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Simple Summary: Many aspects of the regulatory mechanisms of somatic cell reprogramming—the
conversion of any cell type into pluripotent stem cells—still remain elusive. The tumor suppressor
CYLD regulates several signaling pathways involved in this process. However, its potential role
in reprogramming has not been investigated. In this work, we present evidence that CYLD exerts
important regulatory control at the early stages of reprogramming. Loss of CYLD catalytic activity
leads to the reduced reprogramming efficiency of mouse embryonic fibroblasts. Whole proteome
analysis during early reprogramming stages revealed that CYLD DUB deficiency impedes a vital
early reprogramming step known as the mesenchymal-to-epithelial transition (MET). Our findings
expand our knowledge of early reprogramming mechanics and reveal a novel role for CYLD as an
extracellular matrix regulator.

Abstract: CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical
regulatory function in a variety of signaling pathways and biological processes involved in cancer
development and progression, many of which are also key modulators of somatic cell reprogramming.
Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of
investigating the involvement of CYLD in reprogramming and developing a better understanding
of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT)
and CYLD DUB-deficient (CYLD∆9/∆9) mouse embryonic fibroblasts (MEFs) into induced pluripotent
stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4,
c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower
early reprogramming kinetics. The introduction of WT CYLD to CYLD∆9/∆9 MEFs rescued the
phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent
colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome
analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the
mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in
CYLD∆9/∆9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes
affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix
and several metabolic pathways. Our findings not only establish for the first time CYLD’s significance
as a regulatory component of early reprogramming but also highlight its role as an extracellular
matrix regulator, which has profound implications in cancer research.

Keywords: CYLD; somatic cell reprogramming; MET; EMT; ECM organization; TGF-beta; pluripo-
tency; dedifferentiation
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1. Introduction

Somatic cell reprogramming is a process by which somatic cells can be transformed into
pluripotent stem cells [1]. Although many methodologies have been developed to achieve
this goal, such as chemical reprogramming [2–4], plasmid-based [5], mRNA-based [6],
direct delivery [7] and piggybac transposition [8], the most widespread and well-studied
is the virus-delivered, transgenic overexpression of OCT3/4, SOX2, KLF4 and c-myc, also
known as Yamanaka factors, which can be applied in numerous cutting-edge fields [9], such
as disease modeling [10–12], rejuvenation [13] and tissue regeneration [14–16]. Despite
the significant strides made in understanding the mechanisms involved in this process,
reprogramming remains a remarkably complex phenomenon, with a large number of het-
erogeneous factors regulating both reprogramming progression and efficiency [17–20]. Just
a few examples include the implication of numerous independently acting genes [21–25],
small molecules [26–29], most studied signaling pathways [30–38], epigenetic modifica-
tions [39–44] and micro-RNAs [45–48]. Understanding the involvement of each of these
heterogeneous mechanisms and then combining them is imperative to fully decipher the
regulatory network of reprogramming.

Several pieces of evidence indicate that somatic cell reprogramming resembles the
process of carcinogenesis. The Yamanaka factors are known oncogenes implicated in vari-
ous forms of cancer and also associated with poor prognosis [49–59]. In addition, tumor
suppressor genes, such as p53 and p21, are reprogramming barriers, and loss of their activ-
ity can dramatically increase reprogramming efficiency [60–62]. Moreover, many changes
observed during reprogramming, such as the inhibition of apoptosis and senescence, in-
creased proliferation rates, epithelial-to-mesenchymal transition and the Warburg effect,
are well-established and common processes in tumor development [20,63,64]. Furthermore,
during early reprogramming, cells undergo drastic morphological changes [65], such as
the loss of somatic cell identity and the establishment of new intercellular contacts [66,67],
phenomena also observed in tumorigenesis [68,69]. Based on the above, it has been sug-
gested that reprogramming can be used not only as a model for the study of numerous
cancer-related processes, including the EMT [64], development and differentiation of cancer
stem cells [70–72] and oncogenic transformation [73–77], but also for the discovery of novel
diagnostic and therapeutic targets [72,78,79].

CYLD is a 60 kb long gene encoding a 956-amino-acid protein (CYLD) that functions
primarily as a deubiquitinating enzyme [80]. The contribution of CYLD to the regulation of
NF-κB activity has been extensively studied [80,81], where it appears to act as both a K-63
and M-1 deubiquitinase [82–84]. Furthermore, CYLD has been shown to have a regulatory
role in other signaling pathways, including TGF-beta [85–87], Wnt-beta catenin [88,89],
Hippo [85,90], JNK [91–93], ERK [94] and Akt [95–97]. Regarding its biological role, CYLD
has been studied mainly in terms of its role in carcinogenesis. It has been shown to be
a tumor suppressor gene, as both a decrease in its expression and loss of function have
been associated with adverse effects in many cancers [85,87,88,91–93,98–101]. Despite
that in most cases the molecular basis of CYLD involvement remains elusive, in some
types of cancer a relevant molecular mechanism has been identified. In breast cancer
and head and neck squamous cell carcinoma (HNSCC), CYLD DUB deficiency leads to
TGF-beta pathway activation and the promotion of epithelial-to-mesenchymal transition
(EMT) [85,87]. On the other hand, the role of CYLD in multiple myeloma depends mainly
on the regulation of WNT, as the loss of CYLD leads to pathway hyperactivation and
cancer aggressiveness [88]. The regulation of NF-κB by CYLD plays a critical role in
lung cancer [101,102], B-cell receptor-dependent lymphomas [103], glioblastoma [104] and
pulmonary adenocarcinoma [105], among others.

CYLD may also have a regulatory role in cellular reprogramming. As already men-
tioned, CYLD is a tumor suppressor gene and modulates several pathways crucial in
reprogramming progression, most notably TGF-beta, Hippo and Wnt. Moreover, in some
cases, CYLD DUB deficiency has been associated with cancer stemness [104,106,107]. In
this study, we reveal for the first time the regulatory role of CYLD in somatic cell repro-
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gramming. CYLD DUB deficiency leads to a decrease in reprogramming efficiency, without
affecting the pluripotency potential of induced stem cells and the in vitro spontaneous
differentiation ability. CYLD DUB-deficient cells are characterized by the slower induction
of pluripotency and expression of epithelial markers and deactivation of mesenchymal
genes, particularly those related to the organization of the extracellular matrix (ECM).
Taken together, we propose that CYLD is a key regulator of successful early reprogram-
ming development.

2. Materials and Methods
2.1. Generation of Lentiviral Particles for Somatic Cell Reprogramming

The reprogramming protocol used is based on the co-expression of the OSKM repro-
gramming cassette using the polycistronic vector TetO-FUW-OSKM (TetO-FUW-OSKM was
a gift from Rudolf Jaenisch (Addgene plasmid # 20321; https://www.addgene.org/20321/,
accessed on 14 October 2023)). The reprogramming cassette is doxycycline-inducible, based
on the tet-on system, and its expression is controlled by the M2rtTA protein. As an M2rtTA
vector, we used FUW-M2rtTA (FUW-M2rtTA was a gift from Rudolf Jaenisch (Addgene
plasmid #20342; https://www.addgene.org/20342/, accessed on 14 October 2023)). Stan-
dard HBS calcium phosphate transfection was used for the production of lentiviral particles
in human embryonic kidney cells 293T (HEK293T). The plasmids pMD2.G (pMD2.G was
a gift from Didier Trono (Addgene plasmid # 12259; https://www.addgene.org/12259/,
accessed on 14 October 2023)) and psPAX2 (psPAX2 was a gift from Didier Trono (Addgene
plasmid # 12260; https://www.addgene.org/12260/, accessed on 14 October 2023)) were
utilized as envelope and packaging vectors, respectively. Briefly, the culture medium was
changed 4 h before transfection. The transfection cocktail consisted of 50% HBS 2X, 5%
CaCl2 2 M, 10 µg of packaging and envelope plasmids and 20 µg of transfer plasmids. Three
days after the medium change in transfected HEK293T, lentivirus-containing supernatants
were collected for further use.

2.2. Isolation of Mouse Embryonic Fibroblasts (MEFs)

MEFs were generated as previously described [108]. CYLDWT/WT (WT) and CYLD∆9/∆9

(∆9) MEFs were used for somatic cell reprogramming experiments, whereas CYLDWT/∆9

MEFs were utilized for feeder cell preparation. Initial experiments were optimized with
matching genetic background feeders and CYLDWT/∆9 cells. No difference in any experi-
mental outcome was observed, so the scaled-up experiments were performed using only
heterozygote MEF feeder cells, as we could reduce the amount of animal use also. Three
independent MEF cell lines were established, two of them derived from littermate embryos
of the same crossing (crossing b2, cell lines b2_1 and b2_2) and the third one from littermate
embryos of a different crossing (crossing b3, cell lines b3). All subsequent experiments
(reprogramming efficiency/kinetics/whole proteome analysis, pluripotency maintenance,
in vitro spontaneous differentiation) were conducted using the three biological replicates
described above. Finally, each biological replicate was analyzed in at least three technical
replicates for each experiment presented.

2.3. Genotyping

Genotyping of animals and cells was conducted according to the protocol described
by Trompouki et al. [108] and Karatzas et al. [109]. Briefly, genomic DNA from selected
samples was isolated by using the PureLink™ Genomic DNA Mini Kit (Invitrogen™,
Waltham, MA, USA). The following PCR primers were used to characterize the CYLD locus:
FWD1: 5 -GATGGCTCTTGTCACCACTT-3′, F6: 5′-CGTGAACAGATGTGATGAAGGC-3′

and R6: 5′-CTACCATCCCTGCTAACCAC-3′.

2.4. Production of Pinducer20 C601S and Pinducer21 FCYLD

Construction of the lentiviral expression vectors pINDUCER20 FLAGCYLDC601S
and pINDUCER21 FLAGCYLDWT was performed using the Gateway protocol. In more

https://www.addgene.org/20321/
https://www.addgene.org/20342/
https://www.addgene.org/12259/
https://www.addgene.org/12260/
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detail, pENTR1A FLAGCYLDWT and pENTR1A FLAGCYLDC601S inserts flanked by
the attL1 and attL2 regions (previously constructed in our lab) were transferred between
the attR1 and attR2 regions of each of the two target vectors pINDUCER20 (Addgene
plasmid #44012, https://www.addgene.org/44012/, accessed on 14 October 2023) and
pINDUCER21 (Addgene plasmid #46948, https://www.addgene.org/46948/, accessed on
14 October 2023). This transfer was achieved by the LR recombination reaction using the
LR Clonase II enzyme mixture (Invitrogen™, Waltham, MA, USA).

For the construction of pENTR1A FCYLDWT and pENTR1A FCYLD C601S, Gate-
way™ cloning (Invitrogen™, Waltham, MA, USA) was utilized. More specifically, the
pENTR™ 1A Dual Selection Vector (Invitrogen, A10462) was cleaved with the enzymes
KpnI (Fermentas, Waltham, MA, USA) and XhoI (Fermentas, Waltham, MA, USA). The
enzyme reaction products were dephosphorylated using SAP (Fermentas, Waltham, MA,
USA). Subsequently, a ligation reaction between FLAGCYLDWT, FLAGCYLDC601S and
the empty pENTR1A vector was performed using T4 Ligase (Fermentas, Waltham, MA,
USA) with a molar ratio of linear vector to linear insert of 1:1.

2.5. Western Blot

Cell lysis was performed using NP-40 buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl and
1% NP-40) supplemented with a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,
USA). Protein denaturation was achieved after diluting (1:1) the samples with 2× Laemmli
Sample Buffer (Bio-Rad Laboratories, Hercules, CA, USA), followed by heating at 95 ◦C for
5 min. The samples were analyzed with SDS-PAGE, and proteins were electrophoretically
transferred to PVDF membrane for Western blot analysis. Membranes were treated with
blocking solution, consisting of 5% non-fat dry milk in PBST, for 1 h at RT. For the detection
of CYLD, we used the cylindromatosis 1 antibody (E-4, sc-74434, Santa Cruz Biotechnology,
Dallas, TX, USA), and for b-actin, we used the beta actin antibody (C-4, Santa-Cruz). As a
secondary antibody, we used m-IgGκ BP-HRP (sc-516102, Santa Cruz Biotechnology, Dallas,
TX, USA) for both CYLD and b-actin. In all cases, the antibodies were diluted in blocking
solution, and the membrane was treated for 1 h at RT. Membrane-bound antibodies were
detected with an enhanced chemiluminescence detection kit (Pierce, Waltham, MA, USA)
using a Typhoon FLA 7000 imaging system (GE Healthcare Life Sciences, Chicago, IL, USA).
The E-4 CYLD antibody interacts with the C-terminal 419 amino acids of human CYLD.

2.6. Cell Culture

MEFs were cultured on plates treated with a 0.1% gelatin solution (20 min on 37 ◦C).
MEF culturing medium consisted of high-glucose DMEM, 10% FBS, 1X NEAA, 1X penicillin–
streptomycin, 1X GlutaMAXTM supplement (Gibco-Invitrogen, Waltham, MA, USA) and
0.1 mM β-mercaptoethanol. Induced pluripotent stem cells (iPSCs) were cultured on
feeder cells plated onto gelatin-coated plates. iPSC medium consisted of high-glucose
DMEM (Gibco-Invitrogen, Waltham, MA, USA), 15% KnockOut™ Serum Replacement
(Gibco-Invitrogen, Waltham, MA, USA), 1X NEAA (Gibco-Invitrogen, Waltham, MA, USA),
1X penicillin–streptomycin (Gibco-Invitrogen, Waltham, MA, USA), 1X GlutaMAXTM

supplement (Gibco-Invitrogen, Waltham, MA, USA), 0.1 mM β-mercaptoethanol (Gibco-
Invitrogen, Waltham, MA, USA) and 10 ng/mL mouse leukemia inhibitory factor (LIF
Recombinant Mouse Protein, embryonic stem cell-qualified, Gibco-Invitrogen, Waltham,
MA, USA). All cell types used were tested for mycoplasma.

2.7. Feeder Cell Preparation

CYLDWT/∆9 MEFs were treated with a mitomycin C (Sigma-Aldrich, St. Louis, MO,
USA) solution (10 µg/mL in DMEM) for 2 h at 37 ◦C. Cells were subsequently washed
with PBS and immediately trypsinized and cryopreserved for future use.

https://www.addgene.org/44012/
https://www.addgene.org/46948/
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2.8. Somatic Cell Reprogramming

Reprogramming was conducted according to Papathanasiou et al. [110]. The day
before infection, MEFs were passaged at a ratio of 5 × 105 cells/p100 plate. The infection
cocktail was prepared with a ratio of 3 mL OSKM virus + 3 mL M2rtTA virus + 2 mL MEF
medium/p100 plate. Cells were cultured for 24 h with the infection cocktail, which was
then replaced with MEF medium. The next day, a DOX-containing medium (2 µg/mL) was
added to the cells, which initiated the reprogramming process (D0). On day 6, early iPSC
colonies were dissociated with accutase and plated on wells with a ratio of 105 cells/p100
plate and cultured with DOX-containing (2 µg/mL) iPSC medium. Cells were cultured
until day 18, when reprogramming efficiency was calculated via ALP staining.

Apart from the three MEF cell lines (mentioned in Section 2.2), two additional deriva-
tive cell lines were established using the three separate ∆9 MEF isolates. For the first one,
we inserted into ∆9 MEFs a plasmid expressing the WT CYLD (from now on termed ∆9
FCYLD), and for the second one, we inserted a plasmid expressing another catalytically
inactive form of CYLD known as C601S (from now on termed ∆9 C601S). The difference
between C601S and ∆9 is that although both are catalytically inactive, the former is a
full-length protein, rendered inactive due to the presence of a single point mutation in the
catalytic center of the protein, whereas the latter is a truncated CYLD variant lacking its
carboxyl terminus, including the catalytic center. In both ∆9 FCYLD and ∆9 C601S lines,
the expression of the CYLD transgene is doxycycline-inducible. At the start of reprogram-
ming, every cell line used was of similar passage. Moreover, we ensured the Yamanaka
reprogramming cassette was expressed in comparable levels in each sample (Figure S1).

2.9. ALP Staining

On day 18 of reprogramming, the medium was removed, and cells were fixed with
a 4% PFA solution for 10 min at 4 ◦C. After washing with PBS (1X), cells were treated
with the ALP (Alkaline Phosphatase) staining solution, containing 200 µL NBT (nitro-blue
tetrazolium chloride)/BCIP (5-bromo-4-chloro-3′-indolyphosphate p-toluidine salt) stock
solution (Sigma-Aldrich, St. Louis, MO, USA) in 10 mL of NTMT (NaCl, Tris-Cl, MgCl2,
Tween-20) buffer in the dark for 10 min. Reprogramming efficiency was calculated as the
number of ALP-stained colonies/number of cells plated onto feeders × 100.

2.10. Colony Harvesting

Using a sharp, glass Pasteur pipette, an incision was made along the border of the iPSC
colony in order to separate it from the surrounding cells. The colony was then collected
with a Gilson PIPETMAN (Gilson, Madison, WI, USA) and placed in medium-containing
collection tubes on ice. Only colonies from the same plate were pooled together and chosen
based on their phenotypic characteristics. Once enough colonies were collected, the total
sample was flash frozen and stored for future use (−80 ◦C). A representative example can
be found in Figure S2.

2.11. RNA Extraction, cDNA Synthesis and Quantitative Real-Time PCR (qPCR)

RNA extraction was conducted using the NucleoSpin RNA Plus RNA purification
kit (Macherey-Nagel, Düren, Germany). RNA samples were stored at −80 ◦C, and RNA
integrity was tested with bleach agarose gel [111]. cDNA was synthesized using the Prime-
Script™ 1st strand cDNA Synthesis Kit (Takara Bio USA, San Jose, CA, USA). Real-time
quantitative PCRs (qPCRs) were performed in duplicates using 5 ng of cDNA per reaction
amplified by SYBR FAST qPCR Master Mix (KK4602, Kapa Biosystems, Wilmington, MA,
USA) in a StepOne™ Real-Time PCR System (Applied Biosystems™, Warrington, UK)
and a 7500 Fast Dx Real-Time PCR Instrument (Applied Biosystems™, Warrington, UK).
CYLD qPCR primers recognize a region from exon 2 to exon 3 (spanning from 645 to 753,
transcript NM_173369.3). The complete list of primer sequences can be found in Table S1.
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2.12. Immunofluorescence

Cells were fixed with a 4% PFA solution for 10 min at room temperature. Samples were
subsequently treated with a permeabilization solution consisting of 0.25% PBS/Triton-X
100 for 10 min and a blocking solution consisting of 1% BSA in PBST (PBS + 0.1% Tween
20, Sigma-Aldrich, St. Louis, MO, USA) for 30 min to block unspecific binding of the
antibodies. Samples were incubated with the primary antibody in blocking solution for 1 h
at RT and the secondary antibody in blocking solution for 1 h at RT in the dark. Finally, cells
were incubated with DAPI solution (1 µg/mL) for 1 min and visualized using a Zeiss LSM
780 confocal microscope (Zeiss, Oberkochen, Germany). The following primary antibodies
were used: OCT3/4 (H-134, sc-9081, Santa Cruz Biotechnology, Dallas, TX, USA), NANOG
(C-4, sc-376915, Santa Cruz Biotechnology, Dallas, TX, USA) and LIN28 (AF3757, R&D
Systems, Minneapolis, MN, USA). As a secondary antibody, Alexa Fluor™ 555 Highly
Cross-Adsorbed Secondary Antibody (Invitrogen™, Waltham, MA, USA) was used. More
specifically, Donkey anti-Rabbit for OCT3/4, Donkey anti-Mouse for NANOG and Donkey
anti-Goat for LIN28.

2.13. In Vitro Spontaneous Differentiation Assay

The differentiation potential of the produced WT and ∆9 iPSC cell lines was assessed
via the formation of Embryoid Bodies (EBs) and their in vitro spontaneous differentiation,
as described by Liao et al. [112]. Briefly, iPSCs were dissociated with accutase and cultured
into low-adhesion tissue culture plates with LIF-free iPSC medium. Embryoid Bodies (EBs)
were formed after 3 days of suspension culture conditions. EBs were then trypsinized,
and a single-cell suspension was plated in gelatin-coated wells and cultured in MEF
medium for 14 days. Samples were harvested on days 0, 1, 2, 3, 4, 7, 10 and 14 of the
differentiation procedure.

2.14. Proteomics

Samples harvested as described in Section 2.10 were lysed with FASP buffer (0.1 M
Tris-HCl pH 7.6, 4% SDS, 0.1 M DTT). Supernatants were collected and stored at −20 ◦C.
The protein extracts were processed by tryptic digestion using the Sp3 protocol, including
an alkylation step in 100 mM iodoacetamide (Acros Organics/Thermo Scientific Chemicals,
Waltham, MA, USA). Then, 20 µg of beads (1:1 mixture of hydrophilic and hydrophobic
SeraMag carboxylate-modified beads, Cytiva Life Sciences, Marlborough, MA, USA) was
added to each sample in 50% ethanol. Protein clean-up was performed on a magnetic
rack. The beads were washed two times with 80% ethanol and once with 100% acetonitrile
(Fisher Scientific, Waltham, MA, USA). The proteins captured on beads were digested
overnight at 37 ◦C under vigorous shaking (1200 rpm, Eppendorf Thermomixer, Eppendorf,
Hamburg, Germany) with 1 µg Trypsin/LysC (MS grade, Promega) prepared in 25 mM
ammonium bicarbonate. The next day, the peptides were purified using a modified Sp3
clean-up protocol, solubilized in the mobile phase A (0.1% Formic acid in water) and
sonicated. The peptide concentration was determined through an absorbance at 280 nm
measurement using NanoPhotometer® P330 (Implen, Westlake Village, CA, USA).

Samples were analyzed with a liquid chromatography–tandem mass spectrometry
(LC-MS/MS) setup consisting of a Dionex Ultimate 3000 nanoRSLC (Thermo-Fisher Sci-
entific, Waltham, MA, USA), coupled in line with a Thermo Q Exactive HF-X Orbitrap
mass spectrometer (Thermo-Fisher Scientific, Waltham, MA, USA). Peptidic samples were
directly injected and separated on a 25 cm long analytical C18 column (PepSep, 1.9 µm
3 beads, 75 µm ID) using a one-hour-long run, starting with a gradient of 7% Buffer B (0.1%
Formic acid in 80% acetonitrile) to 35% for 40 min and followed by an increase to 45% in
5 min and a second increase to 99% in 0.5 min and then kept constant for equilibration
for 14.5 min. A full MS was acquired in profile mode using a Q Exactive HF-X Hybrid
Quadrupole-Orbitrap mass spectrometer, operating in the scan range of 375–1400 m/z
using 120 K resolving power with an AGC of 3× 106 and maximum IT of 60 ms followed by
a data-independent acquisition method using 8 Th windows (a total of 39 loop counts), each
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with 15 K resolving power with an AGC of 3 × 105 and max IT of 22 ms and normalized
collision energy (NCE) of 26.

Orbitrap raw data were analyzed in DIA-NN (Data-Independent Acquisition by Neu-
ral Networks) [113] against the Mouse Proteome (downloaded from Uniprot, 21,946 pro-
teins entries, downloaded 11/2022) using the library free mode of the software (version
1.8.1) allowing up to two tryptic missed cleavages and a maximum of three variable modifi-
cations/peptide. A spectral library was created from the DIA runs and used to reanalyze
them (double search mode). A DIA-NN search was used with oxidation of methionine
residues, N-terminal methionine excision and acetylation of the protein N-termini set as
variable modifications and carbamidomethylation of cysteine residues as a fixed modifica-
tion. The match between runs feature was used for all analyses, and the output (precursor)
was filtered at 0.01 FDR. The protein inference was performed on the level of genes using
only proteotypic peptides.

The proteomics data were processed with the Perseus software (version 1.6.15.0, Max
Planck Institute of Biochemistry) [114]. Values were log(2) transformed, a threshold of 70%
of valid values in at least one group was applied, and the missing values were replaced
from normal distribution. For statistical analysis, a Student’s t-test was performed, and
permutation-based FDR was calculated. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE [115] partner repository
with the dataset identifier PXD044220 (https://www.ebi.ac.uk/pride/ (accessed on 14
October 2023).

2.15. Statistical Analysis

Graphs were plotted using GraphPad Prism Software 6 (GraphPad Software, La Jolla,
CA, USA). All values are presented as mean ± SEM from at least three independent experi-
ments with suitable number of technical replicates (at least three). A two-tailed Student’s
t-test was used to estimate the statistical significance between two groups. Significance was
set up at p ≤ 0.05 (unless stated otherwise).

3. Results
3.1. CYLD DUB Deficiency Affects Reprogramming Efficiency

Initially, it was tested whether CYLD plays any regulatory role in somatic cell repro-
gramming. For this purpose, WT, ∆9, ∆9FCYLD and ∆9C601S MEFs were reprogrammed
into pluripotent stem cells. The expression of CYLD in all cell types used was mea-
sured with both qPCR and Western blot (Figure 1a,b) (the uncropped blot is presented
in Figure S3). At the end of the reprogramming period (day 18), cells were stained for
Alkaline Phosphatase (ALP), which is highly expressed in undifferentiated cells, thus it
is used as a surface pluripotency marker [1]. A representative example of ALP staining is
presented in Figure 1c, while the staining results of each sample can be found in Figure S4.
Overall, CYLD DUB deficiency caused a ~75% reduction in reprogramming efficiency
compared to WT MEFs (mean efficiency = 0.8% for MEFs carrying the WT CYLD and 0.21%
for cells carrying a catalytically inactive CYLD). Importantly, the introduction of WT CYLD
in ∆9 MEFs was able to rescue the reprogramming efficiency, which became comparable to
that of WT MEFs. On the other hand, the C601S variant had no effect (Figure 1c,d). This
indicates that the observed phenotype is caused solely by CYLD catalytic inactivation.

3.2. ∆9 CYLD Does Not Affect iPSC Pluripotency

Despite the reduction observed in cell reprogramming efficiency, ∆9 MEFs formed
colonies of apparent reprogrammed cells. Consequently, it was tested whether ∆9 iPSCs
are fully pluripotent. For this purpose, WT and iPSC colonies were harvested on day
18 and established stable, monoclonal iPSC cell lines from all WT and ∆9 MEF cell lines
reprogrammed. iPSC cultures were maintained in DOX-free conditions. After 10 con-
secutive passages, ∆9 iPSC exhibited an indistinguishable morphology to control iPSCs
(Figure 2a) and expressed comparable, high levels of core (OCT3/4, NANOG) and late
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(DPPA5A, REX1, UTF1) [17,116,117] pluripotency markers, as well as epithelial markers
(CDH1, OCLN) [118,119] (Figure 2b). Additionally, in both iPSC types, mesenchymal
(CDH2, SNAI1, ZEB2) [118,119] and fibroblast markers (ACTA2, CD44, THY1) [120,121]
were expressed in comparable levels and presented a dramatic decrease compared to MEFs
(Figure 2b). Furthermore, both iPSC types expressed comparable, low levels of T and
EOMES, which are markers of primed pluripotency and incomplete reprogramming [122]
(Figure S5a). The protein expression of pluripotency markers was further investigated
with immunofluorescence. It was observed that both the expression and localization of
pluripotency markers OCT3/4, NANOG and LIN28 were comparable in WT and ∆9 iPSC
colonies. In conclusion, CYLD inactivation does not affect the pluripotency maintenance
of iPSCs.
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Figure 1. CYLD DUB deficiency reduces reprogramming efficiency. (a,b) CYLD expression levels in
the indicated MEFs (WT, ∆9, ∆9 FCYLD, ∆9 C601S) determined by qPCR (a) and immunoblotting (b).
(c) Representative example of ALP-positive staining. CYLD catalytic inactivity leads to the formation
of a smaller number of iPSC colonies. (d) Cumulative results of ALP staining in WT and ∆9 repro-
grammed MEFs of the three established cell lines (b2_1, b2_2 and b3). CYLD DUB deficiency leads
to a mean 75% reduction in reprogramming efficiency compared to MEFs expressing the WT CYLD
(raw ALP staining results of the three MEF cell lines are presented in Figure S4). Data shown are
the mean ± SEM from n = 3 independent experiments, two-tailed Student’s t-test (**** p ≤ 0.0001,
Abbreviation: ns, not significant). The uncropped blot is shown in Supplementary Figure S3.

3.3. CYLD Is Dispensable for In Vitro Spontaneous Differentiation

A hallmark of pluripotency is the ability of stem cells to spontaneously differentiate
into cells from the three embryonic germ layers. Therefore, it was tested whether CYLD
DUB deficiency could potentially affect this process. For this purpose, WT and ∆9 iPSCs
derived from the three independent MEF cell lines were cultured on suspension, under
LIF-free conditions. After 3 days, both cell types formed Embryoid Bodies (EBs) of similar
morphology (Figure S5b). Since the differentiation process starts with the formation of
EBs, it was tested whether the downregulation of pluripotency genes followed a similar
pattern in WT and ∆9 cells. It was observed that both cell types presented comparable
downregulation rates (Figure S5c). On day 3, EBs were plated on gelatin-coated plates and
cultured on FBS-containing medium. On the 14th day of culture, both cell types expressed
comparable levels of endodermic (AFP, GATA4), mesodermic (ACTA2, BRACHYURY)
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and ectodermic (NESTIN, PAX6) markers [123,124] (Figure S5d). It was then investigated
whether CYLD DUB deficiency could affect the kinetics of differentiation. To this end, cells
were allowed to differentiate spontaneously and sampled from days 0-4, 7, 10 and 14 to
assess the downregulation rate of pluripotency genes (OCT3/4, NANOG) and the upregula-
tion of developmental genes (Endoderm: AFP, GATA4; Mesoderm: ACTA2, BRACHYURY;
Ectoderm: NESTIN, PAX6; Trophoectoderm: EOMES). In both cases, the tested cell types
exhibited comparable behavior. In conclusion, CYLD DUB deficiency does not affect the
spontaneous differentiation potential of iPSCs (Figure S6).
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Figure 2. CYLD is dispensable for pluripotency maintenance. (a) Bright-field microscopy images of
representative iPSC monoclonal colonies after 10 consecutive passages (scale bar: 100 µm). Three
WT and ∆9 monoclonal cell lines are presented, derived from the three WT and ∆9 MEF established
cell lines (b2_1, b2_2 and b3). (b) Relative quantitation by qPCR of pluripotency (OCT3/4, NANOG,
UTF1, REX1, DPPA5A), epithelial (CDH1, OCLN), mesenchymal (ZEB2, CDH2, SNAI1) and fibroblast
(THY1, ACTA2, CD44) markers in the three WT and ∆9 monoclonal iPSC cell lines described in
(a). (c) Representative immunofluorescence staining of the pluripotency markers OCT3/4, NANOG
and LIN28 in WT and ∆9 iPSCs (scale bar: 100 µm). Data shown are the mean ± SEM from n = 3
independent experiments.

3.4. CYLD Regulates Early Reprogramming

It has been firmly established that somatic cell reprogramming can be separated into
three distinct phases: initiation (or early reprogramming), maturation (intermediate) and
stabilization (late) [17,63]. Aiming to identify which phase (or phases) is mostly affected
by CYLD DUB deficiency, early iPSC colonies derived from the three independent MEF
cell lines were harvested from specific days, which are representative of each of the three
phases—5 for early, d10 for intermediate and d16 for late reprogramming. Colonies were
manually harvested and chosen based on their morphological characteristics (Figure S7a).
More specifically, clusters of cells with cuboidal morphology (early iPSCs) [125] and com-
pact colonies with distinct borders and well-defined edges (late iPSCs) [126] were chosen.
The expression of markers specific to each phase was measured with qPCR. Both cell
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types exhibited similar expression patterns on days 10 and 16 (Figure S7b,c). Of partic-
ular importance for these phases are SOX2 and ESRRB since they are activated during
the maturation phase [63,127]. In a similar manner, the expression of late pluripotency
markers GBX2 [128], DPPA5A [117], UTF1 [17] and REX1 [116] follows the same trend in all
cases. However, CYLD DUB-deficient cells presented lower expression levels of epithelial
genes, such as CDH1 and EPCAM (Figure 3a), which are considered early reprogramming
markers [17,63,118]. The downregulation of mesenchymal and somatic (fibroblast) genes is
another key event of early reprogramming [17,63,118]; however, at day 5, no statistically
significant difference in the expression of said markers (fibroblast: TGFB3, THY1 [120,127];
mesenchymal: SNAI1, ZEB2 [118,119]) between CYLD DUB-deficient and WT cells was
detected (Figure S7b). On the other hand, CYLD DUB-deficient early iPSCs expressed lower
levels of the core pluripotency genes OCT3/4 (endogenous) and NANOG compared to their
WT counterparts (Figure 3b). This indicates that CYLD affects somatic cell reprogramming
by regulating the initiation phase.
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Figure 3. CYLD regulates early reprogramming. qPCR-based relative quantitation of epithelial
(CDH1, EPCAM) (a) and pluripotency (OCT3/4, NANOG) (b) genes on day 5, which corresponds
to the early (initiation) phase of reprogramming. Tested mesenchymal markers for this day are
presented in Figure S7b. Harvested day 5 early iPSC colonies were derived from reprogrammed WT
and ∆9 MEFs of the three established MEF cell lines (b2_1, b2_2 and b3) and MEFs from the three
independent ∆9 FCYLD and ∆9 C601S derivative cell lines. Data shown are the mean ± SEM from
n = 3 independent experiments for each cell line, two-tailed Student’s t-test (* p ≤ 0.05, ** p ≤ 0.01.
Abbreviation: ns, not significant **).

3.5. CYLD DUB Deficiency Delays Early Reprogramming Progression

Early reprogramming is a complex and multifaceted process in which many mech-
anisms are involved. Among the better-studied steps are the mesenchymal-to-epithelial
transition (MET), the glycolytic shift, the loss of somatic cell identity and the increase in
proliferation rates [20,63]. Interestingly, there are two distinct events observed during early
reprogramming. The first days of reprogramming are characterized by elevated levels
of mesenchymal genes, such as CDH2, SNAI1 and ZEB2, followed by the activation of
epithelial and epidermal genes, like CDH1-OCLN and KRT14-KRT17, respectively, and the
concomitant downregulation of mesenchymal and somatic genes [120,129,130]. This set of
changes is considered a hallmark of MET [118,131]. Based on this, it has been suggested
that the initiation phase can be split into two stages, a mesenchymal one, which takes
place during the first days after the expression of the reprogramming cassette, followed
by an epidermal stage [19]. Based on previous studies with the same reprogramming
protocol [110], MET starts at day 3, when the first early iPSC colonies become observable,
whereas the initiation phase lasts until day 6, when cells are plated onto feeders.

In order to better understand the way in which CYLD DUB deficiency affects these
processes, early iPSC colonies from the three independent MEF cell lines were harvested
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during the initiation phase, and the relative expression of markers characteristic to each
event was measured. High-quality and without fibroblast contamination, early iPSC
colonies from all days considered to be part of the second stage of early reprogramming
(D3–D6) were harvested (phenotypic characteristics of these colonies are described in
Figure S8a). CYLD DUB-deficient cells express lower levels of core pluripotency and
epithelial genes from the start and throughout the initiation phase. However, on day 6, the
expression levels were on par with WT and ∆9 FCYLD early iPSCs. On the other hand,
the mesenchymal and somatic genes tested exhibited similar expression patterns and were
adequately downregulated by day 3 (Figure S8c).

These results indicate that CYLD DUB deficiency impedes early reprogramming pro-
gression. To test this hypothesis, we harvested samples from day 2, a transitional state
before the initiation of MET, where cells alter their shape and are clustered together but
have not yet formed pre-iPSC colonies (Figure S8a). Indeed, cells lacking catalytically active
CYLD express higher levels of both mesenchymal (FN1, TGFB1) [119,132] and somatic
markers (TGFB3, THY1) [120,127]. On par with that, the expression levels of epithelial
genes (CDH1, OCLN) [119] are lower compared to WT and ∆9 FCYLD cells (Figure 4).
Interestingly, even though CYLD DUB-deficient cells managed to successfully downreg-
ulate the mesenchymal and somatic markers tested by day 3, this was not the case with
the epidermal and epithelial markers, which remained at notably lower levels compared
to control cells. Taken together, CYLD DUB deficiency affects early reprogramming by
hindering the progression of MET. All studied genes can be found in Figure S8d.
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gramming process. Harvested D2 and D3 early iPSCs were derived from reprogrammed WT and ∆9
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Abbreviation: ns, not significant).

3.6. CYLD Regulates MET and ECM Organization

Based on the results mentioned above, it was clear that CYLD DUB deficiency com-
promises the delicate balance that leads to MET activation. In order to gain insight into
the way CYLD DUB deficiency disrupts the early reprogramming network, WT/∆9 D0
MEFs of the three independent cell lines and the D3–D4 early iPSC colonies (of said cell
lines) were harvested and subjected to whole proteome analysis through LC/MS. Day 3
proteome corresponds to the transcriptome of day 2 samples and day 4 proteome to that of
day 3 samples. A total of 7163 proteins were identified (the z-score of identified proteins is
given in Table S2). On D4, there were 5368 statistically significant Differentially Expressed
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Proteins (DEPs) in ∆9 early iPSCs compared to WT (2647 upregulated and 2721 downreg-
ulated). Similarly, on D3, there were 4910 DEPs in ∆9 early iPSCs (2347 upregulated and
2562 downregulated). After applying a threshold of |log2fc≥ 1.5| and log2 (p-Value)≥ 1.5,
the number of DEPs dropped to 436 for D3 (199 upregulated and 237 downregulated) and
522 for D4 (142 upregulated and 380 downregulated) (Figure 5a). It was observed that the
most overexpressed proteins in ∆9 early iPSCs are associated with the extracellular matrix,
as identified by the use of the MatrisomeDB database and the literature research (Emilin1,
Fbln1, Fbln2, Fn1, Igsf8, Pcolce2, Plg, Prss23, Vtn) [133–135]. On the other hand, mark-
ers of early reprogramming as well as epithelial and epidermal proteins associated with
MET (Aldh3a1, Lgals7, Nccrp1, Sfn, Krt14, Krt17) [120,130,136–138] were downregulated
(blue dots).
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Figure 5. Whole proteome profiling of D3 and D4 early iPSCs. (a) Volcano plots (FDR = 0.05, S0 = 0)
comparing the ∆9 early iPSCs proteome to that of WT early iPSCs (D3: left plot, D4: right plot). A
threshold of |log2fc≥ 1.5| and log2 (p-value)≥ 1.5 is applied to determine the statistically significant
Differentially Expressed Proteins (DEPs). Proteins downregulated in ∆9 samples compared to WT
samples are marked as red, whereas upregulated proteins are marked as green. Proteins of interest
are highlighted in blue. CYLD DUB deficiency led to the upregulation of 199 and downregulation
of 237 proteins compared to WT day 3 early iPSCs. Similarly, 142 proteins were upregulated and
380 downregulated compared with WT samples on day 4. At both time points, some of the most
overexpressed proteins in ∆9 early iPSCs are associated with the extracellular matrix, whereas
epithelial, epidermal and early reprogramming markers are underrepresented. (b) Volcano plots
(FDR = 0.05, S0 = 0) comparing the proteome of D4 early iPSCs proteome to that of D3 early iPSCs
(WT: left plot, ∆9: right plot). A threshold of |log2fc ≥ 1| and log2 (p-value) ≥ 1.5 is applied to
determine the statistically significant DEPs. D3 and D4 harvested early iPSCs are derived from WT
and ∆9 MEFs of the three established cell lines (b2_1, b2_2 and b3). Each sample was analyzed in at
least two technical replicates.
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Due to the low number of DEPs between the D3–D4 transition, a less strict threshold
of |log2fc ≥ 1| was applied in this analysis. It was revealed that the majority of WT D4
DEPs are upregulated in comparison to D3 iPSCs (122 DEPs upregulated and 58 downreg-
ulated), whereas the opposite trend is observed in ∆9 early iPSCs (23 DEPs upregulated
and 97 downregulated) (Figure 5b). Both WT and ∆9 MEFs followed a similar pattern
during the transition from D0 to D3, with most DEPs being upregulated. However, this
effect was more pronounced in ∆9 cells (Figure S9a). Finally, our analysis revealed that
CYLD DUB deficiency also affected the proteome of MEFs. More specifically, 311 DEPs
were downregulated and 82 upregulated in ∆9 MEFs compared to WT MEFs at day 0
(Figure S9b).

Pathway enrichment analysis with Metascape [139] revealed that DEPs upregulated in
∆9 cells are strongly correlated with extracellular matrix organization, cell–substrate adhe-
sion and several developmental processes (for example, hemostasis, response to wounding
and regulation of blood coagulation) (Figure 6a). Most of the processes overrepresented
in ∆9 cells, notably the extracellular matrix organization, cell adhesion and the integrin
pathway, are known to be downregulated during the MET, where structural reorganiza-
tion occurs [130,140]. Indeed, iPSCs express a different set of ECM proteins compared to
MEFs [48]. The remodeling of ECM (destruction of MEF-associated ECM and development
of iPSC-associated ECM) during reprogramming is paramount for the establishment of the
unique iPSC morphology and microenvironment [48,141]. Intriguingly, one of the enriched
pathways associated with ∆9 D4 upregulated DEPs is the “Regulation of Epithelial Cell
Proliferation Pathway”. However, most of the associated DEPs are associated with EMT
progression, so they are expected to play a negative role in epithelial cell identity (Table S3).
Conversely, downregulated DEPs are mostly associated with several metabolic processes
and cytoskeletal organization. Interestingly, pathway analysis of the D3–D4 transition
provided markedly different results for WT and ∆9 cells (Figure 6b). More specifically,
upregulated DEPs in WT D4 early iPSCs are primarily associated with the formation of
the cornified envelope and regulation of proteolysis. The number of downregulated DEPs
was relatively small (58), and as a result, their association with the presented processes is
weak (low −log10 (p-Value)). On the contrary, downregulated DEPs of ∆9 cells presented a
strong correlation with extracellular matrix organization and the integrin pathway. The
number of upregulated DEPs was very small, so the pathway analysis failed to construct
any correlation. Regarding the D0-D3 transition, upregulated DEPs presented many sim-
ilarities between WT and ∆9 MEFs, with most proteins being associated with the same
biosynthetic and metabolic processes (for example, the biosynthesis of cofactors and tRNA,
nucleoside monophosphate and amino acid metabolic process). However, the pattern
was not the same with the downregulated proteins. In WT cells, downregulated DEPs
presented a strong association with the extracellular matrix organization, a process that
is completely absent from ∆9 cells. Similarly, processes highly enriched in ∆9 cells, such
as vasculature development and the integrin 1 pathway, are not observed in WT cells
(Figure S10a). Finally, comparison of D0 MEFs revealed that most downregulated DEPs
in ∆9 cells are associated with several metabolic processes, whereas upregulated DEPs
presented a weak association. Interestingly, the combined analysis was enriched in several
processes associated with the immune response, such as the NF − κB pathway, response to
viral infection and macroautophagy (Figure S10b).

Pathway analysis of D3 and D4 samples indicated that a set of 38 extracellular matrix-
associated proteins are differentially expressed (Table 1). Notable members of this group are
Fn1, Emilin1 and Fbln2, which were shown above to be the most overexpressed proteins in
∆9 cells. A heatmap presenting the expression patterns of the extracellular matrix proteins
across the tested samples is available in Figure 7a. As it can be clearly observed, most
of these proteins are significantly overexpressed in ∆9 cells on day 3 of reprogramming.
Moreover, this trend is also present, although to a lesser extent, on day 4.
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Figure 6. Pathway enrichment analysis of DEPs from D3 and D4 early iPSCs. (a) Analysis of
DEPs between ∆9 D3 (left) and D4 (right) compared to their WT counterparts. Upregulated DEPs
significantly correlate with extracellular matrix organization, cell adhesion and several developmental
processes. On the other hand, downregulated DEPs participate in several metabolic processes.
(b) Analysis of D3–D4 transition DEPs in WT (left) and ∆9 (right) early iPSCs. Upregulated DEPs
in WT cells are mostly associated with the formation of the cornified envelope and the regulation
of proteolysis. Downregulated DEPs are fewer, and the enrichment analysis presented a weak
association with some metabolic and developmental processes, the most notable of them being the
VEGF signaling pathway. In the case of ∆9 early iPSCs, downregulated DEPs have a strong link
with extracellular matrix organization and the integrin 1 pathway. The very small number (23) of
upregulated proteins did not present a significant association with any process. Pathway analysis
was conducted with Metascape [139].

Table 1. Alphabetical list of upregulated extracellular matrix proteins in ∆9 D3 and D4 early iPSCs.
Proteins were identified from the pathway enrichment analysis (extracellular matrix organization,
R-HSA-1474244) (Figure 6a). The detailed expression patterns are given in Figure 7 and Table S2.
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4. Discussion 

Figure 7. CYLD regulates MET. (a) Expression pattern of 38 extracellular matrix-related proteins that
were identified from pathway analysis. On both D3 and D4, ∆9 early iPSCs express higher levels of
these proteins compared to WT cells, although this is more prominent on D3. (b) Expression pattern
of 91 identified EMT−related proteins. Epithelial−related proteins are presented on top. CYLD
DUB−deficient cells express lower levels of epithelial proteins and higher levels of mesenchymal
proteins compared to WT cells. While mesenchymal proteins are slightly downregulated on D4
compared to D3, ∆9 cells were not able to increase the expression of epithelial proteins on D4.
(c) Expression pattern of 87 identified reprogramming-associated proteins. Activation of these
proteins is concomitant to MET initiation. CYLD DUB-deficient cells present vastly lower expression
levels of all these proteins compared to WT cells. On the other hand, WT early iPSCs steadily increase
most of them on D4 compared to D3. Three independent WT and ∆9 MEF cell lines were used
(b2_1, b2_2 and b3, respectively). Harvested D3 and D4 early iPSC colonies are derived from these
reprogrammed WT and ∆9 MEF cell lines. Each sample was analyzed in at least two technical
replicates (z−scores of DEPs from every sample are presented in Table S2).

Since many of these proteins are also involved in the EMT, and taking under consider-
ation that hallmark epithelial genes such as CDH1 and EPCAM are downregulated in ∆9
cells, the number of D3 and D4 DEPs associated with the EMT was investigated. Through
the literature search, the use of the EMTome portal [142] and the Hallmark Epithelial
Mesenchymal Transition Gene Set (Molecular Signature Database, MSigDB) [143], 91 EMT-
associated DEPs were identified; 21 epithelial and 70 mesenchymal or EMT-promoting
DEPs. A heatmap presenting the expression pattern of these proteins on days 0, 3 and 4 is
available in Figure 7b.

The expression levels of epithelial proteins are substantially lower in both D3 and D4
compared to WT early iPSCs. At the same time, most mesenchymal and EMT-promoting
proteins are upregulated in ∆9 early iPSCs, although it is worth noting that on D4 their
expression has decreased. D0 MEFs show comparable expression levels of most proteins.
Finally, we identified 87 proteins whose expression is associated with successful reprogram-
ming (Figure 7c), based on previous research [17,19,120,129,130,137,138,140]. Regardless of
their different expression patterns throughout reprogramming, these proteins are activated
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during MET. While all these proteins have been successfully upregulated in ∆9 early iPSCs
compared to MEFs, their expression is considerably lower compared to WT early iPSCs,
suggesting a lower rate of reprogramming kinetics. To summarize, our proteomic results
indicate that ∆9 early iPSCs express higher levels of EMT-associated markers and extracel-
lular matrix proteins, while failing to adequately activate epithelial and MET-associated
proteins (the complete list of genes included in Figure 7 heatmaps is available in Table S2).

4. Discussion

The current study revealed for the first time the regulatory role of CYLD in somatic cell
reprogramming. MEFs lacking a catalytically active protein presented lower reprogram-
ming efficiency and slower early reprogramming kinetics compared to WT MEFs, with
the transition from the first to the second stage of the initiation phase being most affected
(Figure 8). However, it is worth noting that CYLD DUB-deficient cells were able to be fully
reprogrammed. ∆9 iPSCs were stable after 10 consecutive passages and presented similar
phenotypic and molecular characteristics to WT iPSCs. Moreover, they could spontaneously
differentiate into cells of the three germ layers and followed the same differentiation kinetics
pattern as WT cells. It would be very interesting to investigate whether this is the case with
directed differentiation also, especially towards cell types that are known to be negatively
affected by CYLD inactivation, such as hepatocytes [91,144–146], cardiomyocytes [147–150]
and neurons [151–154].
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Figure 8. Proposed role of CYLD in somatic cell reprogramming. CYLD DUB-deficient MEFs
(CYLD∆9/∆9) present a 75% reduction in reprogramming efficiency compared to WT MEFs
(CYLDWT/WT), as determined through ALP staining. Gene profiling and whole proteome analysis
identified the initiation phase of reprogramming as mostly affected by CYLD DUB deficiency, hinder-
ing early reprogramming progression. ∆9 early iPSCs are characterized by higher expression levels of
developmental, somatic (fibroblast), EMT- and ECM-associated proteins (which act as reprogramming
barriers) and lower expression levels of epithelial, early pluripotency and reprogramming-progression-
associated proteins. As a result, the process of MET is severely affected (this figure was generated with
BioRender, https://www.biorender.com/). Abbreviations: D= day of reprogramming.

The mechanism by which CYLD DUB deficiency slows down the transition to the
second stage of initiation phase is likely the obstruction of MET through the promotion of

https://www.biorender.com/
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the opposite process, EMT. As our proteomics results demonstrated, CYLD DUB-deficient
cells are characterized by the aberrant upregulation of mesenchymal and EMT-promoting
proteins and low expression of epithelial proteins, in contrast to WT early iPSCs. This corre-
lates with the inadequate activation of proteins associated with successful reprogramming.
As previously stated, these proteins are also markers of the MET since they are activated
during that process [120,130,140]. These results strengthen our early reprogramming kinetic
experiments, where we demonstrated that CYLD DUB-deficient cells activate epithelial and
pluripotency genes at a lower rate. Indeed, analysis of the D3-D4 transition supports this
observation. In more detail, the main difference between WT D3 and D4 early iPSCs is the
upregulation of MET- and reprogramming-associated proteins. On the other hand, ∆9 D4
early iPSCs are still in the process of downregulating mesenchymal and ECM-associated
genes, as the pathway analysis of D3–D4 transition revealed.

The reason behind the EMT-promoting phenotype of ∆9 cells is not clear yet. As
previously mentioned, the first transcriptional wave observed during somatic cell repro-
gramming is characterized by the downregulation of somatic and mesenchymal genes,
along with genes associated with several developmental processes, such as vasculature,
bone and heart development [120,129,130,140]. The major event of this stage (which is also
called the mesenchymal stage [19]) is the downregulation of Thy1 [120,129] and roughly
corresponds to the first day of our reprogramming model. The absence of Thy1 from the
cell surface signifies the end of this stage [120,129]. Whether EMT- and ECM-associated
genes are hyperactivated in ∆9 cells at this stage or their downregulation follows a slower
rate is not known. Since cells at D1 cannot be distinguished from their surroundings nor can
they be individually harvested with our protocol, we were unable to isolate pure samples
from this stage. However, it is worth mentioning that pathway analysis of the ∆9 D0-D3
transition did not include the process of extracellular matrix organization, which was the
primary downregulated event of the WT D0-D3 transition. Furthermore, the proteomic
results suggest that a number of key mesenchymal stage players, such as Tgf-β1 and Fn1,
presented a small but statistically significant upregulation in ∆9 D3 early iPSCs compared
to MEFs. While these observations likely point out to an aberrant activation of EMT during
D1, other proteins, including Thy1 and Thbs1, are significantly downregulated in ∆9 D3
iPSCs compared to ∆9 MEFs. As a result, no safe conclusion can be made based on the
current results, and further research on D1 cells is required. Regardless, the overexpression
of EMT genes/proteins and several components of the TGF-beta pathway (such as TGFB1,
TGFBi, LTBP1 and THBS1) is consistent with previous observations that associate CYLD
DUB deficiency with TGF-beta activation and EMT promotion [85–87,108,155], although
it is not yet known whether the underlying mechanism is the same in the case of somatic
cell reprogramming.

Importantly, the negative effect of CYLD DUB deficiency on epithelial and epidermal
gene activation is further supported by the transcriptomic analysis of WT and ∆9 D3 early
iPSCs (data not shown). Importantly, 17 out of the 21 identified epithelial DEPs and several
proteins associated with successful reprogramming progression showcased high correlation
with the transcriptomic results, further supporting the findings of the present study.

A finding of significant importance is the ability of CYLD to regulate the processes of
extracellular matrix organization, which is proposed for the first time in this study. This
can have a considerable implication in cancer research, since this process is known to play
a critical role in cancer development, growth and invasion [156–159]. Regarding its role in
somatic cell reprogramming, several studies [48,120,130,140] have demonstrated that the
downregulation of ECM genes is a hallmark of the MET and failure to do so is associated
with poor reprogramming efficiency. Indeed, the ECM is a driver of the EMT [160], so
the hyperactivation of ECM-related proteins in ∆9 cells may contribute independently to
MET obstruction.

Another point worthy of discussion is the potential involvement of Irf6. Our results
revealed that CYLD DUB-deficient cells failed to activate Irf6 during the first days of
reprogramming (Table S2). It has been recently shown that irf6 is a member of a nine-
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transcription-factor (TF) complex that plays a key regulatory role in early reprogramming,
facilitating the transition to the next phase [110]. More specifically, early iPSC colonies
that express all nine transcription factors simultaneously have significantly higher chances
of becoming fully reprogrammed. Interestingly, RNAi knockdown of Irf6 reduced repro-
gramming efficiency by 60%. It was found that the expression of Irf6 (along with Gli2
and Ovol1, two other components of the 9TF assembly) is induced between days 2 and 3
by mostly stochastic events related to the OSKM reprogramming cassette. However, it is
highly likely that the processes triggered by CYLD DUB deficiency might interfere with
these mechanisms.

Besides EMT and ECM regulation, our pathway analysis revealed that CYLD DUB
deficiency negatively affects various metabolic processes (such as glutathione, nucleotide
and carbohydrate metabolism) not only during reprogramming but also in MEFs. While
it is known that metabolic changes play a crucial part in reprogramming, especially the
metabolic shift from oxidative phosphorylation to glycolysis [161,162], this process was
not observed in our pathway analysis. While further research is needed to identify the
effect of CYLD DUB deficiency in these metabolic processes, one valid hypothesis is
that these changes correlate with the promotion of EMT, as it has been demonstrated
in cancer development [64,163]. One potential way to uncover the role of the CYLD-
affected metabolic processes in somatic cell reprogramming is the study of the differential
metabolites between WT and ∆9 early iPSCs [164].

5. Conclusions

The present study uncovered for the first time the effect of CYLD in somatic cell
reprogramming. CYLD is part of the mechanism overseeing a successful mesenchymal-
to-epithelial transition during early reprogramming and the successful establishment of
pluripotency. Indeed, loss of CYLD promotes the EMT and slows down the progression of
early reprogramming, leading to efficiency reduction. Nevertheless, CYLD DUB-deficient
cells present self-renewal and differentiation abilities comparable to those of control iPSCs.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/cancers15204997/s1, Figure S1: Transduction efficiency test, Figure S2:
Colony harvesting example, Figure S3: Uncropped Western blot from Figure 1b, Figure S4: Total
ALP staining results, Figure S5: CYLD DUB deficiency does not affect iPSC pluripotency, Figure
S6: Kinetics of differentiation, Figure S7: Kinetics of reprogramming, Figure S8: Kinetics of early
reprogramming, Figure S9: Whole proteome profiling of D0 MEFs and D0-D3 transition, Figure S10:
Pathway analysis of D0 MEFs and D0-D3 transitions, Table S1: Primer sequences used for qPCR,
Table S2: Heatmap gene expression analysis, Table S3: Genes involved in pathway analysis described
in Figure 6, Table S4: Genes involved in pathway analysis described in Figure S10.
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