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Abstract: The ectomycorrhizal basidiomycetes genus Thelephora has been understudied in subtropical
ecosystems. Many species of Thelephora are important edible and medicinal fungi, with substantial
economic value. Two new Thelephora species, T. grandinioides and T. wuliangshanensis spp. nov. are
proposed here based on a combination of morphological features and molecular evidence. Thelephora
grandinioides is characterized by laterally stipitate basidiocarps with a grandinoid hymenial surface, a
monomitic hyphal system with clamped generative hyphae, and the presence of tubular and septated
cystidia and subglobose to globose basidiospores measuring as 5.3–7.4 × 4–6.5 µm. Thelephora
wuliangshanensis is characterized by infundibuliform basidiocarps, radially black striate on the pileus,
a smooth, umber to coffee hymenial surface, a monomitic hyphal system with thick-walled generative
hyphae, and basidiospores that turn greenish grey to buff in 5% KOH. Phylogenetic analyses of
rDNA internal transcribed spacer region (ITS) and nuclear large subunit region (nrLSU) showed
that the two new Thelephora are phylogenetically distinct: T. grandinioides is sister to T. aurantiotincta
and T. sikkimensis, while T. wuliangshanensis is sister to a clade comprising T. austrosinensis and
T. aurantiotincta with high support as well.

Keywords: corticioid fungi; macro fungi; molecular phylogeny; Thelephoraceae; Thelephora grandinioides;
Thelephora wuliangshanensis; Yunnan Province

1. Introduction

Thelephora Ehrh. ex Willd., the genus type of Thelephoraceae Chevall. is one of the most
important taxa in basidiomycetes [1–5]. They are widely distributed worldwide, especially
in the northern temperate and tropical regions [1–5]. Thelephora is a fairly well-studied
ectomycorrhizal basidiomycetes genus with basidiocarps of various shape; the entire genus
forms ectomycorrhizal relationships with diverse plants and significant contribution to
plant health and ecosystem stability [4,6–12]. As mycorrhiza-formers, Thelephora play a very
important role in pioneer microhabitats of coniferous forests [13,14]. Acting as white rot
fungi, they also can decompose dead wood [14,15].

Some species of Thelephora are economically important edible and medicinal mush-
rooms. Thelephora ganbajun M. Zang is one of the most popular edible fungi in China and
some East Asian countries [14–21]. Thelephora is typified by T. terrestris Ehrh. ex Willd. [22],
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and the genus is characterized by its diverse forms of basidiomycetes as stereoid, clavarioid,
cantharelloid, spathulate, pleuropodally pileate to resupinate; hymenophore smooth to
slightly wrinkled and often cyanescent in KOH; pileus surface glabrous to strigose, even
or faintly ribbed or papillose; hymenium continuous, usually on inferior side, sometimes
amphigenous in some species; hyphal system monomitic with clamped generative hyphae;
basidia 4-spored; basidiospores subhyaline to brownish, ornamented, typically muricate,
verruculose or echinulate, even or slightly rough-walled in a few species, and inamy-
loid [1,3,12,22]. As of 2008, fifty species of Thelephora have been accepted [23], and some
new species have been reported in recent years [4,5,14,24–27]. Index Fungorum [28] shows
871 specific and infraspecific names in Thelephora. However, to date, 62 species of Thelephora
have been accepted [3–5,14,23–27].

Thelephora share similar characteristics with Tomentella Pers. ex Pat. especially in the
form, size, and type of spore ornamentations [3,29,30]. Based on phylogenetic analyses
using rDNA internal transcribed spacer region (ITS) sequences showed that the species
of Thelephora mixed with Tomentella, revealing that both genera are closely related, but it
is well-known that the phylogenetic analyses of ITS loci are insufficient to resolve phy-
logenetic relationships among closely related taxa [4,5,31,32]. Based on ITS and nrLSU
analyses, Vizzini et al. [25] showed that Thelephora and Tomentella species do not sepa-
rate to two monophyletic groups but they are intermixed and form a well-supported
monophyletic clade (Thelephora/Tomentella clade). Back to traditional method, the most
important characteristic for distinguishing Thelephora and Tomentella is the form of the
basidiocarps (resupinate in Tomentella; erect, with varied forms, to partially resupinate in
Thelephora) [24,29,33]. Das et al. [26] proposed that other features such as the hymenophore
surface needed to be observed to determine whether it could act as a more informative
characteristic than the highly variable stipitate/resupinate configuration of basidiocarps.
Phylogenetic analyses of combined ITS and nrLSU dataset in Basidiomycota revealed that
Thelephora is sister to Tomentella nested in Thelephoraceae while the limits between both
genera are not yet clear [5,26,34]. While ITS and nrLSU sequences alone cannot resolve
phylogenetic relationships in this complex group of species [5,34]. Vizzini et al. [25] men-
tioned that in the future Thelephora and Tomentella will be considered as one genus merging
Tomentella into Thelephora.

With this work we intend to identify two Thelephora species found in southern China
based on morphology and phylogeny, and provide full descriptions, color photographs, a
detailed comparison of two new species with closely related taxa and a phylogenetic tree
to show the placement of two new species.

2. Materials and Methods
2.1. Specimens Collection and Herbarium Specimen Preparation

Four samples of Thelephora were collected in Yunnan (Figure 1A–C) viz. CLZhao
3406 (Holotype) from the Wuliangshan National Nature Reserve, Huangcaoling, Jingdong
County, Puer, at latitude 24◦18′ N and longitude 101◦05′ E, at 2113 m above sea level,
1 October 2017; CLZhao 3408 from the Xieqipo Forest Park, Zhenyuan County, Puer, at lati-
tude 24◦18′ N and longitude 101◦05′ E, at 1350 m above sea level, 1 October 2017; CLZhao
4107 (Holotype) from the Wuliangshan National Nature Reserve, Huangcaoling, Jingdong
County, Puer, at latitude 24◦23′ N and longitude 100◦45′ E, at 2313 m above sea level,
5 October 2017; CLZhao 21020 from the Wuliangshan National Nature Reserve, Huang-
caoling, Jingdong County, Puer, at latitude 23◦57′ N and longitude 100◦57′ E, 8 October
2020. The fruiting bodies were observed growing on the ground of pine-broadleaved mixed
forest. Photographs of the fruiting bodies were taken in the field, macromorphological
characteristics were recorded and then the fruiting bodies were collected. The collected
fruiting bodies were dried in an electric food dehydrator at 40 ◦C, then sealed and stored in
an envelope bag. They were then transported to mycology laboratory of Southwest Forestry
University, Kunming where microscopic morphology and phylogeny were studied.
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Figure 1. The localities of new Thelephora species. (A) Jingdong county and Zhenyuan county in Yunnan province.
(B) The locality of Thelephora wuliangshanensis strain (Holotype: CLZhao 4107) in Jingdong county. (C) The locality of
T. wuliangshanensis (CLZhao 21020) and T. grandinioides (Holotype: CLZhao 3406; CLZhao 3408) in Zhenyuan county. Source:
Map data ©2021 Google.

2.2. Morphology

The specimens studied are deposited at the herbarium of Southwest Forestry Uni-
versity (SWFC), Kunming, Yunnan Province, China. Macromorphological descriptions
were based on field notes and photos captured in the field and lab. Color terminology
followed Petersen [35]. Micromorphological data were obtained from the dried speci-
mens, and were observed under a light microscope following Dai [36]. The following
abbreviations were used: KOH = 5% potassium hydroxide water solution, CB = Cotton
Blue, CB– = acyanophilous, IKI = Melzer’s reagent, IKI– = both inamyloid and indextri-
noid, L = mean spore length (arithmetic average for all spores), W = mean spore width
(arithmetic average for all spores), Q = variation in the L/W ratios between the specimens
studied, n = a/b (number of spores (a) measured from given number (b) of specimens).
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2.3. Molecular Phylogeny

A conventional cetyl trimethylammonium bromide (CTAB) plant genome rapid ex-
traction kit (DN14, Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to obtain
genomic DNA from dried specimens, according to the manufacturer’s instructions [37].
Amplification reactions were performed in a 30 µL reaction volume composed of 15 µL
2 × FastTaq Premix (a mixture of FastTaq TM DNA Polymerase, buffer, dNTP Mixture, and
stabilizer) (Beijing Qingke Biological Technology Co., Ltd., Beijing, China), 1 µL of each of
the reverse and forward primers (Beijing Kinco Biotechnology Co., Ltd., Kunming Branch,
China), 8.5 µL doble distilled water (ddH2O), and 1–1.2 µL DNA. ITS region was amplified
with primer pair ITS5 and ITS4 [38]. The nrLSU was amplified with primer pairs LR0R and
LR7 [39]. PCR procedure for ITS followed: initial denaturation at 95 ◦C for 3 min, followed
by 35 cycles at 94 ◦C for 40 s, 58 ◦C for 45 s and 72 ◦C for 1 min, and a final extension
of 72 ◦C for 10 min. For the nrLSU regions, PCR amplification conditions were used as
follows: initial denaturation of 1 min at 94 ◦C, followed by 35 cycles of denaturation at
94 ◦C for 30 s, 1 min of annealing at 48 ◦C, 90 s extension at 72 ◦C, and a final extension of
10 min at 72 ◦C. PCR products were purified and sequenced at Kunming Tsingke Biological
Technology Limited Company, Kunming, Yunnan Province, China. All newly generated
sequences were deposited in NCBI GenBank/UNITE (Table 1). Sequences were aligned in
MAFFT 7 (https://mafft.cbrc.jp/alignment/server/, accessed on 3 December 2021) using
G-INS-i strategy for ITS combined dataset, and manually adjusted in BioEdit [40]. Aligned
dataset was deposited in TreeBase (submission ID 28432). Odontia fibrosa (Berk. and M.A.
Curtis) Kõljalg and O. ferruginea Pers. were selected as outgroup for phylogenetic analyses
of combined dataset [25,26].

Table 1. Names, vouchers, location, and corresponding GenBank/UNITE accession numbers of taxa used in this study. The
newly generated sequences are shown in black bold and T indicates the type.

Taxon Names Voucher Location
GenBank/UNITE Accession Number

ITS nrLSU Reference

Odontia ferruginea UK18 Estonia UDB000285 UDB018691 [25]
O. fibrosa SS38 Sweden MH310788 UDB018463 [25,26]
Thelephora
albomarginata KHL8457 Sweden – UDB018707 [5]

T. americana UAMH 9578 Chile AY219838 – [41]
T. anthocephala UBC F28410 Canada KP454019 KP454019 [26]
T. anthocephala TAA165304 Estonia AF272927 UDB018693 [27]
T. atra UK50 Russia – UDB018697 UNITE
T. aurantiotincta 115437 – – TU115437 UNITE
T. aurantiotincta 520625MF420 China MZ057686 – GenBank
T. aurantiotincta 346–518 Japan AB509809 – GenBank
T. austrosinensis GDGM 48867 T China MF593265 MF593265 [5]
T. austrosinensis GDGM 48891 China MF593266 MF593266 [5]
T. austrosinensis GDGM 48899 China MF593267 MF593267 [5]
T. caryophyllea ELarsson89-09 Sweden MK602776 MK602776 [42]
T. caryophyllea TAAM172626 Estonia – UDB018694 [5]
T. caryophyllea TL-6566 Denmark AJ889980 – [27]
T. caryophyllea GO-2010-163 Mexico KC152242 – [26]
T. caryophyllea TAAM172626 Estonia UDB018694 – [5]
T. dominicana JBSD126510 T Dominican Republic KX216400 KX216400 [25]
T. ganbajun Gb151 China EU696873 – [9]
T. ganbajun Gb152 China EU696874 – [9]
T. ganbajun HMAS 276818 China – LC164937 GenBank
T. ganbajun ZRL20151295 China – KY418908 [43]
T. grandinioides CLZhao 3406 T China MZ400673 MZ400675 Present study
T. grandinioides CLZhao 3408 China MZ400674 MZ400676 Present study

https://mafft.cbrc.jp/alignment/server/
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Table 1. Cont.

Taxon Names Voucher Location
GenBank/UNITE Accession Number

ITS nrLSU Reference

T. iqbalii MH810 T Pakistan JX241471 – [27]
T. japonica 420526MF0417 China – MG712350 GenBank
T. palmata JMP0085 USA EU819443 – [44]
T. palmata LW 84 – – AF291265 [45]
T. palmata TAA149550 Swedish AF272919 [44]
T. palmata Telpa31/38 – AJ406477 [5]
T. aff. palmata 350–421 Japan AB509755 – [27]
T. penicillata 0465 China MT325773 – [26]
T. penicillata LTT8 USA U83484 – [46]
T. penicillata TAAM169453 Estonia – UDB018695 [5]
T. pseudoterrestris TAA159625 Estonia AF272907 – [27]
T. pseudoterrestris UK34 – UDB000209 – [25]
T. pseudoversatilis 11H2-1 Mexico KU530339 – [26]
T. pseudoversatilis FCME 26152 T Mexico KJ462486 – [4]
T. pseudoversatilis FCME 26232 Mexico JX075890 JX514167 [4]
T. regularis UBC F33227 Canada MG953966 – [26]
T. regularis JMT17371 USA U83485 – [46]
T. aff. regularis GO-2010-125 Mexico KC152240 – [26]
T. aff. regularis GO-2010-134 Mexico KC152241 – [26]
T. sikkimensis KD 16-003 India MF684017 – [26]
T. sikkimensis KD 16-042 India MF684018 – [26]
T. sublilacina UP161 Sweden EF493288 – [27]
T. terrestris CBS 703.85 Netherlands – MH873600 [47]
T. terrestris Hilszczanska D. 1-IBL Poland FJ532478 – [4]
T. terrestris P17_M2_772 Poland KM409440 – [26]
T. terrestris UK14 Estonia – DB018696 [5]
T. versatilis MEXU:27094 Mexico KC595628 – [4]
T. versatilis UNAM:FCME26141 T Mexico NR154492 – [4]
T. vialis Thv1 – – AJ406478 [28]
T. wuliangshanensis CLZhao 4107 T China MZ400671 MZ400677 Present study
T. wuliangshanensis CLZhao 21020 China MZ400672 MZ400678 Present study

Maximum parsimony (MP) analysis was applied to the ITS and nrLSU dataset fol-
lowed Zhao and Wu [37]. Tree construction procedure was performed in PAUP* version
4.0b10 [48]. All characters were equally weighted and gaps were treated as missing data.
Trees were inferred using the heuristic search option with TBR branch swapping and
1000 random sequence additions. Max-trees were set to 5000, branches of zero length were
collapsed and all parsimonious trees were saved. Clade robustness was assessed using
bootstrap analysis with 1000 replicates [49]. Descriptive tree statistics: tree length (TL), con-
sistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy
index (HI) were calculated for each Maximum Parsimonious Tree generated. Datamatrix
was also analyzed using Maximum Likelihood (ML) approach with RAxML-HPC2 through
the Cipres Science Gateway (www.phylo.org, accessed on 3 December 2021) [50]. Branch
support for ML analysis was determined by 1000 bootstrap replicates.

MrModeltest 2.3 [51] was used to determine the best-fit evolution model for the data
set for Bayesian inference (BI). BI was calculated with MrBayes 3.1.2 [52]. Four Markov
chains were run for 2 runs from random starting trees for 160 thousand generations
for ITS. The first one-fourth of all generations was discarded as burn-in. The majority
rule consensus tree of all remaining trees was calculated. Branches were considered
as significantly supported if they received maximum likelihood bootstrap value >60%,
maximum parsimony bootstrap value >50%, or Bayesian posterior probabilities >0.90.

www.phylo.org
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2.4. Pairwise Homoplasy Test

The Genealogical concordance phylogenetic species recognition analysis (GCPSR) is a
tool used to check significant recombinant events. The data were analyzed using SplitsTree
4 with the pairwise homoplasy Φw, PHI test to determine the recombination level within
closely related species [53–55]. One-locus dataset (ITS and nrLSU) with closely related
species were used for the analyses. PHI results lower than 0.05 (Φw < 0.05) indicates
a significant recombination is present in the dataset. The relationships between closely
related taxa were visualized by constructing split graphs from the concatenated datasets,
using the LogDet transformation and splits decomposition options.

3. Results
3.1. Molecular Phylogeny

ITS+nrLSU dataset (Figure 2) included 14 sequences representing 9 species, ITS dataset
(Figure 3) included 42 sequences representing 23 species, and the nrLSU dataset (Figure 4)
consisted of 27 sequences representing 18 species. The ITS+nrLSU dataset had an aligned
length of 1887 characters, of which 1514 characters are constant, 123 are variable and
parsimony-uninformative, and 250 are parsimony-informative. Maximum parsimony anal-
ysis yielded 1 equally parsimonious trees (TL = 616, CI = 0.7403, HI = 0.2597, RI = 0.7217,
RC = 0.5343). Best model for the ITS dataset estimated and applied in the Bayesian analysis
was GTR + I + G (lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1, 1, 1, 1)).
Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an
average standard deviation of split frequencies = 0.006269. Estimated base frequencies;
A = 0.249341, C = 0.218571, G = 0.275562, T = 0.256526; substitution rates AC = 1.282736,
AG = 4.546435, AT = 0.637878, CG = 0.715981, CT = 11.556530, GT = 1.000000; proportion of
invariable sites I = 0.502830; distribution shape parameter α = 0.545315. The ITS dataset had
an aligned length of 727 characters, of which 355 characters are constant, 87 are variable and
parsimony-uninformative, and 285 are parsimony-informative. Maximum parsimony anal-
ysis yielded 1 equally parsimonious trees (TL = 1026, CI = 0.5312, HI = 0.4688, RI = 0.7579,
RC = 0.4026). Best model for the ITS dataset estimated and applied in the Bayesian analysis
was GTR + I + G (lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1, 1, 1, 1)).
Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an
average standard deviation of split frequencies = 0.009479. Estimated base frequencies;
A = 0.219763, C = 0.258778, G = 0.243142, T = 0.278317; substitution rates AC = 1.165884,
AG = 5.728342, AT = 0.893563, CG = 0.776446, CT = 8.106172, GT = 1.000000; proportion of
invariable sites I = 0.125398; distribution shape parameter α = 0.548666. The nrLSU dataset
had an aligned length of 1393 characters, of which 1203 characters are constant, 63 are
variable and parsimony-uninformative, and 127 are parsimony-informative. Maximum
parsimony analysis yielded 1 equally parsimonious trees (TL = 360, CI = 0.5611, HI = 0.4389,
RI = 0.5741, RC = 0.3221). Best model for the nrLSU dataset estimated and applied in the
Bayesian analysis was GTR + I + G (lset nst = 6, rates = invgamma; prset statefreqpr = dirich-
let (1, 1, 1, 1)). Bayesian analysis and ML analysis resulted in a similar topology to MP
analysis with an average standard deviation of split frequencies = 0.009402. Estimated
base frequencies; A = 0.263240, C = 0.200643, G = 0.293575, T = 0.242542; substitution rates
AC = 1.213148, AG = 7.899379 AT = 0.709533, CG = 0.649904, CT = 18.992697, GT = 1.000000;
proportion of invariable sites I = 0.629441; distribution shape parameter α = 0.755239.

The phylogram inferred from ITS+nrLSU, ITS, and nrLSU sequences (Figures 2–4)
demonstrated that our specimens formed two isolated branches within Thelephora while
T. grandinioides is sister to T. aurantiotincta Corner, and T. sikkimensis K. Das, Hembrom and
Kuhar, and T. wuliangshanensis are sister to a clade comprising T. austrosinensis T.H. Li and
T. Li and T. aurantiotincta.
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Application of PHI test to the ITS and nrLSU tree-locus sequences revealed no re-
combination level within phylogenetically related species. No significant recombination
events were observed between Thelephora grandinioides and T. wuliangshanensis and phy-
logenetically closely related species viz. T. austrosinensis, T. ganbajun, and T. sikkimensis
(Figures 5 and 6). The test results of ITS sequence dataset show Φw = 0.8271 (Φw > 0.05)
no recombination is present in the two new species with T. aurantiotincta, T. austrosinensis,
T. dominicana Angelini, Losi and Vizzini, T. ganbajun, T. pseudoterrestris Corner, T. sikkimensis
and T. vialis (Figure 5). The test results of nrLSU sequence dataset show Φw = 0.9964
(Φw > 0.05) no recombination is present in the two new species with T. aurantiotincta,
T. austrosinensis, T. dominicana, T. ganbajun, T. pseudoterrestris and T. vialis (Figure 6).
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Figure 7. Basidiocarps of Thelephora grandinioides (A: Holotype CLZhao 3406) and T. wuliangshanensis
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face of T. grandinioides; (B1) Basidiocarp surface of T. wuliangshanensis; (B2) Hymenial surface of
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Figure 8. Microscopic structures of Thelephora grandinioides (holotype CLZhao 3406). (A) A section
of hymenium; (B) A section of hymenium; (C) A section of hymenium; (D) A section of hymenium;
(E) Generative hyphae with clamps; (F) Basidia; (G) Basidioles: (H) Tubular cystidia; (I) Septated
cystidia; (J) Basidiospores. Bars: (A) = 50 µm, (B–I) = 20 µm.

MycoBank no.: MB840633.
Holotype—China, Yunnan Province, Puer, Zhenyuan County, Xieqipo Park, on the

ground of pine-broadleaved mixed forest, 101◦05′ E, 24◦18′ N, 2113 m a.s.l., 1 October 2017,
CLZhao 3406 (SWFC 00003406).

Etymology—grandinioides (Lat.): referring to the grandinoid hymenophore of the
type specimens.

Basidiocarps—Annual, laterally stipitate, gregarious. Pilei medium-sized, coriaceous,
infundibuliform, up to 9 cm long, 7 cm wide, 1.5 mm thick; fawn to isabelline when
fresh, greyish brown on drying; proliferous from a central common base, rosulate, usually
with several to many laterally confluent spathulate to flabelliform or valves, uplifted; the
surface radially striate; margin thin, wavy. Hymenial surface grandinoid, olivaceous buff
to clay-buff when fresh, clay-buff to slightly greyish brown on drying. Stipe cylindrical, up
to 4 cm long, up to 1.5 cm in diameter. Context fleshy tough to leathery in fresh condition,
corky to leathery in dried condition, up to 1 mm thick at the thickest portion of pileus,
thinner at margin and thicker toward the base, pinkish buff to buff. Aculei, 6–8 per mm,
0.1–0.2 mm long, greyish brown. Odor mild when fresh, somewhat smelly when dried, or
with the beef jerky flavor.
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Hyphal system—Monomitic, generative hyphae with clamps, colorless, thick-walled,
frequently branched, interwoven, 3–6.5 µm in diameter; IKI–, CB–; tissues turn to greenish
grey to buff in KOH.

Hymenium—Cystidia of two types: (1) tubular cystidia, thick-walled, 35–60 × 5–7.5 µm;
(2) septated cystidia, numerous, thick-walled, 40–75× 6–8.5 µm; basidia cylindrical to clavate,
slightly constricted in the middle to somewhat sinuous, with 4 sterigmata and a basal clamp,
27–62 × 5–7.5 µm, basidioles dominant, cylindrical, but slightly smaller than basidia.

Basidiospores—Subglobose to globose, nodulose to verrucose or ridged, echinulis
0.5–1 µm, fuscous vinaceous, thick-walled, with guttatae or not, IKI–, CB–, greenish grey
to buff in 5% KOH, (5–)5.3–7.4(–7.8) × (3.8–)4–6.5(–7) µm (including ornamentations),
L = 6.29 µm, W = 5.31 µm, Q = 1.18–1.21 (n = 60/2).

Additional specimens examined—China, Yunnan Province, Puer, Zhenyuan County,
Xieqipo Forest Park, 101◦05′ E, 24◦18′ N, 1350 m a.s.l., on the ground of pine-broadleaved
mixed forest, leg. C.L. Zhao, 1 October 2017, CLZhao 3408 (SWFC 00003408).

Notes—Thelephora grandinioides is phylogenetically closely related to T. aurantiot-
incta, T. dominicana, T. sikkimensis, while T. wuliangshanensis is sister to a clade comprising
T. aurantiotincta and T. austrosinensis. The nucleotide differences of phylogenetically similar
species to T. grandinioides are shown in Table 2. However, morphologically T. auranti-
otincta differs from T. grandinioides by the larger basidiospores (6.5–9 × 5.5–6.5 µm vs.
5.3–7.4 × 4–6.5 µm) and shorter basidia (43–55 × 6.5–8 µm vs. 27–62 × 5–7.5 µm) [3]
(Table 4). In addition, the results of BLAST queries in NCBI based on ITS and nrLSU
separately are shown in Table 3.

Table 2. The nucleotide differences of phylogenetically similar species to Thelephora grandinioides and T. sikkimensis.

Species Thelephora grandinioides Thelephora wuliangshanensis

Specimens CLZhao 3406 CLZhao 3408 CLZhao 4107 CLZhao 21020

Gene ITS (bp) nrLSU (bp) ITS (bp) nrLSU (bp) ITS (bp) nrLSU (bp) ITS (bp) nrLSU (bp)

T. aurantiotincta
115437 NA 13 NA 13 NA 24 NA 24

T. aurantiotincta
346–518 1 NA 1 NA 42 NA 40 NA

T. aurantiotincta
520625MF420 8 NA 8 NA 78 NA 76 NA

T. austrosinensis
GDGM 48891 89 28 89 28 36 17 36 17

T. austrosinensis
GDGM 48867 89 29 89 29 37 18 37 18

T. austrosinensis
GDGM 48899 87 30 87 30 35 18 35 18

T. dominicana
JBSD126510 84 32 83 32 79 26 78 26

T. ganbajun
Gb151 98 NA 98 NA 53 NA 52 NA

T. ganbajun
Gb152 85 NA 85 NA 78 NA 77 NA

T. ganbajun
HMAS 276818 NA 29 NA 29 NA 18 NA 18

T. ganbajun
ZRL20151295 NA 27 NA 27 NA 18 NA 18
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Table 2. Cont.

Species Thelephora grandinioides Thelephora wuliangshanensis

Specimens CLZhao 3406 CLZhao 3408 CLZhao 4107 CLZhao 21020

Gene ITS (bp) nrLSU (bp) ITS (bp) nrLSU (bp) ITS (bp) nrLSU (bp) ITS (bp) nrLSU (bp)

T. pseudoterrestris
UK34 87 NA 87 NA 48 NA 46 NA

T. pseudoterrestris
TAA159625 64 NA 64 NA 48 NA 46 NA

T. sikkimensis
KD1603 45 NA 45 NA 76 NA 75 NA

T. sikkimensis
KD1642 43 NA 43 NA 77 NA 76 NA

T. vialis Thv1 NA 26 NA 26 NA 20 NA 20

Table 3. The top ten species results of Blast search of Thelephora grandinioides and T. sikkimensis sequences.

Thelephora grandinioides (Holotype CLZhao 3406) Thelephora wuliangshanensis (Holotype CLZhao 4107)

ITS ITS

Species Max
Score

Total
Score

Query
Cover E Value Ident Species Max

Score
Total
Score

Query
Cover E Value Ident

T. aurantiotincta 1109 1109 94% 0.0 98.87% T. ganbajun 1011 1011 97% 0.0 95.32%

T. sikkimensis 907 907 96% 0.0 92.36% T. ganbajun 1005 1005 97% 0.0 95.16%

T. sikkimensis 872 872 91% 0.0 92.61% T. ganbajun 1000 1000 97% 0.0 95.01%

To. lateritia 806 806 98% 0.0 89.12% T. ganbajun 1000 1000 97% 0.0 95.01%

To. cf. ramosissima 802 802 97% 0.0 89.13% T. ganbajun 1000 1000 97% 0.0 95.01%

To. ramosissima 802 802 97% 0.0 89.16% T. ganbajun 1000 1000 97% 0.0 95.01%

To. bryophila 798 798 98% 0.0 88.84% T. cf. ganbajun 985 985 95% 0.0 95.22%

To. ramosissima 793 793 96% 0.0 89.15% T. ganbajun 976 976 97% 0.0 94.24%

To. fuscocinerea 793 793 96% 0.0 88.96% T. ganbajun 976 976 97% 0.0 94.25%

T. sp. 987 987 82% 0.0 99.27% T. cf. ganbajun 974 974 95% 0.0 94.42%

nrLSU nrLSU

Species Max
Score

Total
Score

Query
Cover E Value Ident Species Max

Score
Total
Score

Query
Cover E Value Ident

To. stuposa 2375 2375 98% 0.0 97.89% T. terrestris 2342 2342 99% 0.0 97.32%

T. terrestris 2342 2342 98% 0.0 97.45% T. terrestris 2331 2331 99% 0.0 97.17%

T. caryophyllea 2340 2340 98% 0.0 97.38% T. caryophyllea 2329 2329 99% 0.0 97.10%

T. terrestris 2331 2331 98% 0.0 97.31% To. stuposa 2320 2320 99% 0.0 97.03%

Pseudotomentella
griseopergamacea 2183 2183 98% 0.0 95.35% P. griseopergamacea 2180 2180 99% 0.0 95.15%

P. flavovirens 2165 2165 98% 0.0 95.14% P. humicola 2172 2172 99% 0.0 95.01%

Odontia parvospora 2165 2165 96% 0.0 95.77% P. flavovirens 2170 2170 99% 0.0 95.08%

O. parvospora 2165 2165 96% 0.0 95.77% To. pulchella 2156 2156 99% 0.0 94.94%

P. humicola 2161 2161 98% 0.0 94.99% P. tristis 2128 2128 99% 0.0 94.50%

To. pulchella 2139 2139 98% 0.0 94.84% P. tristis 2122 2122 98% 0.0 94.67%

Morphologically, T. grandinioides is similar to T. aurantiotincta, T. fuscella Ces. ex Lloyd,
T. gelatinoidea Lloyd, T. griseozonata Cooke, T. intybacea Pers., T. japonica Yasuda and T. terrestris
by having a grandinoid or odontoid hymenial surface. However, T. aurantiotincta differs
from T. grandinioides by larger basidiospores (6.5–9 × 5.5–6.5 µm vs. 5.3–7.4 × 4–6.5 µm)
and shorter basidia (43–55 × 6.5–8 µm vs. 27–62 × 5–7.5 µm) [3] (Table 4); T. fuscella
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differs in its shorter basidia (35–45 × 6–7 µm vs. 27–62 × 5–7.5 µm) with 2–4 sterig-
mata [3] (Table 4); T. gelatinoidea differs in having larger basidiospores (7–9.5 × 6–9 µm
vs. 5.3–7.4 × 4–6.5 µm) and basidia (45–70 × 8–10 vs. 27–62 × 5–7.5 µm) [3] (Table 4);
T. griseozonata separates from T. grandinioides by having larger basidiospores (8–12 × 5–8 µm
vs. 5.3–7.4 × 4–6.5 µm) [3] (Table 4); T. intybacea differs from T. grandinioides by having larger
basidiospores (8–12 × 6–9 µm vs. 5.3–7.4 × 4–6.5 µm) and basidia (45–90× 9–12 vs. 27–62×
5–7.5 µm) with 2–4 sterigmata [3] (Table 4); T. japonica differs from T. grandinioides by having
larger basidiospores (7–10 × 6–8 µm vs. 5.3–7.4 × 4–6.5 µm) and smaller basidia (40–55 ×
8–10 µm vs. 27–62 × 5–7.5 µm) [3] (Table 4); T. terrestris differs from T. grandinioides by having
larger basidiospores (8–12 × 6–9 µm vs. 5.3–7.4 × 4–6.5 µm) and basidia (40–90 × 8–12 µm
vs. 27–62 × 5–7.5 µm) [3] (Table 4).

Table 4. Comparison of Basidiospore, Basidia, Cystidia, Host, Substrate, Location and corresponding references of Thelelphora
species. The characteristics of newly generated taxa are shown in black bold.

Species Basidiospore
(µm)

Basidia (µm) Cystidia
(µm) Host/Substrate Location Reference

Sterigmata

Thelephora
albidobrunnea

8.5–10.5(–11) ×
6–8.5 55–80 × 11–13 4

On the ground; Acer
rubrum L., Amelanchier
canadensis (L.) Medik.,
Amelanchier sp., Carpinus
caroliniana Walter

Canada, USA [3,56–58]

T. alta 7.6–8.5 × 6–7 On the ground
Borneo, Brunei
Darussalam,
Indonesia, Malaysia

[3,58,59]

T. anthocephala (7–)8–10(–11) ×
(5–)6–8.5 40–80 × 7–11 2–4 On the ground in woods;

Fagus sp., Queercus sp.

Austria, China,
Denmark, Italy,
Netherlands, North
Temperate, Norway,
Russia, Spain,
Slovenia, Sweden,
USA, UK

[3,58,60–62]

T. arbuscula 6–7 × 5.5–6 On the ground in forest India, Mexico, Papua
New Guinea; Ukraine [3,63]

T. atra 9–13 × 8–11 50–100 × 9–12 2–3 On the ground Spain, Poland [3,64,65]

T. atrocitrina 8–13 × 6.5–9 45–75 × 8–13 2–4
On the ground in woods
(Abies sp., Carpinus sp.,
Fagus sp., Quercus sp.)

Austria, Belgium,
Brazilian,
Czechoslovakia,
France, Germany,
Netherlands, Spain

[3,66]

T. aurantiotincta 6.5–9 × 5.5–6.5 43–55 × 6.5–8 4 on the ground in humus
in mountain in forest China, Malaysia [3,67]

T. austrosinensis

(5.2–)5.7–6.3
(–6.7) ×
(4.6–)5.0–5.4
(–5.8)

15–24 × 5–7 4

Castanopsis chinensis
(Spreng.) Hance, C. fabri
Hance, C. fissa (Champ.
ex Benth.) Rehder and
E.H.Wilson, C. hystrix
Hook.f. and Thomson ex
A.DC., Lithocarpus
polystachyus (Wall. ex
A.DC.) Rehder, L.
uvariifolius (Hance)
Rehder, Schima superba
Gardner and Champ.

China [5]

T. bresadolae 5–7 On the ground in woods Hungary,
Czechoslovakia [3]

T. brunneoviolacea 7.5–11 × 6–8.5 2–4 On the ground in the
forest Congo [3]

T. caespitulans 7–8 × 5–6 On the ground Canada, USA [3]

T. caryophyllea 5–10 × 5–8 47–90 × 8–12 2–4

On sandy ground in
coniferous woods; Betula
nigra L., Larix occidentalis
Nutt., Pinus silvestris L.,
Salix sitchensis Sanson
ex Bong.

Canada, China,
Georgia, India,
Mexico, North
temperate, Poland,
Russia, Spain, USA

[3,20,60,62,64,67]
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Table 4. Cont.

Species Basidiospore
(µm)

Basidia (µm) Cystidia
(µm) Host/Substrate Location Reference

Sterigmata

T. cerberea 8–11 × 6–8.3 2–4 On the ground in
dry forest Congo [3]

T. cervicornis 7–8.5 × 6.5–7.5 On the ground Bahamas, Mexico,
USA [3,68]

T. cervina 6–7.5 × 5–6 On the ground China [3]

T. congesta 8.5–11 × 5.5–8.3 30–40 × 7–8 4 On the ground Australia [3]

T. crassitexta 9–11 × 6–9 65–100 × 10–12 2–4 On the wood Borneo [3]

T. cuticularis 7.5–12.5 × 6–9

On mossy bark at the base
of trees and on
fallen twigs;
Juniperus virginiana L.

UK, USA [3,56,57]

T. cylindrica 8–11 × 6.5–9 80–110 × 11–14 4 On the ground in
the forest Japen, Java, Sumatra, [3]

T. dactylites 6.5–8 × 5–7 4 On the ground China [3]

T. dentosa 7–9 × 6.5–8 18–46 × 8–13 4 19–36 ×
4.5–7.5

On dead twigs and
leaves and encrusting
parts pf living plants

Brazilian, Cuba; Haiti,
Indian, Jamaica,
Mexico

[3,66,69]

dominicana 8–9.6 × 7.2–8.8 (30–)50–60 ×
10–12 4

on deciduous forest litter;
On the ground of
deciduous forest;
Coccoloba spp.;
Gymnopodium
floribundum Rolfe

Dominican Republic,
Mexico [14,25]

T. erebia 9–12 × 7–10 45–60 × 10–12 2 On the ground in
the forest Malaysia [3]

T. fragilis 6–7 × 4–5 14–28 × 5–7 2–4 On the ground in
the forest Malaysia, Philippines [3]

T. fucoides 7–9 × 6–8 On the ground in the
forest

India, Malaysia,
Pakistan, USA [3]

T. fuscella 6–8 × 4.5–6 35–45 × 6–7 2–4 On the ground;
Symbiotic with plants

China, Europe, India,
Japan, Malaysia,
Nepal, North
America, Singapore

[3,11,70]

T. ganbajun 7–12 × 6–8 25–35 × 9–12 4 52–80 ×
7–14

In the root of Pinus
yunnanensis Fr. and Pinus
kesiya var. langbianensis

China [5,18,21]

T. gelatinoidea 7–9.5 × 6–9 45–70 × 8–10 4 On the ground in the
forest

China, India,
Malaysia [3]

gelidioides 6–8 × 4.5–6 On the ground in
the forest Singapore [3]

T. grandinioides (5–)5.3–7.4(–7.8)
× (3.8–)4–6.5(–7) 27–62 × 5–7.5 4 35–60 ×

5–7.5

On the ground of
pine-broadleaved mixed
forest

China Present study

T. griseozonata 8–12 × 5–8 on sandy ground in pine
wooods (Pinus sp.)

Germany, Puerto
Rico, New Zealand,
USA, Virgin Islands

[3,56]

T. intybacea 8–12 × 6–9 45–90 × 9–12 2–4
In pine woods; Cedrus
deodara (Lamb.) G.Don,
Pinus canariensis C.Sm.

European, New
Zealand, North
America, Southern
Africa, Uruguay, USA

[3,56]

T. investiens 8.5–10 × 7–9.5 4 On the ground in forest Malaysia [3]

T. japonica (6–)7–10 ×
(5.5–)6–8 40–55 × 8–10 2–4

On the ground, often
encrusting small living
plants; Ectomycorrhizal,
humicolous, gregarious
in mixed forest of Populus
nigra L. and Salix alba L.

China, India, Japan,
Malaysia [3,12]

T. lutosa 5–6 × 3.5–4 On the ground in roads
and in woods USA [3,56]

T. luzonensis 5–6.5 × 4.7–5.7 2–3 China; Philippines,
USA [3]
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Table 4. Cont.

Species Basidiospore
(µm)

Basidia (µm) Cystidia
(µm) Host/Substrate Location Reference

Sterigmata

T. magnifica 9–12 × 7–9 60–75 × 8–10 2–3–4 On ground in hill
dipterocarp forest Brunei, Malaysia [3,71]

T. magnispora 11–12 × 9–11 50–70 × 10–11 4 On mossy ground Indian, Jamaica, USA [3,72]

T. mollissima 8.5–10.7 × 6–7.7 In woods European, China [3,60]

T. multipartita 6–8.5(–9) × 4.7–7
On the ground in
frondose woods;
Quercus sp.

Canada, China, Japan,
USA, Venezuela [3,56,60]

T. nigrescens 6–9 × 5–8 30–50 × 7–10 4, rarely
2–4 On the ground

Brunei Darussalam,
China, Indonesia,
Japan, Philippines

[3,58]

T. palmata 8–12 × 7–9 70–100 × 9–12 2–4

On the ground in
coniferous woods;
Pinus sp.; Quercus
humboldtii Bonpl.

China, Colombia,
France, North
temperate, Russia,
Sweden, UK, USA

[3,56]

T. paraguayensis 6.5–8.5 × 4.5–7 4 On the ground in woods Brazil; Columbia;
Paraguay [3,58]

T. pendens 8–10 × 7–8 40–50 × 10–12 4 Rotten wood in the forest Malaysia [3]

T. penicillata 7–10 × 5–8 30–75 × 7–11
On the ground and
crusted leaves, branches,
grass; Quercus coccifera L.

Canada, China,
Galapagos Islands,
India, Russia, UK

[3,60]

T. phyllophoroides 5–7.5 × 4.5–5.5 On the ground Japan [3]

T. pseudoterrestris 9–11.5 × 7–9 50–60 × 12–14 On the ground in the
forest, leaves Malaysia [3]

T. pseudoversatilis (6–)7–8(–8.5) ×
(5–)5.5–6(–7) 47–55 × 9–12 4 Sub-perennial tropical

forest Mexico [4]

T. ramarioides 7–12.5 × 5–8.5 46–70 × 5–12 2–4, rarely
6–8

50–150 ×
5–12

On the ground under
Casuarina equisetifolia L.

Australia, Borneo,
Java, Malaysia [3]

T. regularis 6–8 × 4.5–6.5 35.2–102.4 ×
6.4–9.6 4

In moss in wet places
and in humus;
Ectomycorrhizal,
humicolous, scattered
under Salix excelsa
J.F.Gmel., S. alba L. and
Populus nigra L.

Canada, India, USA [3,12,56]

T. scissilis 6–8.5 × 5–7 4 On the ground in oak
forest Borneo, India, USA [3]

T. sikkimensis 6–(7.3)–8.8 ×
5–(6.26)–7 35–65 × 7–9 4 30–50 ×

3–10
On the ground of
Castanopsis hystrix India [26]

T. spiculosa 8–12 × 7.5–9 60–70 × 9–12 Encrusting conferous
needles of Pinus sp.

France, Japan,
Sweden, UK [3,57]

T. tenuis 7–8 × 6–7 On sandy ground China, Russia [3]

T. terrestris 8–12 × 6–9 40–90 × 8–12 2–4

On the ground in
coniferous, on roots,
syumps and seedlings;
Picea abies L.; Picea
sitchensis (Bong.) Carr.

Australia, Bavaria,
Brazil, China, Europe,
Germany, Indian,
Jamaica, Japan,
Mexico, New
Zealand, North
America, South
Africa, Spain, UK,
Uruguay, USA

[3,21,60,64,67,68,72]

T. versatilis 6–7(8.5) × (4)
5–6(6.5) 30–86 × (7)8–11 4

Deciduous and
sub-perennial tropical
forest

Mexico [4]

T. vialis 4.5–7(–8) ×
4.5–6(–6.5)

26.4–64.0 ×
5.6–10.4

On the ground in
frondose woods;
Ectomycorrhizal,
humicolous, scattered to
gregarious in the mixed
forest of Populus nigra L.,
Salix alba L. and
Hippophae rhamnoides L.

China, India, Japan,
North America, USA [3,12,56,60,73]
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Table 4. Cont.

Species Basidiospore
(µm)

Basidia (µm) Cystidia
(µm) Host/Substrate Location Reference

Sterigmata

T. wakefieldiae 40–65 × 7.5–12 40–65 × 7.5–12 4 Colonizes all kinds of
wood debris

Denmark, Estonia,
France, Germany,
North temperate,
Norway, Spain,
Russia, Sweden, UK,
USA

[14]

T. wuliangsha-
nensis

(5–)5.2–8.7(–9.3)
× (3.7–)4.5–7.2
(–7.6)

30–60 × 5–9.5 4 28–55 ×
3–7.5

On the ground of
pine-broadleaved mixed
forest

China Present study

T. zeylanica 8–12 × 4–8.5 On the ground Ceylon [3]

Thelephora grandinioides morphologically resembles T. ganbajun and T. ramarioides
D.A. Reid due to the presence of cystidia. However, T. ganbajun differs from T. gran-
dinioides by its larger basidiospores (7–12 × 6–8 µm vs. 5.3–7.4 × 4–6.5 µm), shorter ba-
sidia (25–35 × 9–12 µm vs. 27–62 × 5–7.5 µm), and larger cystidia (52–80 × 7–14 µm vs.
35–60 × 5–7.5 µm) [17] (Table 4); T. ramarioides differs from T. grandinioides by its larger
basidiospores (7–12.5 × 5–8.5 µm vs. 5.3–7.4 × 4–6.5 µm) and smaller basidia (46–70 ×
5–12 µm vs. 27–62 × 5–7.5 µm) [3] (Table 4).

Thelephora wuliangshanensis C.L. Zhao and X.F. Liu, sp. nov. Figures 7B and 9.
MycoBank no.: MB840634.
Holotype—China, Yunnan Province, Puer, Jingdong County, Huangcaoling, Wu-

liangshan National Nature Reserve, 100◦45′ E, 24◦23′ N, 2313 m a.s.l., on the ground
of pine-broadleaved mixed forest, leg. C.L. Zhao, 5 October 2017, CLZhao 4107 (SWFC
00004107).

Etymology—wuliangshanensis (Lat.): referring to the provenance (Wuliangshan) of
the type specimens.

Basidiocarps—Annual, laterally stipitate, gregarious. Pilei small to medium-sized,
coriaceous, infundibuliform, up to 5.5 cm long, 4.5 cm wide, 1 mm thick; buff to salmon
when fresh, pinkish buff to cinnamon-buff on drying; proliferous from a central common
base, usually with several to many laterally confluent spathulate to flabelliform, uplifted;
the surface radially black striate; margin thin, serrulate. Hymenial surface smooth, umber
to coffee when fresh, coffee on drying. Stipe cylindrical, up to 2 cm long, up to 5 mm
in diameter. Context fleshy tough in fresh condition, leathery in dried condition, up to
0.7 mm thick at the thickest portion of pileus, thinner at margin and thicker towards the
base, pinkish buff. Odor mild when fresh, somewhat with the beef jerky flavor.

Hyphal system—Monomitic, generative hyphae with clamps, colorless, thick-walled,
frequently branched, interwoven, 2.5–6 µm in diameter; IKI–, CB–; tissues turn to greenish
grey in KOH.

Hymenium—Cystidia tubular, thick-walled, 28–55 × 3–7.5 µm; basidia barrel-shaped
to slightly clavate, with 4 sterigmata and a basal clamp, 30–60 × 5–9.5 µm, basidioles
dominant, clavate, but slightly smaller than basidia.

Basidiospores—Subglobose to globose, nodulose to verrucose, echinulis 0.5–1 µm,
umber purple, thick-walled, with guttatae or not, IKI–, CB–, greenish grey to buff in 5%
KOH, (5–)5.2–8.7(–9.3) × (3.7–)4.5–7.2(–7.6) µm (including ornamentations), L = 7 µm,
W = 5.66 µm, Q = 1.23–1.25 (n = 60/2).

Additional specimens examined—China, Yunnan Province, Puer, Zhenyuan County,
Huangcaoling, Wuliangshan National Nature Reserve, 100◦57′ E, 23◦57′ N, on the ground
of pine-broadleaved mixed forest, 8 October 2020 CLZhao 21020 (SWFC 00021020).

Notes—Thelephora wuliangshanensis is sister to a clade comprising T. aurantiotincta
and T. austrosinensis in phylogeny; and the nucleotide differences of phylogenetically
similar species to T. sikkimensis are shown in Table 2. Thelephora sikkimensis differs from
T. grandinioides by its shorter cystidia (30–50 µm vs. 35–60 µm) and hairy basidiocarp
surface [26] (Table 4). Thelephora aurantiotincta separates from T. wuliangshanensis by smaller
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basidia (43–55 × 6.5–8 µm vs. 30–60 × 5–9.5 µm) [3] (Table 4); while T. austrosinensis differs
from T. wuliangshanensis by its smaller basidiospores (5.7–6.3 × 5.0–5.4 µm vs. 5.2–8.7
× 4.5–7.2 µm) and basidia (15–24 × 5–7 µm vs. 30–60 × 5–9.5 µm) [27] (Table 4). In
addition, the results of BLAST queries in NCBI based on ITS and nrLSU separately are
shown in Table 3.
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Figure 9. Microscopic structures of Thelephora wuliangshanensis (Holotype CLZhao 4107). (A) A section
of hymenium; (B) A section of hymenium; (C) A section of hymenium; (D) A section of hymenium;
(E) Generative hyphae with clamps; (F) Basidia; (G) Basidioles: (H) Cystidia; (I) Basidiospores. Bars:
(A–I) = 20 µm.

4. Discussion

In the present study, two new species, Thelephora grandinioides and T. wuliangshanensis
are described based on phylogenetic analyses and morphological characteristics. In addi-
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tion, the PHI test (Figures 5 and 6) was carried out to confirm there is no recombination
present in the two new species compared with closely related taxa.

Thelephora, a genus with diverse basidiocarp forms, are widely distributed world-
wide [3,26,28]. Basidia form is an important characteristic of intraspecific identification
in Thelephora, and most species of Thelephora have 4-spored basidia, there are 2-spored
(T. erebia), 2–3-spored (T. atra and T. luzonensis), 2–4-spored (T. anthocephala, T. atrocitrina,
T. brunneoviolacea, T. caryophyllea, T. cerberea, T. crassitexta, T. fragilis, T. fuscella, T. intybacea,
T. japonica, T. magnifica, T. nigrescens, T. palmata, and T. terrestris) and sometimes there are
6–8-spored (T. ramarioides) [3–5,21] (Table 4).

Thelephora is closely related to Tomentella both in morphology and phylogeny [5,10,14,25,29,74].
Molecular phylogenetic analyses of previous studies showed that the taxa of Thelephora
and Tomentella are non-monophyletic groups, and they are intermixed in molecular phy-
logeny [4,5,25,29,31,33]. Traditionally, the form of basidiocarps is the most important char-
acteristic in distinguishing Thelephora and Tomentella, which are resupinate in Tomentella, but
erect, with varied forms, to partially resupinate in Thelephora [3,14,24,25,29,34,74]. The vari-
ations in basidiocarp form may also complicate the characteristics of taxa [75,76], and the
results of the morphological investigations and molecular phylogenetic analyses suggested
that basidiocarp reduction happened several times independently across the evolution of
thelephoroid fungi [14,25]. Taxa with reduced basidiocarps should be taken into account in
the diagnoses of genera for which the initial descriptions did not cover a real spectrum of
polymorphism and trends of morphological rationalization in connection with coloniza-
tion of specific habitats [14,25,76]. According to molecular data, only one genus may be
recognized, and Tomentella will be merged into Thelephora [25].

In the habitat and distribution, thelephoroid fungi have a circumglobal distribution,
ranging from polar deserts [9] to tropical forests [3], but their peak diversity is observed
within the boreal zone of the planet [14,33]. Most of the species in this group have ecto-
mycorrhizal associations [77,78], but it is also capable of destroying wood debris as white
rot producers [14,15]. The species of Thelephora are a widely distributed group found on
six continents except Antarctica [3,5,14,17,26], mainly distributed across Europe in Austria,
Bavaria, Belgium, Denmark, Estonia, France, Georgia, Germany, Italy, Netherlands, Nor-
way, Poland, Russia, Slovenia, Spain, Sweden, UK and Ukraine [3,5,28,58,59,62,65,66,76];
additionally, the most-common substrata are hardwood and conifer [3,5]. It is also dis-
tributed in Asia (Borneo, China, Japan, India, Malaysia, Nepal, Pakistan, Philippines, Sri
Lanka, and Singapore) [3,5,56–58,60,67,70,71], North America (Bahamas, Canada, Cuba,
Dominican Republic, Haiti, Jamaica, Mexico, and USA) [3,5,14,25,56–58,62,63,69], South
America (Uruguay) [3], Oceania (Australia and Papua New Guinea) [3], and Africa (Congo
and Southern Africa) [3,5,56] seen in Table 4. Twenty one species of Thelephora have been
reported from China (including our two new species), in which T. ganbajun and T. vialis
Schwein. are the two most commonly reported taxa, and the former is one of the most
popular edible fungi in Southwest China [5,17–20,60,61,67–79]. The diversity of Thelephora
in China is still not well-known, especially in the subtropical and tropical regions and
many recently described taxa of thelephoroid fungi are from these areas [5,67]. Thelephora
grandinioides and T. wuliangshanensis are also from subtropics. According to our statistics,
twenty-one Thelephora species have been recorded in China (Table 4), in which 7 are edible
and 4 are medicinal (T. aurantiotincta, T. ganbajun, T. terrestris, and T. vialis) with anti-
cancer properties, treat leukemia, boost immunity, and are an anti-allergic agent (Table 5).
Fleshy to coriaceous basidiocarps, a mild odor, and beef jerky flavor are characteristics of
T. grandinioides. Several Thelephora species are known as edible or medicinal mushrooms,
while our new species are potential edibles thus, secondary metabolite analyses of the two
new species should be carried out in the future.
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Table 5. Edible and medicinal species of Thelelphora.

Species Edible Value Medicinal Value Medicinal Efficacy Reference

Thelephora anthocephala P Anticancer [80]
T. aurantiotincta Y Y Anticancer [73,80–85]
T. austrosinensis Y [5]
T. caespitulans P Anticancer [82]
T. caryophyllea P Anticancer [82]
T. fuscella Y [81]
T. ganbajun Y Y Treat leukemia, anticancer and boost immunity [5,83,85–88]
T. intybacea P Anticancer [80]
T. japonica Y P Anti-microbial activities [20,81,88,89]
T. palmata Y P Anticancer [81,82]
T. penicillata P Anticancer [80]
T. regularis P Anticancer [80]
T. scissilis P Anticancer [80]
T. sikkimensis P [26]
T. terrestris Y Anticancer [90]
T. vialis Y Y Anticancer and anti-allergic agent [73,91,92]

“Y” means have edible or medicinal value; “P” means have edible or medicinal potential.
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