Supplementary Materials for

Mineral vesicles and chemical gardens from carbonate-rich alkaline brines of Lake Magadi, Kenya

Melese Getenet, Juan Manuel García-Ruiz, Cristobal Verdugo-Escamilla and Isabel Guerra-Tschuschke

This document includes legends for the videos and the following figures:

- Figure S1: Powder X-ray diffraction of mineral gardens synthesized by immersing CaCl₂·2H₂O pellets in Lake Magadi water
- Figure S2: Powder X-ray diffraction of mineral gardens produced by immersing CoCl₂·6H₂O pellet in Magadi water
- Figure S3: Raman spectra of mineral vesicles synthesized by adding drops of saturated CaCl₂·2H₂O solution onto Lake Magadi water
- Figure S4: EDX mapping of membrane cross-section of vesicles synthesized by adding saturated CaCl₂·2H₂O solution onto Lake Magadi water
- Figure S5: EDX analysis of membrane cross-section of vesicles synthesized by adding saturated CaCl₂·2H₂O solution onto Lake Magadi water
- Figure S6: EDX analysis of calcium mineral membrane cross-section containing gaylussite
- Figure S7: EDX analysis of membrane cross-section of vesicles synthesized by adding saturated BaCl₂·2H₂O solution onto Lake Magadi water
- Figure S8: EDX mapping of membrane cross-section of vesicles synthesized by adding saturated BaCl₂·2H₂O solution onto Lake Magadi water
- Figure S9: EDX analysis of the cross-section of mineral vesicles synthesized by adding saturated MnCl₂·4H₂O solution onto Magadi water
- Figure S10: EDX analysis of the interior surface of mineral vesicles synthesized by adding saturated MnCl₂·4H₂O solution onto Magadi water
- Figure S11: Powder X-ray diffraction of mineral vesicles synthesized by adding saturated Co(NO₃)₂·6H₂O solution onto Lake Magadi water
- Figure S12: Powder X-ray diffraction of mineral vesicles synthesized by adding saturated MgSO₄ solution onto Lake Magadi water
- Figure S13: Powder X-ray diffraction of mineral vesicles synthesized by adding saturated ZnSO₄·7H₂O solution onto Lake Magadi water

Other Supplementary Material for this manuscript includes the following:

Video S1: Gas bubbling and bursting of reaction products of the FeCl₃ pellet and Magadi water Video S2: Gas bubbling and bursting of reaction products of the CuCl₂·6H₂O pellet and Magadi water Video S3: Gas bubbling and bursting of reaction products of the ZnCl₂ pellet and Magadi water Video S4: Growth process of mineral gardens by the interaction of the CaCl₂·2H₂O pellet with Magadi water

Video S5: Growth process of mineral gardens by the interaction of the Co(NO₃)₂·6H₂O salt pellet with Magadi water

Video S6: Gas bubbling and bursting upon the reaction of drops of saturated FeCl₃ solution and Magadi water

Video S7: Gas bubbling and bursting upon the reaction of drops of saturated CuCl₂·6H₂O solution and Magadi water

Video S8: Gas bubbling and bursting upon the reaction of drops of saturated ZnCl₂ solution and Magadi water

Video S9: Synthesis of mineral vesicles by adding saturated CaCl₂·2H₂O solution onto Magadi water Video S10: Synthesis of mineral vesicles by adding saturated BaCl₂·2H₂O solution onto Magadi water Video S11: Synthesis of mineral vesicles by adding saturated MnCl₂·4H₂O solution onto Magadi water Video S12: Synthesis of mineral vesicles by adding saturated CoCl₂·6H₂O solution onto Magadi water Video S13: Synthesis of mineral vesicles by adding saturated MgCl₂·6H₂O solution onto Magadi water Video S14: Synthesis of mineral vesicles by adding saturated FeCl₂·4H₂O solution onto Magadi water

Figure S1: Powder X-ray diffraction of mineral gardens synthesized by immersing CaCl₂·2H₂O pellets in Lake Magadi water

Figure S2: Powder X-ray diffraction of mineral gardens produced by immersing CoCl₂·6H₂O pellet in Magadi water

Figure S3: Raman spectra of mineral vesicles synthesized by adding drops of saturated CaCl₂·2H₂O solution onto Lake Magadi water (153, 280, 712, and 1085.3 cm⁻¹ are translational, librational, in-plane bending and symmetric stretching modes respectively)

Figure S4: EDX mapping of membrane cross-section of vesicles synthesized by adding saturated CaCl₂·2H₂O solution onto Lake Magadi water

Figure S5: EDX analysis of membrane cross-section of vesicles synthesized by adding saturated CaCl₂·2H₂O solution onto Lake Magadi water

Figure S6: EDX analysis of calcium mineral membrane cross-section containing gaylussite

Figure S7: EDX analysis of membrane cross-section of vesicles synthesized by adding saturated BaCl₂·2H₂O solution onto Lake Magadi water

Figure S8: EDX mapping of membrane cross-section of vesicles synthesized by adding saturated BaCl₂·2H₂O solution onto Lake Magadi water

Figure S9: EDX analysis of the cross-section of mineral vesicles synthesized by adding saturated MnCl₂·4H₂O solution onto Magadi water

Figure S10: EDX analysis of the interior surface of mineral vesicles synthesized by adding saturated MnCl₂·4H₂O solution onto Magadi water

Figure S11: Powder X-ray diffraction of mineral vesicles synthesized by adding saturated Co(NO₃)₂·6H₂O solution onto Lake Magadi water

Figure S12: Powder X-ray diffraction of mineral vesicles synthesized by adding saturated MgSO₄ solution onto Lake Magadi water

Figure S13: Powder X-ray diffraction of mineral vesicles synthesized by adding saturated ZnSO₄·7H₂O solution onto Lake Magadi water