant activity within yeast cells [172]. Efficient means are required to disrupt yeast
cell walls and separate the products of interest, which are further used for food applications.
However, increasing consumer’ fears regarding the toxicity of killer yeast strains present
in food and milk products constitutes a direct risk to public health.

6. Microalgae

The antimicrobial activity of microalgae is due to the presence of phytochemicals,
including indoles, acetogenins, terpenes, fatty acids, phenols, and volatile halogenated
hydrocarbons (Table 7) [173]. Moreno et al. [174] reported that Chaetoceros muelleri extracts’
antimicrobial activity is due to their lipid configuration, whereas Dunaliella salina’s is at-
tributed to the presence of β-cyclocitral, α and β-ionone, phytol, and neophytadiene. In
natural environmental conditions, microalgal cells release fatty acids against predators
and pathogenic bacteria. It is elucidated that these fatty acids act on bacterial cell mem-
branes causing cell seepage, a decline in nutrient intake, and reduced cellular respiration,
ultimately resulting in cell death [175].
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Table 7. Selected antimicrobial extracts from microalgae.

Microalgae Target Microorganism Active Extract References

Scenedesmus quadricauda S. aureus and P. aeruginosa Methanolic extract [176]
Tetraselmis sp. E. coli, P. aeruginosa, and S. aureus Ethanolic extract [177]

Phaeodactylum tricornutum Listonella anguillarum, Lactococcus
garvieae, Vibrio spp. and MRSA Eicosapentaenoic acid [175]

C. vulgaris Steinernema feltiae Hydrophilic extracts [178]
Skeletonema costatum Listeria monocytogenes Extra-metabolites

S. costatum Vibrio spp., Pseudomonas sp. and
Listeria monocytogenes

Unsaturated, saturated
long-chain fatty acids [179]

Haematococcus pluvialis E. coli, S. aureus, Candida albicans
Short-chain fatty acids

(butanoic acid and
methyl lactate), Astaxanthin

[180]

Amphidinium sp. A. niger, Trichomonas foetus Karatungiols [181]

Chlamydomonas reinhardtii A. niger, A. fumigatus, C. albicans,
S. aureus and E. coli Methanolic extracts [182]

Chlorellin, the first antibacterial compound from a microalga Chlorella, is composed
of a mixture of fatty acid and was isolated by Pratt et al. [183]. Chlorellin was reported to
inhibit the activity of both Gram-positive and Gram-negative bacteria. Arthrospira platensis,
commercially known as Spirulina had MICs of 0.20% for L. innocua and P. fluorescens, and
an MIC of 0.25% for Serratia, whereas minimal bactericidal concentration (MBC) value was
0.30% for all of these species [184]. HPTLC screening and GC–MS analyses were conducted
to detect and screen the macroalgae’s antimicrobial compounds. Peptides, namely AQ-
1756, AQ-1757, and AQ-1766 identified from Tetraselmis suecica exhibited an antibacterial
activity resulting in decreasing cell viability (human embryonic kidney cells) (HEK293) up
to 75% after 24 h of treatment. AQ-1766 was more active against Gram-positive than Gram-
negative bacteria, with MBC values between 40 and 50 µM [185]. Mendiola et al. [186]
demonstrated that lipid fractions obtained from Chaetoceros muelleri by the supercritical
CO2 method have antibacterial activity against Staphyloccocus aureus and E. coli. In contrast,
extraction via classic methods using hexane, dichloromethane, and methanol solvent did
not result in any activity against E. coli. However, these studies were unable to elaborate
the mode of action of these antibacterial compounds.

Axenic microalgae co-culture can produce compounds with potent activity against
pathogenic bacteria. Kokou et al. [187] reported that axenic cultures of Tetraselmis chui,
Chlorella minutissima, Isochrysis sp. and Nannochloropsis sp. inhibit Vibrio harveyi. The potent
activity of microalgal compounds against microorganisms requires further development
in the search for drugs and food preservatives. Therefore, the exploitation in medicine
deserves to be further investigated.

7. Discussion and Future Prospects

One of the significant challenges healthcare services face worldwide is the excessive
use of antibiotics in medicine and food production, leading to microbiome disruption.
With the outburst of antimicrobial resistance strains, there is a continuous decline in
the antimicrobial drug pipeline, and it has become necessary to discover and develop
new agents/metabolites to tackle antibiotic resistance. Novel compounds that target
microbial resistance can be developed to regulate the huge risk posed by multi-drug
resistance. However, the production cost needs to be reduced by isolating these compounds
from natural sources such as microorganisms and then synthesizing them or modifying
derivative compounds. Along with this, further research into their toxicity against human
cells, their mode of action, in vivo effects, and their interactions with commonly available
antibiotics must be conducted. After the discovery of penicillin, many drug discoveries
from microbial sources were reported. In addition, the advancement of techniques such as
genetic engineering during the 1970s opened the door to the ignored source, i.e., microbial
metabolites [188].
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Ample research is being conducted to search for novel antimicrobial agents from
biological sources, including bacteria, actinomycetes, fungi, yeast, etc. Table 8 depicts
selected commercially available antimicrobial products alongside their uses.

Table 8. List of selected antimicrobial compounds with commercial trade name and uses.

Compounds Brand Name Company Name Country Uses References

Nisin Nisaplin® Danisco Denmark Used as a food preservative [189]
Nisin Novasin™ Danisco Denmark Used as a food preservative [189]
Nisin Delvo®Nis DSM Netherlands Used as a food preservative [190]
Nisin Chrisin® Chris Hansen Denmark Used as a food preservative [190]

Nisin - Duke Thomson’s
International India Used as a food preservative [191]

Nisin - Ecobio Biotech Co.
Ltd. China Used as a food preservative [191]

Delvocid-
Natamycin - Duke Thomson’s

International India Used as a food preservative [191]

Natamycin Delvocid™ DSM Netherlands Used as a food preservative [191]
Daptomycin Cubicin Novartis India Ltd. India Used to treat bacterial infections [192]
Lipopeptides RhizoVital® ABiTEP, GmbH Germany Biological control in agriculture [191]
Lipopeptides Kodiak™ Gustafson Inc. USA Biological control in agriculture [191]
Lipopeptides Taegro® Novozymes USA Biological control in agriculture [191]
Lipopeptides Serenade® AgraQuest Inc. USA Biological control in agriculture [191]
Lipopeptides Botrybel Agricaldes Spain Biological control in agriculture [193]

Spironolactone Aldactone® Pfizer Medical USA To treat various diseases [194]

LAB producing bacteriocins are a promising candidate for the food industry as they
help to extend shelf life and safeguarde consumers’ health. Actinomycetes, particularly
Streptomyces spp., exhibited effective antagonistic activity and played a significant role in
drug discovery and development.

In the ongoing rearch for novel antibiotics, archaeocins have generally been over-
looked, and further studies on purifications and characterizations of archaeocins and
sulfolobicins are in progress, resulting in the economical production of bioactive com-
pounds for pharmaceutical applications. It is desirable to expand our understanding of
the effectiveness and use of other naturally occurring ribosomally-synthesized peptide an-
timicrobials to understand their implantation and survival strategies, and to quantitatively
estimate their efficacy for future applications in the pharmaceutical and health care sectors.

Fungi synthesized small quantities of bioactive compounds in response to explicit
environmental conditions which cannot be reproduced easily in the laboratory. Therefore,
to develop new antimicrobial drugs from these fungal metabolites, commercial-scale syn-
thesis must be accomplished potentially through strain improvement, optimizing growth
conditions, and incorporating techniques, such as metabolomics, genomics, and pathway
engineering. Endophytic, filamentous, and marine-derived fungi also offer a suitable
substitute against toxic, ineffective, and expensive antimicrobial drugs because they act as
a warehouse filled with bioactive compounds with endless potential for biological prop-
erties. Antimicrobials, isolated from mushrooms, act as essential substitutes to synthetic
drugs and preservatives, whose protection and influence on the health of humans, animals,
and food are still uncertain. Although there are many edible mushrooms, the mushroom
species identified have antimicrobial properties which are quite small. The current review
demonstrates potent bioactive substances with antimicrobial activities from edible mush-
rooms. Hence, they must not be considered only as a culinary delicacy, but also taken
as therapeutic agents. However, methods for isolation, purification, identification, and
characterization of antimicrobial compounds from mushrooms need to be developed.

Microalgae are a promising source of high-value products, and large-scale screening
programs have been conducted to discover the antimicrobial potential of microalgal extracts
against pathogenic and foodborne organisms. However, major antibacterial and antifungal
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activity reports were predominantly from the Chlorella sp. and Chlamydomonas sp. Many
hurdles exist in developing the marine product, including resource supply issues, large-scale
production, production cost, and determination of the efficacy target. These obstacles must
be bypassed by optimizing mass culturing conditions, utilizing biotechnological techniques,
etc. Along with these measures, extensive clinical trials will be needed to determine the
in vivo fortune of antimicrobials from microbial extracts on mammalian cells.

Therefore, developing and using robust screening and high-throughput methods will be
essential to study their antimicrobial activity, thereby increasing the chances of discovering
and identifying new antibiotic molecules. To achieve this goal, the experimental design
must include all possible variables, such as recovering both intra- and extracellular extracts
produced by microorganisms under variable growth conditions, utilizing potential inducers
of antimicrobial activity, and testing these compounds against a more significant number
of targets. In recent years, nanoencapsulation has gained much attention. It is a technique
used for formulating and stacking a compound in nanosized carriers that can carry and
deliver the molecules to the targeted site. Nanoencapsulation allows the conservation and
controlled release of bioactive compounds, followed by resistance to pH and temperature
variations, lesser product contamination, economic viability, and stability. Chromatographic
separation techniques were used recently for purifying antimicrobials, followed by their
chemical characterization using spectroscopic techniques, and response surface methodology
(RSM) to predict the yield of the crude antimicrobial extract. Detailed functional and structural
knowledge would explain antimicrobials’ mode of action and performance at cellular and
molecular levels. However, for this, a better understanding of the structure, function and,
existing mode of action of newly identified antimicrobials is required.

8. Conclusions

In conclusion, microorganisms are probable sources of bioactive compounds, and
this review has explored of microorganisms’ aptitudes to deliver novel bioactive com-
pounds with potential pharmaceutical and nutraceutical applications. Microorganisms
have fascinated many researchers due to the ease of growth and understanding of their
chemical interactions. The development of new biotechnological tools and techniques
contributes to the discovery of next-generation antimicrobial compounds. The application
of microorganisms in human foods, animal feeds, agriculture, and an increased market
demand motivates the research and development of novel antibiotics and preservatives.
Furthermore, the molecular docking and structural analysis approaches can design potent
pathogen-specific antimicrobial agents that exhibit lesser toxicity, higher selectivity, and
biodegradability. Therefore, exploiting microbial biodiversity and biotechnological poten-
tial to discover novel bioactive compounds to treat life-threatening diseases and safeguard
human health.
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96. Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [CrossRef] [PubMed]
97. Rodriguez-Valera, F.; Juez, G.; Kushner, D. Halocins: Salt-dependent bacteriocins produced by extremely halophilic rods. Can. J.

Microbiol. 1982, 28, 151–154. [CrossRef]
98. Gaglione, R.; Pirone, L.; Farina, B.; Fusco, S.; Smaldone, G.; Aulitto, M.; Dell’Olmo, E.; Roscetto, E.; Del Gatto, A.; Fattorusso, R.;

et al. Insights into the anticancer properties of the first antimicrobial peptide from Archaea. Biochim. Biophys. Acta Gen. Subj. 2017,
1861, 2155–2164. [CrossRef]

99. Besse, A.; Peduzzi, J.; Rebuffat, S.; Carré-Mlouka, A. Antimicrobial peptides and proteins in the face of extremes: Lessons from
archaeocins. Biochimie 2015, 118, 344–355. [CrossRef]

http://doi.org/10.1186/s43088-021-00099-7
http://doi.org/10.1038/s41598-021-93285-7
http://doi.org/10.1080/14786419.2014.945174
http://doi.org/10.1080/10286020.2012.751979
http://doi.org/10.1155/2014/698178
http://www.ncbi.nlm.nih.gov/pubmed/25162061
http://doi.org/10.3390/antibiotics10101212
http://www.ncbi.nlm.nih.gov/pubmed/34680793
http://doi.org/10.1128/AEM.01839-21
https://www.researchsquare.com/article/rs-321054/v1
https://www.researchsquare.com/article/rs-321054/v1
http://doi.org/10.1177/1934578X20920481
http://doi.org/10.3390/antibiotics8040157
http://www.ncbi.nlm.nih.gov/pubmed/31547063
http://doi.org/10.3390/antibiotics7020044
http://doi.org/10.1177/1934578X1300801225
http://doi.org/10.1038/ja.2010.147
http://doi.org/10.1038/ja.2014.124
http://www.ncbi.nlm.nih.gov/pubmed/25227502
http://doi.org/10.1007/s00284-014-0724-3
http://doi.org/10.1080/14786419.2013.830219
http://doi.org/10.1038/ja.2010.21
http://doi.org/10.1007/s40011-015-0619-5
http://doi.org/10.3390/md11041035
http://doi.org/10.1002/jbt.22006
http://www.ncbi.nlm.nih.gov/pubmed/29131470
http://doi.org/10.1007/s00204-020-02689-3
http://www.ncbi.nlm.nih.gov/pubmed/32180036
http://doi.org/10.1139/m82-019
http://doi.org/10.1016/j.bbagen.2017.06.009
http://doi.org/10.1016/j.biochi.2015.06.004


Biomolecules 2021, 11, 1860 25 of 28

100. Platas, G.; Meseguer, I.; Amils, R. Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a.
Int. Microbiol. 2002, 5, 15–19. [CrossRef]

101. Meseguer, I.; Rodriguez-Valera, F. Production and purification of halocin H4. FEMS Microbiol. Lett. 1985, 28, 177–182. [CrossRef]
102. Torreblanca, M.; Meseguer, I.; Rodríguez-Valera, F. Halocin H6, a bacteriocin from Haloferax gibbonsii. Microbiology 1989, 135,

2655–2661. [CrossRef]
103. Li, Y.; Xiang, H.; Liu, J.; Zhou, M.; Tan, H. Purification and biological characterization of halocin C8, a novel peptide antibiotic

from Halobacterium strain AS7092. Extremophiles 2003, 7, 401–407. [CrossRef] [PubMed]
104. Price, L.B.; Shand, R.F. Halocin S8: A 36-amino-acid microhalocin from the haloarchaeal strain S8a. J. Bacteriol. 2000, 182,

4951–4958. [CrossRef]
105. Ebert, K.; Goebel, W.; Rdest, U.; Surek, B. Genes and genome structures in the archaebacteria. Syst. Appl. Microbiol. 1986, 7, 30–35.

[CrossRef]
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