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Abstract: Photopolymerization is an active research field enabling to polymerize in greener conditions
than that performed with traditional thermal polymerization. At present, a great deal of effort is
devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating
systems are currently the focus of numerous safety concerns so alternatives to UV light are being
actively researched. However, visible light photons are less energetic than UV photons so the
reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane
constitutes an interesting candidate for the design of photocatalysts of polymerization due to its
low cost and its easy chemical modification. In this review, an overview concerning the design of
furane-based photoinitiators is provided. Comparisons with reference systems are also established to
demonstrate evidence of the interest of these photoinitiators in innovative structures.

Keywords: furane; photocatalyst; visible light; photopolymerization; type II photoinitiators; oxime
esters; free radical polymerization

1. Introduction

During the past decade, major efforts have been devoted to developing polymerization
processes more respectful of the environment [1–16]. In this field, photopolymerization
offers several advantages compared to the traditional solution-phase polymerization. As
an interesting feature, photopolymerization can be carried out without solvents, to obtain
temporal and spatial control of the polymerization process but also to polymerize in energy-
saving conditions [17–30]. Indeed, light-emitting diodes (LEDs) have become popular
light sources that are now unavoidable in photopolymerization [31–35]. Contrary to UV
irradiation setups that are energy-consuming and expensive, LEDs are cheap, compact,
lightweight, long-living, and energy-saving devices. LEDs also offer the possibility to
polymerize under visible light, which constitutes a major advantage in terms of light pene-
tration within the photocurable resin but also in terms of safety for the manipulator [36–39].
Production of ozone during polymerization can also be avoided if visible light sources are
used [39]. Indeed, a light penetration ranging between a few millimeters at 400 nm and
around 5 cm at 800 nm can be obtained in the visible range whereas the light penetration
remains limited to a few hundreds of micrometers if UV light is used [40]. As a drawback
to this improved light penetration, visible light photons are also less energetic than UV
photons so this issue can only be overcome by developing photoinitiating systems of higher
reactivity. Intense research activity on photopolymerization is notably supported by the
numerous applications making use of photopolymerization. Among the most popular
applications, dentistry, 3D and 4D printing, solvent-free paints, adhesives, coatings, mi-
croelectronics, and varnishes can be cited as relevant examples [1–10]. With regard to the
reactivity of the photoinitiating systems, numerous structures have been examined over the
years. Among them, naphthalimides [41–59], pyrenes [60–68], benzophenones [69–76], car-
bazoles [77–90], thioxanthones [29,91–103], camphorquinone [104,105], curcumin [106–109],
dihydroanthraquinones [110], silyl glyoximides [111], iodonium salts [41,112–118], N-
heterocyclic carbene boranes [30], phenothiazines [119–129], copper complexes [130–134],
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iridium complexes [135–139], benzoyl formates and related derivatives [140–142] or chal-
cones [9,143–156] are among the most widely studied structures of the last few years.
Investigation of these different photoinitiating systems notably enabled the identifica-
tion of highly reactive structures. Photoinitiating systems that can efficiently promote
polymerization under sunlight [157–166] or in water [23,103,152,167–181] are also actively
researched as these systems certainly constitute the photoinitiating systems of tomorrow.
In fact, photoinitiators can be divided into two distinct categories differing in how the
initiating radicals are produced. Thus, Type I photoinitiators consist of dyes capable to
undergo, upon excitation, a homolytic “α-cleavage” to produce free-radical species (See
Scheme 1) [182–191]. In this field, benzoin ether derivatives, benzyl ketals, acylphosphine
oxides, acetophenones, aminoalkyl phenones, O-acyl-α-oximino ketones, acylgermanes,
α-hydroxyalkyl ketones, hydroxylalkylphenones, α-aminoketones, and oxime esters have
been extensively studied [192]. Type I photoinitiators are typically monocomponent sys-
tems and do not require any additives to produce radicals. As a drawback, during the
polymerization process, an irreversible consumption of the photoinitiator occurs. Con-
versely, Type II photoinitiators are bimolecular photoinitiators that can lead, in the presence
of a hydrogen donor, to the formation of a ketyl radical and a second radical derived
from the hydrogen donor molecule [92,97,193–198]. In order to introduce the photosen-
sitizer in a catalytic amount, a sacrificial amine is often used. Considering that most of
the photoinitiating systems are three-component systems in order to exhibit sufficient
reactivity, the complexity of the formulation is often evoked as a drawback of this strategy.
Type II photoinitiators are often combined with onium salts which can generate initiating
radicals subsequent to the photoinduced electron transfer between the photosensitizer
and the onium salt (See Scheme 1) [199–204]. As an advantage of this approach, the pho-
tosensitizer can be introduced in a catalytic amount, with the sacrificial amine acting as
a reductant capable to regenerate the photoinitiator in its initial redox state during the
polymerization process.
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Among structures that can be used for the design of photoinitiators or photosensitiz-
ers, furane has only been used scarcely, contrary to thiophene which was a popular build-
ing block [91,126,205–210]. Furan is a heterocyclic five-membered ring that is extensively 
used for the design of anti-inflammatory and antimicrobial agents [211]. Furan was also 
used for the design of semi-conducting materials for organic solar cells [212] and field 
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Among structures that can be used for the design of photoinitiators or photosensitizers,
furane has only been used scarcely, contrary to thiophene which was a popular building
block [91,126,205–210]. Furan is a heterocyclic five-membered ring that is extensively used for
the design of anti-inflammatory and antimicrobial agents [211]. Furan was also used for the
design of semi-conducting materials for organic solar cells [212] and field effect transistors [213,
214], the design of fluorescent materials [215] and light-emitting materials [216,217] or host
materials [218] for organic light-emitting diodes. Furan exhibits a low toxicity, even if recent
reports have demonstrated that furan can be formed during the thermal treatment of food and
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can be carcinogenic [219]. Notably, furan can facilely accumulate in the liver [220]. However,
due to its interesting redox potential, and its good thermal and photochemical stability, furane
remains a candidate of choice for designing photoinitiators. In this review, an overview of
the recent advances concerning the design of visible light photoinitiating systems comprising
furane is provided. Parallel to the description of the different structures and with the aim of
evidencing the pertinence of this approach, a comparison with reference systems composed
of benchmark photoinitiators is provided.

2. Furane-Based Photoinitiators of Polymerization
2.1. Benzylidene Ketones

The first report mentioning the use of a furane-based benzylidene ketone (BFC)
as a photoinitiator of polymerization was reported in 2019 by Nie and coworkers (See
Figure 1) [221]. 2,6-Bis(furan-2-ylmethylidene)cyclohexan-1-one (BFC) could be prepared
in one step, by condensation of furfural with cyclohexanone in quantitative yield. Based on
its absorption extending between 300 and 450 nm with an absorption maximum located at
373 nm, this dye was thus appropriate for photopolymerization experiments carried out at
365, 385, and 405 nm (See Figure 2).
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Interestingly, BFC could initiate the free radical polymerization (FRP) of hexamethy-
lene diacrylate (HDDA) and polyethylene glycol diacrylate (PEGDA) upon irradiation at
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365 nm with a LED (light intensity: 70 mW/cm2) without any additives. At similar concen-
trations, higher monomer conversions could be obtained for PEGDA compared to HDDA.
Thus, if a conversion of 70% in 900 s could be determined for PEGDA, this value decreased
to only 30% for HDDA. The best monomer conversions were obtained at very low photoini-
tiator content, namely 0.0625 wt%. BFC can thus be used in a catalytic amount. At 405 nm,
a different situation was found since the HDDA conversion decreased to only 10% whereas
that of PEGDA increased up to 80%. It was thus concluded that PEGDA was acting as a
co-initiator for BFC. Noticeably, the addition of 5 wt% of ethyl 4-dimethylaminobenzoate
(EDB) in HDDA did not contribute to drastically improving the HDDA conversion whereas
the addition of 5 wt% of PEGDA in HDDA increased the HDDA conversion up to 60%
upon irradiation at 405 nm for 900 s. This trend was confirmed during the FRP of hydrox-
yethyl acrylate (HEA), with the addition of PEGDA improving the monomer conversion.
Comparison with the reference system based on 2-isopropylthioxanthone (ITX) revealed
BFC to outperform ITX, irrespective of the polymerization conditions (See Figure 3).
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BFC (0.0625 wt%)/PEGDA, ITX (0.0625 wt%)/PEGDA, BFC (0.0625 wt%)/PEGDA (5 wt%)/HDDA,
ITX (0.0625 wt%)/EDAB (5 wt%)/HDDA upon irradiation with a LED emitting at 405 nm,
70 mW/cm2. Reproduced with permission of Ref. [221].

To support the high monomer conversion obtained with PEGDA and on the basis of
UV-visible absorption experiments, the authors suggested the formation of an exciplex
between the monomer and BFC. Notably, a redshift of the absorption maximum for BFC
from 373 nm in HDDA up to 389 nm in PEGDA, together with a broadening of the ab-
sorption spectrum up to 500 nm could be demonstrated. Overall, the mechanism depicted
in Scheme 2 was proposed by the authors. Subsequent to the formation of the exciplex
between BFC and PEGDA, and upon irradiation, the complex is promoted in its excited
state so that a photoinduced electron transfer between PEGDA and BFC can occur. By
proton transfer, initiating radicals can be formed. Parallel to this, efficient photobleaching
of the resin could be observed during the polymerization process, resulting from the for-
mation of ketyl radicals, suppressing the electron acceptor in BFC, and contributing to the
discoloration of the final coating. Photobleaching properties of photoinitiators are highly
researched, considering that visible light photoinitiators are strongly colored compounds
that often impose color on the final coatings [88,108,120,140,191,221–233]. The photobleach-
ing ability of BFC was also demonstrated during the 3D printing experiments performed
using PEDGA as the monomer. For comparison, a benchmark photoinitiator absorbing in
the same range was used, namely bis(2,6-difluoro-3-(1-hydropyrrol-1-yl)phenyl)titanocene
(Irgacure 784). As shown in Figure 4, if the final printed object was strongly colored with
Irgacure 784, a colorless object could be obtained with BFC.
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Following this initial work, further investigations carried out by the same authors
on BFC revealed the low photoinitiating ability of the BFC/EDB combination to originate
from a rotation of the two peripheral furyl groups towards the central ketone group,
adversely affecting the hydrogen transfer interaction with EDB [195]. Conversely, due
to the strong interaction of BFC with PEGDA, molecular motion of the furyl groups is
efficiently impeded, facilitating the hydrogen transfer interaction.

One year later, Lalevée and coworkers developed a series of benzylidene ketones still
bearing furyl groups as peripheral groups (Ketone 1 and Ketone 3) but comprising different
central groups. For comparison, an analog series was prepared, with peripheral thiophenes
(ketone 4 and ketone 6) (See Figure 5) [234]. In this work, the FRP of acrylates and also
the cationic polymerization (CP) of epoxides were investigated at 405 nm. Noticeably,
modification of the central part in ketone 1-ketone 6 only slightly affected the position
of the absorption maxima since a variation of only 5 nm could be found between the
different dyes (See Table 1 and Figure 6). By replacing the furane group with a thiophene
group, almost no modification of the absorption maxima was found, evidencing that the
electron-donating ability of furane was comparable to that of thiophene. Besides, the
highest molar extinction coefficients were determined for ketone 3 and ketone 4 bearing the
central N-ethylpiperidinone. Based on their absorptions, photopolymerization experiments
could be carried out at 405 nm with all dyes, in thin films, and in thick films.
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Table 1. Optical characteristics of ketones 1–6 in acetonitrile. Data extracted from Ref. [234].

λmax (nm) εmax (M−1.cm−1) ε@405 nm (M−1.cm−1)

ketone 1 368 29,230 9740
ketone 2 365 25,020 7980
ketone 3 370 34,920 11,690
ketone 4 368 34,200 10,130
ketone 5 372 31,470 11,950
ketone 6 370 29,750 10,280

Despite the similarity of their absorptions, major differences could be found between
the different dyes in terms of monomer conversions. For the different experiments, three-
component benzylidene ketones/amine/Iod (0.1%/2%/2%, w/w/w) systems were used.
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Here again, after optimization of the polymerization conditions, a very low photoinitiator
content could be used. Thus, in thick films, the best monomer conversion was obtained
with ketone 3, peaking at 94% after 400 s of irradiation at 405 nm. For comparison, its
thiophene analog i.e., ketone 4 only furnished a conversion of 24% (See Table 2). The
benefits of introducing a furane group in benzylidene ketones were thus demonstrated.
A slight reduction of the monomer conversion was observed with the more sterically
hindered ketone 5, reaching 90%. In the case of ketone 1 and ketone 2 comprising a
central thiopyranone, only low monomer conversions were obtained, below 30%. In
thin films, an inversion of reactivity between ketone 3 and ketone 4 was found, with
ketone 4 outperforming ketone 3 (81% vs. 55% conversion for ketone 3). It therefore
clearly evidenced the crucial role of the substitution pattern of benzylidene ketones on
the reactivity, but also the necessity to test all dyes in thin and in thick films. Steady-state
photolysis experiments performed in solution for ketone 3 revealed this dye to interact
both with Iod and EDB in oxidative and reductive pathways. Besides, faster photolysis was
evidenced with Iod than with EDB (See Figure 7).
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Figure 7. Photochemical mechanism occurring with ketone 3 used as a photosensitizer.

Table 2. Final conversions obtained for Ebecryl 40 in thick and thin films using the three-component
benzylidene ketones/amine/Iod (0.1%/2%/2%, w/w/w) system, irradiation at 405 nm with a LED
for 400 s. Data extracted from Ref. [234].

Ketone 1 Ketone 2 Ketone 3 Ketone 4 Ketone 5 Ketone 6

FCs
(thick films) 30% 24% 94% 24% 90% 25%

FCs
(thin films) 55% 67% 55% 81% 59% 71%

Due to the high reactivity of ketone 3 during the FRP of Ebecryl 40, the cationic
polymerization of (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate (EPOX)
was also investigated with the two-component ketone 3/Iod (0.1%/2%, w/w) system. After
400 s of irradiation, a final monomer conversion of 50% could be determined, making
ketone 3 a photoinitiator as efficient in FRP as in CP.

Following this work, the same authors investigated the reactivity of the extended
version of ketone 3, namely ketone 3′ in the same conditions as ketone 3 (See Figure 8) [146].
Due to the extended π-conjugation in ketone 3′, a redshift of the absorption maximum
to 405 nm was determined for ketone 3′, with a slight increase of the molar extinction
coefficient compared to ketone 3 (ε = 37,700 M−1.cm−1 vs. 34,920 M−1.cm−1 for ketone 3).
Polymerization tests revealed ketone 3′ to furnish a higher monomer conversion than
ketone 3 in thin films (68% vs. 55% for ketone 3). Conversely, a lower conversion was
obtained during the CP of EPOX with ketone 3′ compared to ketone 3 (27% vs. 50% for
ketone 3). These differences in reactivity can be assigned to different molar extinction
coefficients at 405 nm but also to different rate constants of the interaction of ketone 3 and
ketone 3′ with the different additives. The introduction of a less flexible central part was
also investigated, as exemplified with Dye 1 and Dye 9 [151].
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Figure 8. Chemical structures of ketone 3′, dye 1, and dye 9.

Here again, the higher reactivity of the more extended Dye 9 compared to Dye 1 was
confirmed in thin films, at 405 nm but also at 470 nm during the FRP of PEGDA (See Table 3).
It can tentatively be assigned to a reduction of the redox potentials for the extended dyes,
enabling these structures to interact more efficiently with the iodonium salt.

Table 3. Final conversions obtained during the FRP of PEGDA in thick and thin films using the
three-component benzylidene ketones/amine/Iod (0.1%/2%/2%, w/w/w) system, irradiation at 405
or 470 nm with a LED for 200 s. Data extracted from Ref. [151].

LED@405 nm LED@470 nm

Dye 1 Dye 9 Dye 1 Dye 9

FCs (thick films) 7% 14% - -
FCs (thin films) 76% 90% 40% 63%

2.2. Charge Transfer Complexes Based on Benzylidene Ketones

The design of water-soluble photoinitiators is an active research field as it paves the
way toward photopolymerization in water. If the chemical modification of well-known
photoinitiators constitute hard work in order to render the dyes water-soluble, recently, an
interesting approach was proposed. This involves minimizing the synthetic step to a simple
mixture of the targeted photoinitiator with a water-soluble amine in order to prepare water-
soluble charge transfer complexes (CTC). Using this approach, no chemical modification of
the organosoluble photoinitiator is required [235–249]. This approach, if recently revisited
in the context of photopolymerization, is not new since one of the first reports mentioning
the use of water-soluble charge transfer complexes in photopolymerization was published
as early as 1973 by Shigeho Tazuke [250]. In recent chemistry, triethanolamine (TEOA) is
among the most widely used water-soluble amines due to its remarkable water-solubility
and its easy availability. In 2020, 2,6-bis(furan-2-ylmethylidene)cyclohexan-1-one (BFC)
was revisited by Nie and coworkers in the context of the design of water-soluble photoini-
tiators [167]. As anticipated, the formation of a CTC between TEOA and BFC resulted in a
redshift of the absorption maxima from 373 nm for BFC up to 400 nm for [BFC/TEOA]CTC
in acetonitrile (See Figures 9 and 10).
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Figure 10. UV-visible absorption spectra of BFC and [BFC/TEOA]CTC. Reproduced with permission
of Ref. [167].

The CTC exhibited good solubility in water since a saturation concentration of 20
mg/mL was determined. At 3 wt% CTC in water, the polymerization efficiency of acry-
lamide (AM) reached an optimum, and a final monomer conversion higher than 80% could
be determined after 900 s of irradiation at 405 nm (I = 70 mW/cm2) (See Figures 10 and 11)
Monomer conversions were obtained during the FRP of acrylamide upon irradiation at
405 nm (70 mW/cm2) using the [BFC/TEOA]CTC as the photoinitiating system.

To support the polymerization process detected with the BFC/TEOA combination, the
mechanism depicted in Figure 11 was proposed by the authors. Notably, upon excitation of
the CTC, a photoinduced electron transfer between TEOA and BFC can occur. By hydrogen
abstraction, ketyl radicals as well as α-amino alkyl radicals acting as initiating species can
be formed.

Catalysts 2023, 13, x FOR PEER REVIEW 9 of 29 
 

 

 
Figure 10. UV-visible absorption spectra of BFC and [BFC/TEOA]CTC. Reproduced with permission 
of Ref. [167]. 

The CTC exhibited good solubility in water since a saturation concentration of 20 
mg/mL was determined. At 3 wt% CTC in water, the polymerization efficiency of acryla-
mide (AM) reached an optimum, and a final monomer conversion higher than 80% could 
be determined after 900 s of irradiation at 405 nm (I = 70 mW/cm2) (See Figures 10 and 11) 
Monomer conversions were obtained during the FRP of acrylamide upon irradiation at 
405 nm (70 mW/cm2) using the [BFC/TEOA]CTC as the photoinitiating system. 

To support the polymerization process detected with the BFC/TEOA combination, 
the mechanism depicted in Figure 11 was proposed by the authors. Notably, upon excita-
tion of the CTC, a photoinduced electron transfer between TEOA and BFC can occur. By 
hydrogen abstraction, ketyl radicals as well as α-amino alkyl radicals acting as initiating 
species can be formed.  

 
Figure 11. Mechanism involved in the polymerization process with the [BFC/TEOA]CTC. Repro-
duced with permission of Ref. [167] (* corresponds to the excited state). 

Finally, the existence of a CTC between BFC and TEAO was confirmed by theoretical 
calculations. As can be seen from Figure 12, the highest occupied molecular orbital 
(HOMO) of TEOA stands between the HOMO and the lowest unoccupied molecular or-
bital (LUMO) of BFC, supporting an electron transfer between TEOA and BFC. Concern-
ing the [BFC/TEOA]CTC, the location of the HOMO energy level on TEOA and the LUMO 
energy level on BFC could be clearly evidenced. A stabilization energy of 5.85 kcal/mol 
was determined by theoretical calculations, favorable to the formation of a CTC between 
TEOA and BFC. 

Figure 11. Mechanism involved in the polymerization process with the [BFC/TEOA]CTC. Repro-
duced with permission of Ref. [167] (* corresponds to the excited state).

Finally, the existence of a CTC between BFC and TEAO was confirmed by theoreti-
cal calculations. As can be seen from Figure 12, the highest occupied molecular orbital
(HOMO) of TEOA stands between the HOMO and the lowest unoccupied molecular orbital
(LUMO) of BFC, supporting an electron transfer between TEOA and BFC. Concerning
the [BFC/TEOA]CTC, the location of the HOMO energy level on TEOA and the LUMO
energy level on BFC could be clearly evidenced. A stabilization energy of 5.85 kcal/mol
was determined by theoretical calculations, favorable to the formation of a CTC between
TEOA and BFC.
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2.3. Chalcones

Parallel to benzylidene ketones that are sometimes named bis-chalcones, chalcones
have also recently been the focus of numerous studies as visible light photoinitiators of
polymerization [150]. The interest in these structures relies on the fact that chalcones are
bio-inspired structures that can be easily obtained by a Claisen Schmidt condensation of an
aldehyde and an acetophenone in safe solvents such as ethanol and by using potassium
or sodium hydroxide as the base. Additionally, chalcones often precipitate in alcohols so
their purification is often reduced to a simple filtration and washing with water. Chalcones
also exhibit biological activities such as antioxidant, antimicrobial, antifungal, antitumor,
anticancer, antimalarial, anti-inflammatory, and antidepressant [251–255]. In 2020, a series
of furane-based chalcones CHC-13-CHC-17 was proposed by Lalevée and coworkers (See
Figure 13) [143]. Efficient monomer conversions could only be obtained while using a
three-component chalcone/Iod/EDB (1.5%/1.5%/1.5% w/w/w) system, thus enabling the
chalcone to be regenerated during the polymerization process.
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Using the three-component system, monomer conversions ranging between 65% for
CHC-16 to 79% for CHC-15 were determined in thin films using PEGDA as the monomer
and upon irradiation at 405 nm with a LED (See Table 4). Here again, the crucial influence
of the substitution pattern was demonstrated. Indeed, CHC-15-CHC-17 only differs by the
substitution pattern and the position of the methoxy group. Thus, the lowest monomer
conversion was obtained for CHC-16 in which the methoxy group was in a non-conjugated
position with regards to the ketone group of acetophenone. Compared to the monomer
conversions obtained with the previously mentioned benzylidene ketones Dye 1 and Dye 9,
chalcones CHC-13-CHC-17 proved to be less efficient photoinitiators since lower monomer
conversions were obtained with these structures. Investigation of the photochemical
mechanism revealed the chalcone/EDB combination to give faster photolysis than the
chalcone/Iod combination. Therefore, the concomitant presence of an oxidative and
a reductive cycle enabling to simultaneously generate different initiating species (Ph•,
EDB(-H)•, Dye-H•) could efficiently produce radicals (See Figure 14).

Table 4. Monomer conversions obtained during the FRP of PEGDA upon irradiation at 405 nm using
the three-component Chalcone/Iod/EDB (1.5%/1.5%/1.5% w/w/w) photoinitiating systems in thin
films. Data extracted from Ref. [143].

Chalcone CHC-13 CHC-14 CHC-15 CHC-16 CHC-17

FCs 73% 74% 79% 65% 69%

Catalysts 2023, 13, x FOR PEER REVIEW 11 of 29 
 

 

Using the three-component system, monomer conversions ranging between 65% for 
CHC-16 to 79% for CHC-15 were determined in thin films using PEGDA as the monomer 
and upon irradiation at 405 nm with a LED (See Table 4). Here again, the crucial influence 
of the substitution pattern was demonstrated. Indeed, CHC-15-CHC-17 only differs by 
the substitution pattern and the position of the methoxy group. Thus, the lowest monomer 
conversion was obtained for CHC-16 in which the methoxy group was in a non-conju-
gated position with regards to the ketone group of acetophenone. Compared to the mon-
omer conversions obtained with the previously mentioned benzylidene ketones Dye 1 and 
Dye 9, chalcones CHC-13-CHC-17 proved to be less efficient photoinitiators since lower 
monomer conversions were obtained with these structures. Investigation of the photo-
chemical mechanism revealed the chalcone/EDB combination to give faster photolysis 
than the chalcone/Iod combination. Therefore, the concomitant presence of an oxidative 
and a reductive cycle enabling to simultaneously generate different initiating species 
(Ph•, EDB(-H)•, Dye-H•) could efficiently produce radicals (See Figure 14).  

Table 4. Monomer conversions obtained during the FRP of PEGDA upon irradiation at 405 nm us-
ing the three-component Chalcone/Iod/EDB (1.5%/1.5%/1.5% w/w/w) photoinitiating systems in thin 
films. Data extracted from Ref. [143]. 

Chalcone CHC-13 CHC -14 CHC -15 CHC -16 CHC -17 
FCs 73% 74% 79% 65% 69% 

 
Figure 14. Photochemical mechanism occurring with the three-component chalcone/Iod/EDB sys-
tem. 

In the previous series CHC-13-CHC-17, furane was used as an electron-donating 
group. However, the furyl group can also be incorporated into the acetophenone side, 
which was performed with A5 (See Figure 15) [148]. In order to investigate the contribu-
tion of furane in this structure, a series of seven chalcones A1–A7 was prepared, all com-
prising anthracene as the electron-donating group. The only difference is the group intro-
duced on the acetophenone side. 

Figure 14. Photochemical mechanism occurring with the three-component chalcone/Iod/EDB system.

In the previous series CHC-13-CHC-17, furane was used as an electron-donating
group. However, the furyl group can also be incorporated into the acetophenone side,
which was performed with A5 (See Figure 15) [148]. In order to investigate the contribution
of furane in this structure, a series of seven chalcones A1–A7 was prepared, all comprising
anthracene as the electron-donating group. The only difference is the group introduced on
the acetophenone side.

Logically, absorption maxima of A1–A7 were similar, the electronic delocalization
being the same in these different structures. Indeed, the color of chalcones originates from
the π-conjugation existing between the anthracenyl unit and the ketone group. In the
present case, absorption maxima ranging between 387 nm for A4 and A6 up to 389 nm for
A1, A5, and A7 were determined in acetonitrile (See Figure 16 and Table 5). For comparison,
dibutoxyanthracene (DBA) [256] was used as a reference compound due to the similarity
of its absorption with A1–A7.



Catalysts 2023, 13, 493 12 of 28Catalysts 2023, 13, x FOR PEER REVIEW 12 of 29 
 

 

Photosensitizers

O OMe O
OMe

O

OMe

O
N

O
O

O
S

A1 A2 A3

A4 A5 A6

O

I

A7

OBu

BuO

DBA

Reference compound

O
O

O

O

O

O

TMPTA

Monomer

 
Figure 15. Chemical structures of A1–A7 and DBA. 

Logically, absorption maxima of A1–A7 were similar, the electronic delocalization 
being the same in these different structures. Indeed, the color of chalcones originates from 
the π-conjugation existing between the anthracenyl unit and the ketone group. In the pre-
sent case, absorption maxima ranging between 387 nm for A4 and A6 up to 389 nm for 
A1, A5, and A7 were determined in acetonitrile (See Figure 16 and Table 5). For compari-
son, dibutoxyanthracene (DBA)[256] was used as a reference compound due to the simi-
larity of its absorption with A1–A7.  
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Table 5. Optical characteristics of A1–A7 in acetonitrile. Data extracted from Ref. [148].

λmax (nm) εmax
(M−1.cm−1)

ε405 nm
(M−1.cm−1)

ε470 nm
(M−1.cm−1)

A1 389 8300 7300 400
A2 388 7600 6900 550
A3 388 8100 7400 450
A4 387 7300 6800 1350
A5 389 9300 8000 600
A6 387 8700 7200 650
A7 389 6800 7000 900

DBA 384 11,000 9400 0
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Theoretical calculations performed on A5 revealed the HOMO energy level to be
located on the anthracene moiety whereas the LUMO energy level is clearly centered
on the acetophenone moiety, consistent with the push-pull structures and the electronic
delocalization existing in chalcones (See Figure 17).
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Examination of their photoinitiating ability in three-component chalcone/Iod/EDB
(0.5%/1%/1%, w/w/w) systems revealed A4, A5, and A6 to furnish the highest final
monomer conversions during the FRP of trimethylolpropane triacrylate (TMPTA) (See
Table 6). Interestingly, conversions obtained with A5 were comparable to that of A6,
evidencing that the five-membered ring furane and thiophene derivatives could furnish
dyes of similar reactivity. Blank experiments performed with the Iod/EDB combination
only furnished a monomer conversion of 5%, evidencing the crucial role of the dye in the
light absorption mechanism. While using the two-component chalcone/Iod (0.5%/1%,
w/w) system, A5 could also furnish a high EPOX conversion under air. If a monomer
conversion of 52% was obtained at 405 nm, this value decreased to 36% at 470 nm, consistent
with a reduction of the molar extinction coefficient of A5 at this wavelength. For comparison,
the benchmark photoinitiating system DBA/Iod only furnished a conversion of 38%, far
behind that of A5. Interestingly, photolysis experiments performed in solution revealed the
two-component A5/Iod and A5/EDB systems to give similar photolysis rates, supporting
the high efficiency in photopolymerization by the concomitant occurrence of the oxidative
and reductive pathways contributing to the efficient generation of initiating radicals. Based
on the high reactivity of the furane-based chalcone A5, 3D printing experiments could be
carried out and 3D patterns exhibiting an excellent spatial resolution could be prepared
(See Figure 18).

Table 6. TMPTA and EPOX conversions obtained with the three-component chalcone/Iod/EDB
(0.5%/1%/1%, w/w/w) systems upon irradiation at 405 nm in thin films. Data extracted from Ref. [148].

PIS
TMPTA (%) EPOX (%)

Dyes/Iod/EDB a Dyes/Iod a Dyes/Iod b

A1 57 39 21
A2 51 37 24
A3 45 21 15
A4 60 43 33
A5 60 52 36
A6 61 47 27
A7 45 33 19

Blank c 5 - -
DBA - 38 6

a Upon irradiation at 405 nm. b upon irradiation at 470 nm. c Iod/EDB (1%/1% w/w).
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Figure 18. 3D printing experiments performed using EPOX as the monomer, upon irradiation
at 405 nm and by using the two-component A5/Iod (0.5%/1%, w/w) system. Reproduced with
permission of Ref. [148].

2.4. Coumarins

In all the above-mentioned examples, furane-based compounds have been used as
Type II photoinitiators, meaning that the different dyes can only produce initiating radicals
in multi-component systems. Conversely, Type I photoinitiators are mono-component
systems and in this field, oxime esters are popular photoinitiators due to their low cost,
easiness of synthesis, and good thermal stability [182–191]. Type I photoinitiators certainly
constitute the photoinitiators of tomorrow as no additional additives are required to gener-
ate initiating species. A drastic simplification of the photocurable resin can thus be obtained.
In 2020, Dietliker and coworkers examined a series of coumarin-based oxime esters varying
by the photocleavable group (See Figure 19) [191]. Indeed, from the mechanistic viewpoint,
upon photoexcitation, the homolytic cleavage of the N-O bond can occur, producing iminyl
and aryloxy radicals. Subsequent to fragmentation, the aryloxy radicals can undergo a
decarboxylation reaction, generating aryl radicals (See Scheme 3). The release of carbon
dioxide within the resin during the polymerization is an important parameter as it can
contribute to limiting oxygen diffusion within the resin by the release of a gas inside the
resin. Carbon dioxide release is not limited to oxime esters and phenyl glyoxylates exhibit
the same property [237,257–261]. On the basis of the photochemical mechanism, the de-
composition of oxime esters is irreversible so that oxime esters cannot be introduced in a
catalytic amount in the resins.
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Considering that the chromophore is located in the coumarin moiety, the five coumarins
exhibited similar absorption maxima, located at 436 nm (See Figure 20).
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Photoinitiating abilities of the different dyes were investigated at 450 nm and the tetra-
functional monomer TMPTA was selected for this study. Upon irradiation at 450 nm, the
thiophenyl derivatives (2-S and 3-S) greatly outperformed the furanyl-based oxime esters
(2-O and 3-O) (See Figure 21). Comparison between 2-O, 3-O, 2-S, and 3-S evidenced the
2-substituted heterocycles to outperform the 3-substituted heterocycles in terms of final
monomer conversions. Comparison with OEC used as a reference oxime ester revealed all
newly developed oxime esters to furnish lower monomer conversions than OEC. In fact, only
the thiophene derivative 2-S could furnish monomer conversions approaching that of OEC.
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With these considerations, comparisons were also established between 2-S and two
benchmark photoinitiators, namely phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide
(BAPO, Irgacure 819) and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO). Com-
parisons were established at two different wavelengths, namely 405 and 450 nm (See
Figure 22). At 405 nm, if a TMPTA conversion of 46% was obtained with 2-S, this conver-
sion was vastly lower than that of BAPO or TPO (around 60% after 300 s of irradiation).
Upon irradiation at 450 nm, based on different molar extinction coefficients at this wave-
length, 2-S furnished a monomer conversion intermediate between that of BAPO and
TPO. Due to the lack of absorption of TPO at 450 nm, a prolonged induction period could
be evidenced for TPO so that a conversion of only 38% could be obtained. Overall, 2-S
proved to be a relatively efficient photoinitiator while considering the fact that BAPO can
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simultaneously produce four radicals per molecule contrary to 2-S which is only capable of
producing one. In light of this consideration, furan and thiophene-based oxime esters can
thus be considered better photoinitiators than BAPO.
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Figure 22. Polymerization profiles of TMPTA using 2-S, BAPO and TPO as photoinitiators
(C = 2.7 × 10−5 mol.g−1 resin), upon irradiation at (a) 405 nm and (b) 450 nm with LEDs
(I = 30 mW cm−2). Reproduced with permission of Ref. [191].

Noticeably, 2-S exhibited interesting photobleaching properties in acetonitrile, with
complete bleaching of the solution being detected within five min (See Figure 23). These
photobleaching properties were confirmed during the thiol-ene polymerization of a TMPTA/
PETMP blend (where PETMP stands for pentaerythritol tetra(3-mercaptopropionate). A
complete bleaching of the polymer film could be obtained within one min. of irradiation at
450 nm. As a result of this fast photobleaching, polymer films as thick as 10 mm could be
prepared within ten min. of irradiation at 450 nm.
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Analysis of the thermal stability of the different oxime esters by thermogravimetric
analyses revealed the decomposition temperatures to be higher than 160 ◦C, and thus
sufficient for practical applications in industry.

3. Conclusions

To conclude, furane is an elemental building block that has been scarcely used up to
now for the design of visible light photoinitiators. The different structures reported in this
work are presented in Figure 24.
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Figure 24. Chemical structures of the different furan-based compounds reported in this review. 

At present, only three families of dyes have been designed with furane, namely, ben-
zylidene ketones, chalcones, and coumarins. When incorporated in chalcones, the best po-
sition is undoubtedly on the acetophenone side, with the best monomer conversions being 
obtained in these conditions. In benzylidene ketones, photoinitiators that could be used 
in very low photoinitiator content could be prepared. Indeed, a concentration as low as 
0.0625 wt% could be used. An efficient strategy has also been developed to elaborate wa-
ter-soluble photoinitiators, consisting of preparing charge transfer complexes with trieth-
anolamine. Future works will consist of multiplying the structures of water-soluble pho-
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At present, only three families of dyes have been designed with furane, namely,
benzylidene ketones, chalcones, and coumarins. When incorporated in chalcones, the best
position is undoubtedly on the acetophenone side, with the best monomer conversions
being obtained in these conditions. In benzylidene ketones, photoinitiators that could
be used in very low photoinitiator content could be prepared. Indeed, a concentration
as low as 0.0625 wt% could be used. An efficient strategy has also been developed to
elaborate water-soluble photoinitiators, consisting of preparing charge transfer complexes
with triethanolamine. Future works will consist of multiplying the structures of water-
soluble photoinitiators. Indeed, polymerization in more ecological conditions could be
possible by using these photoinitiators. Photobleaching ability is also an important property
for visible light photoinitiators as these molecules are strongly colored compounds [222].
Investigation of this property is the keypoint in order for visible light photoinitiators to
be competitive with UV photopolymerization that only gives colorless coatings. However,
future prospects will certainly consist of developing Type I photoinitiators based on furane.
Indeed, if multicomponent photoinitiating systems have been popular in the past and
extensively studied by numerous research groups, the extractability of photoinitiators and
associated additives is more and more the focus of safety concerns, especially if applications,
such as food packaging, are targeted. Additionally, performant photoinitiating systems
have been reported in the past. However, performance was related to the use of three-
and even four-component systems, complexifying the preparation of the resin. Conversely,
Type I photoinitiators that are mono-component systems possess the unique ability to
cleave upon photoexcitation. These structures could efficiently address the extractability
issue through their ability to crosslink after photodecomposition and radical generation to
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the polymer network. In this field, different structures can be envisioned such as oxime
esters, phenyl glyoxylate derivatives, or diketones that can be obtained in a few synthetic
steps and starting from cheap and easily available reagents [19].
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