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Simple Summary: This was a multicenter study on the development of a deep learning (DL) model
system to diagnose adnexal masses on ultrasound images. There were three innovation points. First,
the DL system contained five models: a detector, a mass segmentor, a papillary segmentor, a type
classifier, and a pathological subtype classifier. Therefore, the system could finish the entire diagnosis
process for adnexal masses on ultrasound images. Second, the DL system could discriminate
borderline tumors from benign and malignant tumors with the assistance of annotations for papillary
projections (which is a significant morphological feature of borderline tumors). Third, the benign
tumors were classified into five pathological subtypes with different risks of clinical complication
and accurate disease.

Abstract: Appropriate clinical management of adnexal masses requires a detailed diagnosis. We
retrospectively collected ultrasound images of 1559 cases from the first Center of Chinese PLA General
Hospital and developed a fully automatic deep learning (DL) model system to diagnose adnexal
masses. The DL system contained five models: a detector, a mass segmentor, a papillary segmentor, a
type classifier, and a pathological subtype classifier. To test the DL system, 462 cases from another
two hospitals were recruited. The DL system identified benign, borderline, and malignant tumors
with macro-F1 scores that varied from 0.684 to 0.791, a benefit to preventing both delayed and
overextensive treatment. The macro-F1 scores of the pathological subtype classifier to categorize
the benign masses varied from 0.714 to 0.831. The detailed classification can inform clinicians of the
corresponding complications of each pathological subtype of benign tumors. The distinguishment
between borderline and malignant tumors and inflammation from other subtypes of benign tumors
need further study. The accuracy and sensitivity of the DL system were comparable to that of the
expert and intermediate sonographers and exceeded that of the junior sonographer.

Keywords: deep learning; adnexal masses; borderline; pathological subtypes

1. Introduction

Adnexal masses are widespread in women. Most masses are benign and some may
disappear spontaneously [1]. Conservative management is often advised [2]. However,
some adnexal masses classified as borderline or malignant may pose a significant risk.
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Ovarian cancer is the most aggressive of gynecological malignancies; radical surgery and
adjuvant chemotherapy are recommended according to stage [3,4]. Borderline tumors
present no destructive infiltrative growth and fertility-sparing surgery is appropriate [3,5].
According to the International Federation of Gynecology and Obstetrics (FIGO), there are
varied pathological origins of adnexal masses [4]. Different pathological subtypes of benign
adnexal masses are associated with different complication risks [5,6]. Endometriomas affect
fertility and may cause pelvic pain [7]. Dermoid cysts have the risk of adnexal torsion [8].
Sex cord-stromal tumors may present with hormonal change symptoms [9]. Patients with
inflammation might require anti-inflammatory treatment to relieve symptoms such as
abdominal pain. In order to monitor corresponding complications during observation and
perform intervention timely, accurate pathological subtype classification is very important
for appropriate management.

Serum tumor markers can be used to detect the presence and risk of ovarian can-
cer, but they have limited utility in patients with early-stage disease and premenopausal
women [10,11]. Due to the risk of disseminating malignant cells, preoperative biopsies
are generally not performed [12]. Therefore, the primary diagnosis depends mainly on
imaging techniques. MRI provides the best means of evaluating ovarian masses but has
low sensitivity for detection of masses [2]. In contrast, ultrasound is considered to be the
first-line imaging modality to assess adnexal tumors [13]. To facilitate accurate diagnoses,
many pattern-based approaches and logistical models based on image characteristics have
been proposed for evaluating adnexal masses [3]. The pattern-based approaches include
the simple ultrasound-based rules (SR), the gynecologic imaging reporting and data system
(GI-RADS), and the three-step strategy [6,13–15]. In addition, extensive databases have
been used to develop and validate logistical models such as the logistic regression (LR)
model and the assessment of different neoplasias in the adnexa (ADNEX) model [16–19].
Of these various methods, subjective assessment (SA) by expert sonographers remains
the most accurate ultrasound imaging diagnostic approach to distinguish between be-
nign and malignant adnexal tumors, but there is a shortage of expert sonographers in
clinical work [3]. Moreover, each of these approaches performs well in different clinical set-
tings (AUC 0.92–0.94) but has limitations when assessing borderline tumors or pathologic
subtypes of benign masses [20].

Deep learning (DL) is a state-of-the-art artificial intelligence (AI) technique for auto-
mated image analysis [21]. DL can detect subtle features beyond the ability of the human
eye, thus enhancing the ability to diagnose and classify diseases from diagnostic images, as
already demonstrated in the fields of diabetic retinopathy; echocardiography; fetal heart
disease; and skin, thyroid, and gastric cancers [22–24]. There are also some reports on
applying DL in the diagnosis of adnexal tumors [25–27]. However, other existing models in
the literature only distinguished between benign and malignant tumors, and the discrimi-
nation of borderline tumors and classification of benign masses into detailed pathological
subtypes has not yet been achieved using AI.

Borderline tumors often affect women of reproductive age. An accurate diagnosis
is key to selecting the most appropriate surgical approach while preserving fertility [28].
Benign tumors of different pathologies differ in their risk of complications. Thus, detailed
classification is crucial in clinical practice [1]. To overcome current diagnostic limitations,
we attempted to establish a DL model system that could provide a complete diagnostic
interpretation of ultrasound images, including: detecting and locating adnexal masses;
distinguishing between benign, borderline, and malignant tumors; and distinguishing the
pathological subtypes including endometriomas, other epithelial tumors except endometri-
omas, germ cell tumors, sex cord-stromal tumors, and inflammation for benign tumors.
We also compared the diagnostic performance of the DL model system with that of the
expert sonographer SA (recognized as the best method to diagnose adnexal tumors) and
intermediate and junior sonographers.
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2. Materials and Methods
2.1. Ethical Approval

In this retrospective study, the use of previously obtained sonographic images was
approved by the ethical committees of all participating centers (the first Center of Chinese
PLA General Hospital, the 7th Center of Chinese PLA General Hospital, and Hengshui
People’s Hospital) via wavier of patient informed consent.

2.2. Participants and Datasets

We retrospectively reviewed transvaginal and abdominal ultrasound images taken at
the first Center of Chinese PLA General Hospital from 2015 to 2021. The data from 2015 to
2018 were used to create a training dataset while the data from 2019 to 2021 were used as
the internal validation dataset. Patients were retrospectively recruited in the 7th Center of
Chinese PLA General Hospital from 2020 to 2022 for external test dataset 1, and patients in
Hengshui People’s Hospital from 2021 to 2022 were used for external test dataset 2.

Consecutive images from patients with at least one adnexal mass who underwent
surgery (providing histological diagnoses for ground truth) and had normal ovaries or
ovaries that had been resected previously were eligible for inclusion. Pregnant patients were
excluded. Grayscale and color doppler ultrasound images were acquired with Mindray
Resona8T, Mindray Resona7, GE VolusonE8, EPIQ7, SAMSUNG, WS80A, HITACHI, and
SIEMENS machines equipped with transvaginal and transabdominal probes. The study
included only one adnexal mass per patient. If more than one mass was detected, then
the mass with the most complex morphology or, in the case of a similar morphology, the
largest diameter, was used [16,17].

The pathological results provided the definitive diagnosis. The final pathological
diagnosis results were classified into three types: benign, borderline, and malignant tumors.
Benign masses were further categorized into five pathological subtypes: endometriomas,
other epithelial tumors except endometriomas, germ cell tumors, sex cord-stromal tumors,
and inflammation.

2.3. Annotation and Framework

A sonographer annotated the adnexal mass and papillary areas on the ultrasound
images. The annotation was checked by two expert sonographers and was decided upon
their confirmation. The morphological feature of “papillary projection” was defined as
any solid projection into the cyst cavity from the cyst wall with a height ≥ 3 mm. The
hyper-reflective area in dermoid cysts and “sludge” or blood clots in endometriomas were
not regarded as a papillary projection [29]. A cyst with papillary projections is the most
significant ultrasound characteristic for borderline tumors [30]. We thus included the
additional annotation of papillary projections to discriminate borderline adnexal masses
from benign and malignant tumors [26,31,32].

We designed a deep learning (DL) system containing five models to complete the
diagnosis for adnexal masses: a detector, a mass segmentor, a papillary segmentor, a type
classifier, and a pathological subtype classifier (Figure 1). First, the detector aimed to find
the ovaries with adnexal masses while discarding normal ovaries or ovaries resected. The
detector focused on two-dimensional grayscale images because color doppler flow images
are not available in normal ovaries. Second, the mass segmentor located the area of the
tumor. Third, for masses with papillary projections, the papillary segmentor located the
area of papillary projections based on the mass area. Fourth, the type classifier predicted
the type (benign, borderline, or malignant) of the adnexal masses based on the information
for the mass area, papillary area, and original images. Finally, if the type was benign,
the pathological subtype classifier inferred the detailed pathology of the adnexal masses.
The borderline and malignant types were output directly as the final result. No human
intervention was performed in the entire process. All DL models except the detector were
compatible with both two-dimensional grayscale images and color doppler flow images;
the detector used only two-dimensional grayscale images.
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Figure 1. Flowchart of the framework of the DL model system. Images imported into the system
are indicated in dotted boxes. Grey boxes show the five parts of the DL model system. Diagnosis
results are shown in solid boxes. Images were input into the DL system, and those with adnexal
masses were picked out by the detector. The area of masses was recognized by the mass segmentor
and papillary projections were located by the papillary segmentor if they existed. The results of these
two segmentors and the original images were taken into consideration to make the classification. The
type classification would diagnose the adnexal masses into the three types: benign, borderline, and
malignant. The borderline and malignant tumors were directly output as the final result. Benign
tumors were further distinguished as endometriomas, other epithelial tumors except endometriomas,
germ cell tumors, sex cord-stromal tumors, and inflammation.

2.4. Model Architecture

The backbone structure of the detector was LKResnet-18, which is a combination of ResNet-
18 [33] and LKNet [34]. Resnet-18 consists of eight residual blocks, each of which contains two
convolutional layers and a residual link. Each convolution layer of ResNet-18 has a convolution
kernel size of 3 × 3 (excluding the first convolutional layer), and the small convolution kernel
can only focus on the texture features of the image. In contrast, the larger convolution kernel can
focus on the shape information of the image, while the human recognition of objects is based
more on shape cues than texture cues [34]. We used the convolution kernel size of 15 × 15
instead of 3× 3. At the same time, we use depthwise convolution to balance the kernel size and
GPU memory. In addition, we replaced the ReLU activation function and batch normalization
with the more efficient and robust GeLU and layer normalization.

We adopted LKResnet-18 for two reasons: first, a small convolutional kernel might
lead to extracting texture-based features rather than structure-based features while large
convolutional kernels, such as 15 × 15 and 31 × 31 kernels, can achieve better perfor-
mance [32]; second, for ultrasound images, the texture of the image can provide limited
information, and the structure and contour information is of much importance. Therefore,
the large kernel convolutional network (LKNet) was a very suitable solution.

The convolutional layers could extract 512 latent features from each image; then a
fully-connected classifier identified the probability of having a tumor in the image based
on the pattern of latent features. In the training stage, we adopted the following data
augmentations to improve the robustness of the model: random shift, random scale, and
random rotation. The model parameters were updated in 20,000 iterations with a batch
size of eight. The loss function adopted cross-entropy, which is defined as:

Lce = − 1
N

N

∑
i
[y(i) log (p(x(i)|θ))], (1)
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where N is the number of samples, θ is the parameter of the detector model, y(i) represents the
tumor label of sample I, and p(x(i)|θ) is the probability of the tumor prediction x(i) of sample i.

The purpose of the mass segmentor was to segment the specific location of the tumor
in the image. The segmentor model structure was U-net [35] and the backbone was
LKResnet-18. As shown in the Table S1, we compared the performances of different
segmentation models. It turned out that U-net with LKResnet-18 outperformed the other
segmentation models. U-net contains a decoder and an encoder; the former extracted
high-level semantic features of the image and reduced the resolution while the latter fused
high-level semantic features with low-level texture features and restored the resolution. In
the training stage, we adopted the following data augmentations: random shift, random
scale, random rotate, horizontal flip, and vertical flip. The model parameters were updated
in 20,000 iterations with a batch size of four. The loss function adopted cross-entropy loss
and boundary loss [36]. Boundary loss used boundary matching to supervise the segmentor.
The settings for the mass segmentor were also used for the papillary segmentor.

The model structure of the type classifier and pathological subtype classifier was
LKResnet-18, as shown in Figure 2. The input to the classifier was the combination of
the outputs of the mass segmentor and papillary segmentor. We adopted the following
data augmentations for training: random shift, random scale, random rotation, Gaussian
blur, random brightness, random contrast, horizontal flip, and vertical flip. The model
parameters were updated in 10,000 iterations with a batch size of four. The loss function
adopted cross-entropy loss as given in Equation (1).
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Figure 2. The framework of the type and pathological subtype classifiers. “LKB (c,s)” refers to a basic
large kernel block containing two depthwise–pointwise convolutions with output channels of c and
strides of s. For each image, including color doppler flow images and two-dimensional sonographic
images, the mass segmentor was used to locate the tumor region. Then the image was cropped to just
the tumor region. The papillary segmentor was used to locate the papillary region in the tumor area.
The papillary region and tumor region were concatenated as the input into the classifier.

Each case contained multiple two-dimensional sonographic images and color doppler
flow images. The type and pathological subtype classifiers scored each image, which
provided multiple predictions for each case. As shown in Figure 2, the model used majority
voting, a rule-based case-wise strategy, to generate the case-wise prediction.

The five models used the AdamW [37,38] optimizer with a learning rate of 3 × 10−5

and weight L2 regularization of 3× 10−4. All experiments were performed on two NVIDIA
GeForce RTX 3090 graphics processing units.
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2.5. Evaluation and Comparison with Sonographers

The diagnostic performance of the DL system containing five models was evaluated us-
ing the internal validation dataset, external test dataset 1, and external test dataset 2. Three
reviewers assessed all images in the external test set 1 and external set 2 independently.
All reviewers were certificated sonographers. Reviewer A was an expert gynecological
sonographer with 37 years of clinical experience. Reviewer B was an intermediate sonogra-
pher with 16 years of experience. Reviewer C had 2 years of clinical experience as a junior
sonographer. All reviewers were blinded to the clinical information, original ultrasound
reports, and pathological results. The diagnostic performance of the sonographers was
evaluated and compared with the DL model system in external test sets.

2.6. Statistical Analysis

Continuous measures are presented as mean. Categorical measures are presented as
proportion with 95% CIs and were compared using the chi-squared test. The frequency of
the morphological characteristic of papillary projection for different adnexal mass types
was compared using pairwise differences.

We evaluated the diagnostic efficiency of the DL system based on the discrimination
and calibration performance. For the detector, accuracy in identifying adnexal masses
was measured. The dice score was computed to estimate the performance of the mass
and papillary segmentors. We constructed the confusion matrix for the type classifier
and the pathological subtype classifier. The accuracy, sensitivity, specificity, positive pre-
dictive value, negative predictive value, and macro-F1 scores were calculated for both
classifiers [39]. The calibration plot and the Brier score were used to estimate the calibration
of the type classifier and the pathological subtype classifier.

The accuracy, sensitivity, specificity, positive predictive value, negative predictive
value, and macro-F1 scores of the sonographers were also computed for comparison with
the DL system. Statistical analysis was done using Python; p < 0.05 was considered to
indicate a statistically significant difference.

3. Results
3.1. Data and Patients

A total of 1099 cases (4497 images) were included in the training dataset and 460 cases
(1217 images) in the internal validation set. External test set 1 contained 490 images of
198 cases; external test set 2 had 761 images of 264 cases. The baseline characteristics of
each dataset are shown in Table 1.

Table 1. Baseline characteristics of datasets in the study.

Patients Type
Classification

Pathological
Subtype

Classification

Training
Dataset

Internal
Validation

Dataset

External Test
Dataset 1

External Test
Dataset 2

Mean age 43.43 (11, 81) 44.50 (11, 81) 48.87 (15, 77) 43.26 (19, 50)
Healthy cases * (images) 508 (1100) 255 (564) 96 (178) 105 (233)

Cases (images) with
adnexal masses † 591 (3397) 205 (653) 102 (312) 159 (528)

Benign 374 (1117) 134 (377) 51 (151) 126 (401)
END † 117 (332) 39 (102) 13 (35) 18 (51)
OET 103 (342) 45 (127) 16 (49) 48 (157)
GCT 102 (272) 31 (82) 14 (50) 49 (156)
SCST 33 (107) 9 (32) 5 (11) 5 (18)
INF 19 (64) 10 (34) 3 (6) 6 (19)

Borderline 50 (917) 15 (57) 8 (27) 8 (30)
Malignant 167 (1363) 56 (219) 43 (134) 25 (97)

Total 1099 (4497) 460 (1217) 198 (490) 264 (761)

The age is given as the mean value (min, max); the number of cases (number of images) is given for each category.
* Healthy cases: cases with normal ovaries and ovaries resected previously. † END: endometrioma; OET: other
epithelial tumors except endometrioma; GCT: germ cell tumors; SCST: sex cord-stromal tumors; INF: inflammation.
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3.2. Papillary Projections

Papillary projections are more frequent in borderline than in benign and malignant
tumors. Benign and malignant tumors do not differ in papillary projection frequency.

In the training dataset, the frequency of papillary projection was 5.61% (21/374)
in benign adnexal masses, 54.00% (27/50) in borderline tumors, and 8.98% (15/167) in
malignant tumors. Borderline tumors had a higher rate of papillary projections than benign
tumors (p < 0.001) and malignant tumors (p < 0.001). There was no statistical difference in
the presence of papillary projections between benign and malignant tumors (p = 0.147).

In the internal validation dataset, papillary projections presented in 5.22% (7/134)
of benign tumors, 66.67% (10/15) of borderline tumors, and 12.50% (7/56) of malignant
tumors. The frequency was higher in borderline tumors than in benign (p < 0.001) and
malignant tumors (p < 0.001). There was no statistical difference between benign and
malignant tumors (p = 0.080).

In external test dataset 1, 5.88% (3/51) of benign tumors and 50% (4/8) of borderline
tumors showed the morphological characteristic of papillary projection, while no malignant
tumors presented with that ultrasound feature. There was a higher rate of papillary
projections in borderline tumors than benign (p < 0.001) or malignant tumors (p < 0.001).
No statistical difference was detected between benign and malignant tumors (p = 0.106).

In external test dataset 2, the rate of papillary projections was 3.17% (4/126) in benign
tumors, 75.00% (6/8) in borderline tumors, and 12.00% (3/25) malignant tumors. More
borderline tumors had papillary projections than benign (p < 0.001) and malignant tumors
(p < 0.001). There was no statistical difference between benign and malignant tumors
(p = 0.055).

3.3. Diagnostic Performance for the DL Model System

The performance of each of the five models in the DL system was considered in turn.
The detector was implemented in the training test to distinguish sonographic images with
adnexal masses from those without lesions. The detector performed very well, achieving
an accuracy of 0.965 (95% CI: 0.933–0.975) on the internal validation dataset. For external
test dataset 1, the accuracy was 0.943 (0.922–0.951); for external dataset 2, the accuracy was
0.931 (0.919–0.952).

The mass segmentor was created to ascertain the location of the adnexal masses.
It performed well, achieving a dice score of 0.945 in the internal validation dataset. It
remained stable in the multicenter test datasets. The dice score for the mass segmentor was
0.923 for external test dataset 1 and 0.912 for external test dataset 2.

The papillary projection segmentor located the projections accurately. The dice score
was 0.864 for the internal validation dataset, 0.852 for external test dataset 1, and 0.855 for
external test dataset 2. Figure 3 shows the results of four cases of the mass segmentor and
the papillary segmentor.

The type classifier was used to classify adnexal masses as benign, borderline, and malig-
nant. According to the confusion matrixes of the type classifier in Figure 4, most predicted
results of the adnexal masses were in accordance with the ground truth. For the internal
validation dataset, the macro-F1 score was 0.791. For external test dataset 1, the classifier had a
macro-F1 score of 0.749. For external test dataset 2, the macro-F1 score was 0.684.

The pathological subtype classifier could discriminate among the five pathological
subtypes of benign adnexal tumors. The results were visualized in the confusion matrix
shown in Figure 4. The macro-F1 score in the internal validation dataset to distinguish
among endometriomas, other epithelial tumors except endometriomas, germ cell tumors,
sex cord-stromal tumors, and inflammation was 0.831. For external dataset 1, the macro-F1
score was 0.826. For external dataset 2, the macro-F1 score of the pathological subtype
classifier was 0.714.
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tion; case four shows a malignant tumor without papillary projections. The top three rows show the 
process of the mass segmentor; the three rows below show the process of the papillary segmentor. 
Yellow line: the result of the mass segmentor or the papillary segmentor; red area: ground truth. 

The type classifier was used to classify adnexal masses as benign, borderline, and ma-
lignant. According to the confusion matrixes of the type classifier in Figure 4, most predicted 
results of the adnexal masses were in accordance with the ground truth. For the internal 
validation dataset, the macro-F1 score was 0.791. For external test dataset 1, the classifier 
had a macro-F1 score of 0.749. For external test dataset 2, the macro-F1 score was 0.684. 

The pathological subtype classifier could discriminate among the five pathological 
subtypes of benign adnexal tumors. The results were visualized in the confusion matrix 

Figure 3. Case one shows a borderline tumor with papillary projections; case two shows a benign
tumor without papillary projections; case three shows a malignant tumor with a papillary projection;
case four shows a malignant tumor without papillary projections. The top three rows show the
process of the mass segmentor; the three rows below show the process of the papillary segmentor.
Yellow line: the result of the mass segmentor or the papillary segmentor; red area: ground truth.
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Figure 4. Confusion matrixes of the type classifier for (a) the internal validation dataset, (b) external
test dataset 1, and (c) external test dataset 2. Confusion matrixes of the pathological subtype classifier
for (d) the internal validation dataset, (e) external test dataset 1, and (f) external test dataset 2.
The lateral axis represents the predictive result of the type classifier or the pathological subtype
classifier; the vertical axis represents the ground truth (pathological diagnosis) of the adnexal masses.
END: endometriosis; OET: other epithelial tumors except endometriosis; GCT: germ cell tumors;
SCST: sex cord-stromal tumors; INF: inflammation.

Comprehensive diagnostic performance parameters of the type classifier and the
pathological subtype classifier are presented in Tables 2 and 3. The calibration plots further
indicated that the type classifier and the pathological subtype classifier fit the data very
well (Figure 5). The Brier score of the type classifier was 0.090 for the internal validation
dataset, 0.102 for external test dataset 1, and 0.082 for external test dataset 2. The Brier
score for the pathological subtype classifier was 0.056 for the internal validation dataset,
0.064 for external test dataset 1, and 0.058 for external test dataset 2. Figure 6 shows the
final classification of the type classifier and the pathological subtype classifier.

Table 2. Diagnostic performance parameters for the type classifier.

Variable
Internal Validation Dataset External Test Dataset 1 External Test Dataset 2

Benign Borderline Malignant Benign Borderline Malignant Benign Borderline Malignant

Accuracy 0.888
(0.875–0.902)

0.946
(0.940–0.957)

0.883
(0.875–0.897)

0.863
(0.846–0.879)

0.941
(0.934–0.956)

0.843
(0.824–0.868)

0.849
(0.832–0.867)

0.937
(0.930–0.951)

0.836
(0.825–0.853)

Sensitivity 0.896
(0.882–0.913)

0.733
(0.667–0.786)

0.804
(0.780–0.837)

0.824
(0.795–0.864)

0.375
(0.286–0.500)

0.907
(0.892–0.944)

0.825
(0.809–0.847)

0.625
(0.571–0.714)

0.800
(0.762–0.857)

Specificity 0.873
(0.855–0.902)

0.963
(0.959–0.971)

0.913
(0.902–0.926)

0.902
(0.886–0.933)

0.989
(0.988–1.000)

0.797
(0.769–0.830)

0.939
(0.926–0.967)

0.954
(0.948–0.964)

0.843
(0.828–0.860)

Positive
predictive

value

0.930
(0.921–0.947)

0.611
(0.563–0.688)

0.776
(0.750–0.811)

0.894
(0.875–0.927)

0.750
(0.667–1.000)

0.765
(0.733–0.800)

0.981
(0.978–0.990)

0.417
(0.364–0.500)

0.488
(0.444–0.528)

Negative
predictive

value

0.816
(0.794–0.843)

0.979
(0.976–0.983)

0.925
(0.916–0.939)

0.836
(0.813–0.872)

0.949
(0.943–0.966)

0.922
(0.909–0.953)

0.584
(0.551–0.625)

0.980
(0.977–0.985)

0.958
(0.952–0.972)
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Table 3. Diagnostic performance parameters for the pathological subtype classifier.

Variable
Internal Validation Dataset External Test Dataset 1 External Test Dataset 2

END OET GCT SCST INF END OET GCT SCST INF END OET GCT SCST INF

Accuracy
0.940

(0.933–
0.950)

0.903
(0.892–
0.917)

0.918
(0.908–
0.933)

0.985
(0.983–
0.992)

0.955
(0.950–
0.967)

0.922
(0.911–
0.956)

0.863
(0.844–
0.889)

0.922
(0.911–
0.956)

0.961
(0.956–
0.978)

0.980
(0.978–
1.000)

0.913
(0.903–
0.929)

0.897
(0.885–
0.912)

0.937
(0.929–
0.947)

0.960
(0.956–
0.973)

0.960
(0.956–
0.973)

Sensitivity
0.897

(0.879–
0.939)

0.956
(0.947–
0.976)

0.806
(0.778–
0.852)

0.778
(0.714–
0.875)

0.400
(0.333–
0.500)

0.769
(0.700–
0.833)

0.875
(0.846–
0.933)

0.857
(0.818–
0.923)

0.800
(0.667–
1.000)

0.667
(0.500–
1.000)

0.611
(0.538–
0.688)

0.979
(0.976–
1.000)

0.878
(0.857–
0.907)

0.600
(0.500–
0.750)

0.167
(0.000–
0.250)

Specificity
0.958

(0.952–
0.976)

0.876
(0.859–
0.899)

0.951
(0.944–
0.967)

1.000
(1.000–
1.000)

1.000
(1.000–
1.000)

0.974
(0.969–
1.000)

0.857
(0.833–
0.900)

0.946
(0.935–
0.970)

0.978
(0.975–
1.000)

1.000
(1.000–
1.000)

0.962
(0.958–
0.979)

0.846
(0.826–
0.871)

0.974
(0.970–
0.986)

0.975
(0.972–
0.982)

1.000
(1.000–
1.000)

Positive
predictive

value

0.897
(0.879–
0.938)

0.796
(0.771–
0.833)

0.833
(0.808–
0.885)

1.000
(1.000–
1.000)

1.000
(1.000–
1.000)

0.909
(0.875–
1.000)

0.737
(0.688–
0.813)

0.857
(0.818–
0.923)

0.800
(0.667–
1.000)

1.000
(1.000–
1.000)

0.733
(0.667–
0.800)

0.797
(0.769–
0.830)

0.956
(0.947–
0.976)

0.500
(0.400–
0.600)

1.000
(1.000–
1.000)

Negative
predictive

value

0.958
(0.952–
0.976)

0.975
(0.971–
0.986)

0.942
(0.934–
0.957)

0.984
(0.982–
0.991)

0.954
(0.948–
0.966)

0.925
(0.912–
0.946)

0.938
(0.926–
0.966)

0.946
(0.935–
0.970)

0.978
(0.975–
1.000)

0.980
(0.977–
1.000)

0.937
(0.929–
0.950)

0.985
(0.982–
1.000)

0.926
(0.915–
0945)

0.983
(0.981–
0.991)

0.960
(0.955–
0.973)

END: endometriosis; OET: other epithelial tumors except endometriosis; GCT: germ cell tumors; SCST: sex
cord-stromal tumors; INF: inflammation.
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Figure 6. Example ultrasound images of different types of adnexal masses and different pathological
subtypes of benign tumors.

3.4. Comparison with Sonographers

The diagnostic performance parameters of three reviewers with different experience
were evaluated using the external test datasets (Table 4).

For discrimination of benign tumors, the DL system had a higher accuracy (0.863 vs. 0.578,
p < 0.001), sensitivity (0.824 vs. 0.451, p < 0.001), and specificity (0.902 vs. 0.706, p = 0.013) than
the junior reviewer for external test dataset 1. For external test dataset 2, the specificity of the
DL system for benign tumors was higher than that of the expert (0.939 vs. 0.606, p = 0.001) and
the junior sonographer (0.939 vs. 0.697, p = 0.011) but the sensitivity was lower than that of the
expert sonographer (0.825 vs. 0.921, p = 0.023).

For classification of borderline tumors, the DL system achieved a higher sensitivity
(0.625 vs. 0.000, p = 0.026) than that of the junior reviewer in external test dataset 2.

For classifying malignant tumors, the accuracy, sensitivity, and specificity of the DL
system also exceeded that of the junior reviewer (accuracy: 0.843 vs. 0.559, p < 0.001;
sensitivity: 0.907 vs. 0.698, p = 0.015; specificity: 0.797 vs. 0.458, p < 0.001) in external test
dataset 1. The specificity of the DL system was lower than that of the expert sonographer
(0.797 vs. 0.932, p = 0.031) when discriminating malignant tumors in external dataset 1. The
specificity of the DL system was lower than that of the expert reviewer when classifying
malignant tumors in external test dataset 2 (0.843 vs. 0.940, p = 0.011).

In the external test datasets, the diagnostic performance of the DL system was compa-
rable to that of the intermediate sonographer.
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Table 4. Diagnostic performance of sonographers using external test datasets.

Variables

Benign Borderline Malignant

External Test Dataset 1 External Test Dataset 2 External Test Dataset 1 External Test Dataset 2 External Test Dataset 1 External Test Dataset 2

Reviewer
A

Reviewer
B

Reviewer
C

Reviewer
A

Reviewer
B

Reviewer
C

Reviewer
A

Reviewer
B

Reviewer
C

Reviewer
A

Reviewer
B

Reviewer
C

Reviewer
A

Reviewer
B

Reviewer
C

Reviewer
A

Reviewer
B

Reviewer
C

Accuracy 0.814 0.843 0.578 0.855 0.818 0.780 0.892 0.912 0.902 0.943 0.893 0.918 0.882 0.873 0.559 0.899 0.824 0.811

Sensitivity 0.824 0.784 0.451 0.921 0.825 0.802 0.500 0.375 0.000 0.250 0.125 0.000 0.814 0.930 0.698 0.680 0.680 0.760

Specificity 0.804 0.902 0.706 0.606 0.788 0.697 0.926 0.957 0.978 0.980 0.934 0.967 0.932 0.831 0.458 0.940 0.851 0.821

Positive
predictive

value
0.808 0.889 0.605 0.899 0.937 0.910 0.364 0.429 0.000 0.400 0.091 0.000 0.897 0.800 0.484 0.680 0.459 0.442

Negative
predictive

value
0.820 0.807 0.563 0.667 0.542 0.479 0.956 0.947 0.920 0.961 0.953 0.948 0.873 0.942 0.675 0.940 0.934 0.948
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4. Discussion

We established a DL system that comprised five models (a detector, a mass segmentor, a
papillary segmentor, a type classifier, and a pathological subtype classifier) to automatically
diagnose adnexal masses in sonographic images. The DL model system could identify
the existence of the tumor and recognize the area of the mass and papillary projection
precisely. Masses were correctly classified into benign, borderline, and malignant tumors;
benign tumors were further categorized into one of five pathological subtypes. Our DL
system had the ability to complete multiple tasks. This allowed the DL model system to
automatically implement the complete diagnostic process for adnexal masses and provide
abundant information for clinical therapy [31].

The DL system showed good discrimination in the internal validation dataset and the
external test datasets 1 and 2 with macro-F1 scores of 0.791, 0.749, and 0.684, respectively.
According to the confusion matrixes, the DL system was able to distinguish benign and
malignant adnexal tumors precisely. The discrimination between benign and malignant
tumors could also be achieved through deep learning in other studies [22]. However,
previous DL models for adnexal masses never discriminated borderline tumors from
benign and malignant mimics. The ability to discriminate borderline tumors is essential
in choosing the appropriate treatment for patients with adnexal masses. Fertility-sparing
surgery is the gold standard therapeutic modality for women with borderline tumors who
wish to maintain their fertility without impacting overall survival [28,40]. If borderline
tumors are misdiagnosed as benign tumors, clinical treatment may be delayed [30]. The
commonly used radical surgery for patients with malignant tumors may be excessive given
that borderline tumors have a better overall 5-year survival than malignant tumors [4,28].
Therefore, we tried to discern borderline tumors from benign and malignant tumors by
annotating morphological features of the masses, which could direct the DL models to
extract more valuable imaging information for medical diagnosis. The papillary projection
was a morphological characteristic that appeared more frequently in borderline tumors
than in benign or malignant tumors (p < 0.001). In addition, papillary projections could
be segmented successfully in our study. Accurate information on papillary projections
might allow the DL system to improve its ability to distinguish borderline tumors. In this
study, we correctly classified 11 of 15 borderline tumors in the internal validation dataset.
However, the type classifier was not reliable in the external test datasets. According
to the confusion matrixes, there were only three of eight and five of eight borderline
tumors diagnosed correctly in the two respective external datasets. Moreover, most of
the borderline tumors that were misdiagnosed were predicted as malignant tumors. In
previous studies in which borderline adnexal tumors were difficult to discriminate, it was
recognized that borderline tumors should be classified as malignant tumors to improve
the survival rates. In this condition, the poor performance in classifying borderline tumors
may be acceptable. We reviewed all the borderline tumors that were misdiagnosed in the
external datasets. All nine cases diagnosed as malignant tumors presented as multilocular
cysts with or without a solid component. Therefore, further study regarding adnexal
masses with multiple septations may improve the distinguishment between borderline and
malignant tumors.

Observation is preferred for patients with benign adnexal tumors to minimize the
potential risks and complications of surgery [2]. During observation, 20.2–39% of benign
tumors spontaneously resolve and the risk of malignancy is lower than 0.5% [1,41,42]. How-
ever, the risk of potential complications such as cyst rupture and torsion and the presence
of clinical symptoms remain the primary reasons for surgery [1]. Different subtypes of
benign adnexal masses have various complications, and doctors should pay attention to
the corresponding complications of each subtype of benign tumors. Thus, it is significant in
clinical work to distinguish among different pathological subtypes of benign tumors. Mor-
phological features of benign tumors were previously used only for excluding malignant
tumors, but they can also help with classification into detailed pathological subtypes. The
subtype classifier of the DL system was able to discern most subtypes of benign tumors with
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macro F1-scores of 0.831 in the internal validation dataset, 0.826 in external test dataset 1,
and 0.714 in external test dataset 2. The pathological subtype classifier performed well
when distinguishing endometriomas, other epithelial tumors except endometriomas, germ
cell tumors, and sex cord-stromal tumors: the diagnostic parameters were satisfactory, as
shown in Table 3. An accurate diagnosis may assist with the decision on whether an opera-
tion is necessary. When endometriomas are diagnosed, intervention is advised for those
with unrelieved pelvic pain and desire for fertility, and follow-up is required to survey for
recurrence [7]. Dermoid cysts (benign germ cell tumors) are the most frequent adnexal mass
to twist. This accurate discrimination can prevent potential ovarian torsion via a timely op-
eration, especially for those tumors with larger diameter. In contrast, torsion does not often
occur in endometriomas or malignant tumors [8]. The precise diagnosis of sex cord-stromal
tumors may allow clinical signs of hormonal production such as virilization, precocious
puberty, and menstrual changes to be explained and settled [9]. When inflammation is
diagnosed, the proper anti-inflammatory drug therapy can effectively relieve symptoms,
preventing unnecessary surgery. However, the ultrasound manifestations of inflammation
present variously at different stages of the disease. In addition, the low rate of inflammation
among benign tumors also increases the difficulty in discriminating inflammation reliably.
The sensitivity was only 0.400 in the internal validation dataset and 0.167 in the external
dataset 2. In real clinical work, experienced sonographers would take the patients’ clinical
symptoms into consideration to assist in the diagnosis of inflammation.

The DL system had an excellent diagnostic performance, exceeding the accuracy and
sensitivity of the junior sonographer and matching that of the intermediate and expert
sonographers. The sensitivity of the DL system to benign and malignant tumors was
higher than that of the junior sonographer in external test dataset 1 and the sensitivity to
borderline tumors was higher for the DL system in external test dataset 2. Using the DL
system would thus be practical in clinical work and improve the ability of a sonographer
lacking experience. Moreover, the stability of the DL system was proved by testing it using
external datasets from different centers.

Chen et.al established DL algorithms to distinguish malignant from benign adnexal
tumors with a diagnostic performance comparable to expert subjective assessment, similar
to our study [26]. However, Chen’s study did not involve the distinguishment of borderline
tumors or a comparison with expert assessments.

Our DL system had some limitations. First, we hoped to separate primary adnexal
cancer from secondary metastasis cancer, but our DL model was unsuccessful at achieving
this. The insufficient number of cases of secondary metastasis cancer was likely the key
reason for this. In addition, more morphological features had to be found to distinguish
primary from metastatic adnexal cancer. Second, the performance of the DL system in dis-
cerning borderline tumors and inflammation were not satisfactory enough. More valuable
ultrasound characteristics for borderline tumors and a larger sample may improve this
condition. Third, this was a retrospective study, so prospective external validation needs to
be implemented in the future.

5. Conclusions

In this multicenter study, we implemented a DL model system to perform the com-
plete diagnostic process for adnexal masses. The masses were detected and segmented
automatically and classified into benign, borderline, and malignant types. The benign
tumors were then further classified into different pathological subtypes. This DL system
matched the abilities of expert and intermediate sonographers and outperformed the junior
sonographer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215291/s1, Table S1: The comparison of dices among
different segmentation models. References [43,44] are cited in the Supplementary Materials.
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