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Simple Summary: The management of salivary gland tumors (SGTs), especially their early diagnosis,
remains a challenge for physicians. Indeed, differentiating benign and malignant SGTs is an essential
step in choosing an appropriate surgical approach. The aim of this study was to increase the
effectiveness of pre-surgical diagnosis through a machine learning (ML) diagnostic tool that evaluates
inflammatory biomarkers and radiomic metrics extracted from magnetic resonance imaging (MRI)
sequences. Specifically, we considered the following indices of inflammation as inflammatory
biomarkers: the systemic immune-inflammation index (SII), the systemic inflammation response
index (SIRI), the platelet-to-lymphocyte ratio (PLR), and the neutrophil-to-lymphocyte ratio (NLR).
In the context of cancer research, however, radiomics enables high-performance quantitative analysis
of radiological images. We concluded that inflammatory biomarkers and radiomic features are
comparably capable of supporting a differential diagnosis and are easily obtained through the
preclinical investigations of patients.

Abstract: Background: The purpose of this study was to investigate how the systemic inflammation
response index (SIRI), systemic immune-inflammation index (SII), neutrophil/lymphocyte ratio
(NLR) and platelet/lymphocyte ratio (PLR), and radiomic metrics (quantitative descriptors of image
content) extracted from MRI sequences by machine learning increase the efficacy of proper presurgical
differentiation between benign and malignant salivary gland tumors. Methods: A retrospective study
of 117 patients with salivary gland tumors was conducted between January 2015 and November
2022. Univariate analyses with nonparametric tests and multivariate analyses with machine learning
approaches were used. Results: Inflammatory biomarkers showed statistically significant differences
(p < 0.05) in the Kruskal–Wallis test based on median values in discriminating Warthin tumors from
pleomorphic adenoma and malignancies. The accuracy of NLR, PLR, SII, and SIRI was 0.88, 0.74, 0.76,
and 0.83, respectively. Analysis of radiomic metrics to discriminate Warthin tumors from pleomorphic
adenoma and malignancies showed statistically significant differences (p < 0.05) in nine radiomic
features. The best multivariate analysis result was obtained from an SVM model with 86% accuracy,
68% sensitivity, and 91% specificity for six features. Conclusions: Inflammatory biomarkers and
radiomic features can comparably support a pre-surgical differential diagnosis.
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1. Introduction

The correct preoperative diagnosis and effective treatment of salivary gland tumors
(SGTs) remain a challenge due to their heterogeneous histology, despite numerous recent
advances in the literature. The current 2017 World Health Organization (WHO) classifi-
cations include 11 histologically benign tumors (54–79%), which are the most frequent
types, particularly pleomorphic adenoma and Warthin tumors, and 24 malignant tumors
(21–46%) [1]. The first steps in preoperative evaluation are ultrasonography (USG) and
magnetic resonance imaging (MRI) to determine the location of the tumor and needle aspi-
ration cytology (FNAC) to establish a diagnosis before surgical treatment. The sensitivity
and specificity of FNAC range from 0.74 to 0.88 and 0.87 to 0.98, respectively, which are
both higher for benign lesions and lower in cases of malignant tumors [2–4]. Inflammatory
biomarkers could play a key role as a diagnostic support in cases of dubious cytology
diagnosis in SGT, as has already been recently studied in the literature [5]. Among these
prognostic factors, the best known are the neutrophil-to-lymphocyte ratio (NLR); platelet-
to-lymphocyte ratio (PLR); systemic inflammation response index (SIRI), defined as the
neutrophil count × monocyte/lymphocyte count; and systemic immune-inflammation
index (SII), calculated with the formula neutrophils × platelets/lymphocytes. In addition,
through the appropriate use of techniques from the areas of machine learning and artificial
intelligence, the quantitative analysis of pathology-related images can be performed with
high performance. Radiomics, in fact, obtains descriptors of image contents by extracting
quantitative features from medical images [6]. The aim of this study was to increase the
effectiveness of presurgical diagnosis and improve differentiation between benign and
malignant SGT through the application of these new diagnostic tools, namely inflamma-
tory biomarkers and radiomic metrics extracted from nuclear magnetic resonance (NMR)
image sequences.

2. Materials and Methods
2.1. Patient Selection

As part of a retrospective study, 117 patients were recruited from the Maxillofacial
Surgery Department of Policlinico Federico II in Naples. The study was conducted between
January 2015 and November 2022. Of a total of 648 referrals reviewed, 117 patients were
eligible for this study, meeting the following inclusion criteria:

Patients had histological confirmation of malignant or benign SGT. Out of a total of
648 referrals reviewed, 117 patients were eligible with a preoperative salivary gland FNAC.

Complete medical records were available, including clinical and hematologic parameters.
T1WI and T2WI sequences of MRI scans were complete, available, and free of artifacts.
Patients did not receive radiotherapy or chemotherapy treatments prior to the examination.
Since inflammatory biomarker levels may be influenced by other factors, patients

whose medical histories included previous cancer at other sites, chronic inflammatory or
autoimmune diseases, infections, serum viral markers, hematologic disorders, or concurrent
or long-term anti-inflammatory or steroid drug treatments were excluded from this study.

This study was conducted in accordance with the Declaration of Helsinki, and because
of its retrospective nature, local ethics committee approval was not required.

Blood samples were collected for neutrophil, monocyte, lymphocyte, and platelet counts
and measured in the laboratory 10 days before surgery. The NLR was calculated by divid-
ing the absolute neutrophil count (N) by the absolute lymphocyte count (L). The PLR was
calculated by dividing the absolute platelet count (P) by the absolute lymphocyte count (L).

The IBS was calculated by multiplying the absolute platelet count (P) and the neu-
trophil count (N) and dividing by the absolute lymphocyte count (L) (IBS = P × N/L).
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The SIRI was calculated by multiplying the absolute neutrophil count (N) and the
monocyte count (M) and dividing the result by the absolute lymphocyte count (L)
(SIRI = N × M/L).

2.2. MRI Protocol

All patients underwent MRI exams using either a 1.5T (Gyroscan Intera, Philips,
Eindhoven, The Netherlands) or a 3T MRI scanner (Magnetom Trio, Siemens Medical
Solutions, Erlangen, Germany). The imaging protocol always included a coronal T2-
weighted (T2-w) image.

2.3. Image Processing

Regions of interest (ROIs) were drawn manually, section by section, by two experi-
enced radiologists with 22 and 15 years of experience in head and neck imaging, respec-
tively. The radiologists first performed the selection of ROIs separately and then jointly.
The manual definition of ROIs was determined using the 3D Slicer segmentation tool
(Figure 1) (https://www.slicer.org, accessed on 17 March 2021). For the radiomic analysis,
851 features were extracted using PyRadiomics, in accordance with the feature definitions
described by the Imaging Biomarker Standardization Initiative (IBSI) [7]. More precisely,
the set of 851 radiomic features were extracted from the tumor region after manual seg-
mentation. The radiomic features were divided into the following classes: first-order,
shape-based statistics (2D and 3D); gray-level co-occurrence matrix (24 features); gray-level
sequence length matrix (16 features); gray-level size area matrix; adjacent gray tone differ-
ence matrix; and gray-level dependence matrix. Details on radiomic features can be found
in Kumarasamy’s work [8].
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2.4. Statistical Analysis
2.4.1. Univariate Analysis

The non-parametric Kruskal–Wallis test was performed to identify those features
with potential to differentiate Warthin tumors from pleomorphic adenoma and malignant
carcinoma on an individual basis. Receiver operating characteristic (ROC) analysis was also
performed, and the Youden index was used to identify the optimal cut-off value for each
feature. The area under the ROC curve (AUC), sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy were then calculated to evaluate
the ability to differentiate benign lesions (Warthin tumors and pleomorphic adenoma) from
malignant ones. The McNemar test was used to assess statistically significant differences
between diagnostic performances.

The univariate analyses were performed using the Statistics Toolbox of MATLAB
R2007a (MathWorks, Natick, MA, USA).

2.4.2. Multivariate Analysis

A multivariate analysis was performed to discriminate benign lesions (Warthin tumors
and pleomorphic adenoma) from malignant ones. Clinical parameters and radiomics
features were considered in combination.

Given the high number of radiomics features, the selection of variables was performed
based on the results obtained from the univariate analysis before proceeding with this
multivariate analysis. This selection considered only the features that were significant in
the Kruskal–Wallis test and the features that obtained an accuracy ≥ 65%.

The linear regression model was used to evaluate the best linear combination of
significant characteristics for each outcome. In addition, pattern recognition methods
including support vector machine (SVM), k-nearest neighbors (KNN), artificial neural
network (NNET), and decision tree (DT) were adopted to evaluate performance in a
multivariate procedure. The best multivariate model was chosen based on the highest
accuracy. The dataset was randomly split into three independent sets in a 70:10:20 ratio for
training, validation, and testing:

• Training Set: The dataset that we fed our model to learn potential underlying patterns
and the relationships between them.

• Validation Set: The dataset that we used to understand our model’s performance
across different model types and hyperparameter choices.

• Test Set: The dataset that we used to approximate our model’s unbiased accuracy in
the wild.

MATLAB R2007 (MathWorks, Natick, MA, USA) was used for the statistical analysis
and machine learning. A p-value < 0.05 was considered significant.

3. Results

A total of 47 patients with Warthin tumors, 42 patients with pleomorphic adenoma,
and 28 patients with malignant neoplasms were enrolled and analyzed. The patient
characteristics and the median values and ranges of the clinical parameters are reported
in Table 1.

Main histopathological types of malignant neoplasms and localization are reported
in Figure 2. The 28 malignant tumors were low-grade, and all cytological diagnoses were
confirmed by definitive histological results.
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Table 1. Patient characteristics and median values and ranges of clinical parameters.

Warthin Tumor Pleomorphic
Adenoma

Malignant
Carcinoma

Gender
Male 32 15 16

Female 15 27 12

Age

Median value 62 52.5 53.5

Minimum 13 8 22

Maximum 76 83 84

NLR

Median value 2.09 1.73 4.2

Minimum 0.8 0.58 1.56

Maximum 3.32 3.62 6.05

PLR

Median value 103.64 120.69 148.63

Minimum 21.67 68.56 78

Maximum 205.46 220.2 306.14

SII

Median value 502.03 451.17 932.04

Minimum 71.32 105.7 129.49

Maximum 1103.36 1005.4 1634.4

SIRI

Median value 0.9 0.725 1.73

Minimum 0.28 0.17 0.31

Maximum 1.97 1.85 3.1
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Figure 2. Main histopathological types of the malignant population studied.

3.1. Univariate Analysis

All clinical parameters (NLR, PLR, SII, and SIRI) showed statistically significant
(p < 0.05) differences in the Kruskal–Wallis test based on median values when discriminat-
ing Warthin tumors from pleomorphic adenoma and malignant tumors (Figure 3).
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Figure 3. Boxplot of NLR, PLR, SII, and SIRI used to differentiate Warthin tumors from pleomorphic
adenoma and malignant carcinoma. The + symbol represents the outliers.

When discriminating Warthin tumors from pleomorphic adenoma and malignant SGT,
the clinical parameters NLR, PLR, SII, and SIRI showed accuracies of 0.88, 0.74, 0.76, and
0.83, respectively, with appreciable values of the AUC (>0.70, see Table 2).

Table 2. Diagnostic performance of clinical and radiomic parameters based on univariate analysis.

Radiomics Metric AUC Sensitivity Specificity PPV NPV Accuracy Cut-Off

wavelet_HHL_glcm_ClusterTendency 0.34 1.00 0.01 0.24 1.00 0.25 0.06

wavelet_HHL_glszm_
LargeAreaHighGrayLevelEmphasis 0.65 0.86 0.45 0.33 0.91 0.55 0.58

wavelet_HHL_glszm_
LargeAreaLowGrayLevelEmphasis 0.67 0.93 0.44 0.34 0.95 0.56 0.33

wavelet_LLH_gldm_
LargeDependenceLowGrayLevelEmphasis 0.64 0.89 0.47 0.35 0.93 0.57 −5.61

wavelet_LLH_gldm_
LargeDependenceEmphasis 0.64 0.79 0.56 0.36 0.89 0.62 −5.06

wavelet_HHL_glcm_
ClusterProminence 0.36 0.29 0.74 0.26 0.77 0.63 0.28

wavelet_LHL_gldm_
LargeDependenceLowGrayLevelEmphasis 0.67 0.79 0.63 0.40 0.90 0.67 −2.43

wavelet_LHL_gldm_
LargeDependenceEmphasis 0.68 0.75 0.69 0.43 0.90 0.70 −2.24

wavelet_HLH_glcm_JointEnergy 0.61 0.50 0.78 0.41 0.83 0.71 0.79

PLR 0.74 0.71 0.75 0.48 0.89 0.74 133.30

SII 0.73 0.71 0.78 0.50 0.90 0.76 594.91

SIRI 0.68 0.50 0.93 0.70 0.86 0.83 1.61

NLR 0.74 0.50 1.00 1.00 0.86 0.88 3.62
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Univariate analysis of the radiomic characteristics showed nine statistically significant
differences in the median values (Kruskal–Wallis, p < 0.05) when differentiating Warthin
tumors from pleomorphic adenoma and malignant tumors. These nine characteristics are
reported in Table 2 with their respective diagnostic performances.

The best result among both the clinical and radiomic parameters was seen in the ROC
analysis for NLR, with an AUC of 0.74, a specificity of 1, a PPV of 1, and an NPV of 0.86.
However, a low sensitivity value (sensitivity of 0.50) was observed.

Considering the selection of significant features from the univariate analysis, with
an accuracy ≥ 70%, six features (two radiomics metrics and four clinical parameters)
were used for the multivariate analysis: wavelet_LHL_gldm_LargeDependenceEmphasis,
wavelet_HLH_glcm_JointEnergy, NLR, PLR, SII, and SIRI.

3.2. Multivariate Analysis

Considering the six significant features (wavelet_LHL_gldm_LargeDependenceEmphasis,
wavelet_HLH_glcm_JointEnergy, NLR, PLR, SII, and SIRI), the best result in the multivariate
analysis was achieved by an SVM model with an accuracy of 86%, a sensitivity of 68%, and
a specificity of 91% (prediction speed: ~1500 obs/sec; training time: 4.2595 s; kernel function:
cubic; hyperparameter options disabled). Figure 4 reports the ROC curve and the confusion
matrix of the SVM model based on the test dataset.
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However, there was no statistically significant difference between the accuracy of NLR
considered alone compared to the accuracy of the SVM model trained with the six clinical
and radiomics parameters (p value > 0.05 for the McNemar test).

4. Discussion

Considering that the management and early diagnosis of SGT remain a challenge for
physicians, blood tests (inflammatory biomarkers) and MRI radiomic signatures (Rad-Score)
could play an important role in the early diagnosis of the disease.

The information that these measures provide to physicians about the inflammatory
process and discrimination between different tumor types can be combined with other
patient characteristics, when available, to increase the power of decision support models.

In our study, we evaluated the potential of inflammatory biomarkers and radiomic
features for the early diagnosis of SGT, both individually and in combination. Specifically,
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indices of inflammation (NLR, PLR, SII, and SIRI) were evaluated for their potential as
inflammatory biomarkers.

The roles of these inflammatory biomarkers have been extensively evaluated in the
literature in various malignancies: breast cancer, colorectal cancer, renal cell carcinoma,
non-small-cell lung cancer, esophageal squamous cell carcinoma, and salivary gland ma-
lignancies. Increased values of these inflammatory biomarkers before treatment were
positively correlated with a poor prognosis [7,9–14].

Damar et al. were the first to establish that an elevated NLR could be used as an
inflammatory marker to distinguish low-grade from high-grade parotid gland malignancies.
In this study, NLR was significantly raised in malignant SGT compared to benign SGT
(2.13 +/− 1.26 in benign and 3.29 +/− 3.13 in malignant) [15]. Guangyan Cheng et al.
determined that an elevated NLR value before treatment is significantly associated with
a poorer prognosis. In patients with an NLR < 2.48, the 10-year disease-specific survival
(DSS) rate was 68%; in patients with an NLR ≥ 2.48, the 10-year disease-specific survival
(DSS) rate was 58% [16].

In addition, the combination of these biomarkers, particularly the SII and SIRI scores,
has been evaluated as useful in preoperative risk stratification to effectively guide the
treatment strategy and postoperative follow-up of patients with salivary gland malignan-
cies. This combination, consolidating all three parameters simultaneously in the formula,
has the capacity to fully assess the balance between the host immune and inflammatory
conditions [17]. Inflammatory biomarkers, in addition to playing a supportive role in the
assessment of poor prognosis, can also be used as diagnostic tools in difficult cases to
provide proper guidance for the treatment of these tumors. Abbate et al. demonstrated
that there are statistically significant increases in NLR, PLR, and SII indices in malignant
SGT compared with benign SGT, thus establishing a cut-off value that is useful in decision
making in SGT management [5]. The analysis of our results revealed cut-off values for
differentiating a benign lesion from a malignant one (PLR: 133.30; SII: 594.91; SIRI: 1.61;
NLR: 3.62), with a higher accuracy for SIRI (0.83) and NLR (0.88).

Although the exact mechanism underlying the associations of inflammatory biomark-
ers with benign and malignant lesions remains unknown, previous results suggest some
possible explanations.

These results provide some insight into the role of the inflammatory state in benign
and malignant salivary pathologies and how it may support the genesis of these malignant
tumors. In fact, the inflammatory cells, such as lymphocytes, neutrophils, and platelets,
contribute to the invasion of cancer cells into the peripheral blood.

Neutrophils secrete large amounts of vascular endothelial growth factor, fostering an
appropriate microenvironment for the promotion of local tumor invasion and metastasis,
along with platelets, suppressing the effective immune response mediated by lymphocytes.

Another pre-surgical instrumental examination used to support diagnosis in SGT is
nuclear magnetic resonance imaging (MRI).

MRI is often the preferred imaging modality for patients with SGT; in fact, compared
with CT, it avoids emitting ionizing radiation to patients and can better map the extent
of the disease with contrast resolution, especially in the depiction of local spread and the
relationship of the tumor with the facial nerve and its branches [18]. Primarily, MRI-based
tumor diagnosis by qualitative assessment relies on the radiologist’s experience, which
can result in a less objective assessment, especially in a complex region such as the head
or neck. For example, some features of benign tumors might mislead the observer if they
are typically malignant features, such as those having irregular margins. Conversely, some
low-grade malignant tumors might have benign features. Therefore, quantitative methods
that can be used to differentiate between malignant and benign SGTs could improve
diagnostic accuracy and reduce inter-observer variability. In this case, radiomic analysis
of MRI radiomic features involves the extraction of quantitative imaging features with
high throughput from images of the SGT region. Moreover, in the context of oncology
studies, approaches based on artificial intelligence, machine learning, and radiomic metrics
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have been widely reported [19–23]. MRI radiomic signatures have also been recognized
as preoperative and independent prognostic factors for head and neck squamous cell
carcinoma (HNSCC) and nasopharyngeal carcinoma (NPC) in clinical practice [24,25].
In addition, Le-le Song et al. utilized a radiomics model that can provide objective and
quantitative information on intra-tumor heterogeneity and inter-tumor microenvironments
hidden in the image [26]. Rongli Zhang et al. studied the impact of reducing the number of
initial radiomic features on the performance of radiomic models to differentiate between
benign and malignant SGTs. They applied six feature categories separately and all the
feature categories in combination from three anatomy-based MRI sequences [27].

This differentiation between benign and malignant SGTs is an essential step to ensure
that a suitable surgical approach is taken. To date, the conventional methods used for
pre-surgical differential diagnosis of major SGTs are ultrasonography, MRI, and FNAC,
with sensitivities and specificities ranging from 0.74 to 0.88 and 0.87 to 0.98, respectively.
FNAC accurately discerns the neoplastic nature of the lesion in most cases. However, the
exact categorization of tumors, especially malignancies, can be challenging due to their
cytomorphological heterogeneity. This leads to an often undiagnostic or indeterminate
cytological diagnosis. In fact, the precision of FNAC for SGT subtyping is lower and varies
from 62% to 80% [28–30]. For this reason, given the low accuracy of FNAC in certain cases,
and given the growing use of inflammatory biomarkers and radiomic characteristics to
help clinicians in the pre-surgical phase of many tumors, we were prompted to ascertain
their validity, even for a group of tumors as heterogenous as SGTs.

In our study, the inflammatory biomarkers NLR, PLR, SII, and SIRI showed an accuracy
of 0.88, 0.74, 0.76, and 0.83, respectively, in differentiating Warthin tumors from pleomorphic
adenoma and malignant neoplasms. In addition, in the Kruskal–Wallis test based on median
values for differentiating Warthin tumors from pleomorphic adenoma and malignant
neoplasms, statistically significant differences (p < 0.05) were shown in nine radiometric
features. The best result in the multivariate analysis was obtained from an SVM model
with 86% accuracy, 68% sensitivity, and 91% specificity for six features.

However, this is a preliminary study that has some limitations. It is a retrospective
study of 117 patients with SGTs, ROI segmentation was performed manually, and unknown
or unreported inflammatory diseases could have influenced the results regarding the
inflammatory biomarkers.

Additionally, the results may have been influenced by the small sample size. Future
studies should aim to overcome these limitations.

5. Conclusions

In conclusion, the inflammatory biomarkers and radiological features identified with
machine learning almost overlap, greatly supporting pre-surgical differential diagnosis.
The main advantage of these methods is the ease with which the results are obtained
through the patients’ preclinical investigations: blood tests and MRI. The calculation of
inflammatory biomarkers may be easier than obtaining radiomic features. However, it is
possible to obtain radiomic features through open-source software.

In any case, it must be considered that the use of inflammatory biomarkers as support
tools is not suitable for all types of patients. Inflammatory biomarkers may be influenced by
other factors such as chronic inflammation, autoimmune diseases, infections, hematologic
disorders, and concurrent or long-term anti-inflammatory or steroid drug treatments.
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