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Abstract: One of the aims of the XXXIV Italian Antarctic Expedition is the study of the photosynthetic
biodiversity of the Ross Sea. To achieve this goal, sea-ice samples were collected from Inexpressible
Island and a strain of a green microalga (IMA076A) was isolated for morphological and molecular
investigations. Combining: (1) phylogenetic analyses of the small subunit rDNA (18S rDNA) and of
the internal transcribed spacer 2 (ITS-2) sequences; (2) species delimitation methods; (3) comparative
analyses of the secondary structures of ITS-2 and compensatory base changes; (4) morphological,
ultrastructural and ecological features, we described the strain IMAQ76A and its relatives as the new
species Microglena antarctica sp. nov. The discovery of a new species of Chlorophyceae highlights that
the biological diversity of Antarctic microalgae is more extensive than previously thought and that
molecular phylogeny together with compensatory base changes (CBCs) approach are pivotal in the
identification of cryptic microalgae.

Keywords: Antarctica; biodiversity; Chlorophyceae; Microglena; molecular phylogeny; Monadina
clade; Ross Sea; 185 rDNA; ITS-2 DNA barcode

1. Introduction

Antarctica is considered an immense field laboratory for the study of fundamental
global processes with a variety of key organisms that can be used to monitor the functioning
of ecosystems, the effects of climate change and the impact of anthropic activities [1]. In
particular, Antarctic microalgae play crucial roles in cold ecosystems as inorganic carbon
fixers and as keystone species that sustain a high diversity of heterotrophic organisms [2].
Despite the fact that psychrophilic microalgae provide a wide range of ecological functions,
many aspects related to their biology, cold adaptations and, especially, their diversity are
not well known [2]. In past years, the identification of polar microalgae had been limited
to morphological observations [3], which led to the underestimation of the diversity of
these photosynthetic organisms [4,5]. However, the use of a polyphasic approach, which
combines molecular data, light and electron microscopy, biochemical and physiological
analyses, has shed light on the evolution and the diversity of these algae, with the de-
scription of novel species and the taxonomic revision of several genera [2,4]. To date, the
re-examination of the genus Chlamydomonas Ehrenberg [4,6,7] using molecular phylogeny
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has highlighted its polyphyletic origin [8-10]. Within this polyphyletic group, the phyloge-
netic positions of Chlamydomonas-like species isolated from snowfields and ice is unclear.
According to the taxonomic revision of Demchenko et al., 2012 [4], psychrophilic microal-
gae isolated in Antarctica form a lineage, the ‘Polar’ subclade, with the genus Microglena
Ehrenberg emend. Demchenko, Mikhailyuk & Proschold [4,6,7], formerly known as the
‘Monadina’ clade, which is distinguished from Chlamydomonas (‘Reinhardtii’ clade). In this
study, we describe a green alga (strain IMAO76A) isolated from green sea-ice samples
collected from Inexpressible Island (Terra Nova Bay, Ross Sea) during the XXXIV Italian
Expedition to Antarctica. We compared strain IMA076A’s morphology, ecology and molec-
ular sequences (ITS-2 rDNA and 185 rDNA) with those of three algal strains belonging to
the ‘Polar’ subclade (provisionally described as: Chlamydomonas pulsatilla CCCryo 309-06,
Chlamydomonas sp. ICE-L and Chlamydomonas sp. ICE-W) and with data of 21 freshwater
and marine strains described as members of the Microglena genus [4,11,12]. Particularly, the
conserved region of the ITS-2 secondary structure was analysed using the compensatory
base changes (CBCs) approach [13]. The analysis of ITS-2 and its corresponding secondary
structure is important for the discrimination of biological species of green microalgae since
the difference of even one CBC pairing in the conserved region of ITS-2 predicts gametic
incompatibility [13,14]. Specifically, the usage of ITS-2 as a barcode marker was adopted
to support the delimitation of the genus Microglena and to identify its species [4,14]. In
an attempt to describe the strain IMAO76A, we used an integrated approach based on
the phylogenetic analysis using concatenated 185 rDNA and ITS-2 sequences corrobo-
rated with morphological and ecological data. In this sense, we propose a new species
Microglena antarctica Trentin, Negrisolo, Moschin, Veronese, Cecchetto & 1. Moro sp. nov.,
adapted to the extreme Antarctic environment.

Thus, these findings will represent an addition to knowledge on Antarctic biodiversity
and will provide a basis for future comparative studies aimed at assessing the multiple
effects of environmental changes on the Ross Sea Region.

2. Materials and Methods
2.1. Isolation and Cultures

Green sea-ice samples were collected with a spatula during the XXXIV Italian Antarctic
Expedition (2018/2019), on 18 November 2018, by Isabella Moro and Matteo Cecchetto
from the Penguin Lagoon, located at Inexpressible Island (Terra Nova Bay, Ross Sea,
Antarctica) with coordinates: 74°54" S 163°39’ E (Figure 1). In the laboratory, the sea-ice
sample, characterized by a green colour was defrosted and the melted ice was streaked
with a platinum loop on a plate containing f/2 growth medium [15] solidified with agar.
The agar plate was maintained in a growth chamber at 4 °C with a continuous light
intensity of ~6 pmol photons m~2-s~!. In Italy, from the agar plate, the isolation of the
microalga, hereforth called strain IMAO76A, from the pool of microorganisms present in
the plate, occurred using a platinum loop. The material was inoculated in a flask with
liquid f/2 growth medium with a salinity of 34%o. to simulate the environmental conditions.
Additionally, in this case, the culture flask was maintained in a growth chamber at 4 °C
and a continuous light intensity of ~6 umol photons m~2-s~!. The liquid cultures of the
strain IMAO76A were used for the following morphological, ultrastructural and molecular
analyses to investigate all the features useful for the identification of the microalga.

2.2. Molecular Analysis
2.2.1. DNA Extraction and Amplification of Selected Molecular Markers

Microalgal pellet, obtained by centrifugation of a liquid culture, was ground with
mortar, pestle and quartz sand and the DNA was extracted using the DNeasy Powersoil
Pro Kit® (Qiagen GmbH, Hilden, Germany), following manufacturer’s indications. Prior to
the amplification, genomic DNA was quantified with a DU 530 Beckman Coulter UV /v
(Beckman Coulter Inc., Fullerton, CA, USA) is spectrophotometer. Two molecular markers
(ITS-2 and 185 rDNA) were amplified for further phylogenetic analyses. ITS-2 region was
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amplified using the primer pairs ITS1 [16] and ITS4 [17] with the following PCR conditions:
95 °C for 5 min followed by 35 cycles, each including 95 °C for 45 s, 53 °C for 30's, 72 °C
for 45 s, and 72 °C for 5 min. The 18S rDNA region was amplified using the general
eukaryotic primers Euk528F, EukA, EukB, Euk1209F and U1391R [18-22] via the following
PCR steps: 95 C° for 5 min followed by 35 cycles, each including 95 °C for 45 s, 50 °C
for 45 s, 72 °C for 50 s, and 72 °C for 5 min. Amplification products were verified by
electrophoresis and purified using HT ExoSAP-IT High-Throughput PCR Product Cleanup
reagent (ThermoFisher Scientific, Waltham, MA, USA) before sequencing. PCR products
were sequenced at BMR Genomics Sequencing Services with the same primers used for
amplification. SeqMan II from Lasergene package (DN AStar, Madison, Wisconsin, USA)
was used to create the final consensus sequences, which were compared with those available
in online databases by using BLAST [23]. The obtained sequences (1781 bp for the 185
rDNA gene and 1241 bp for the ITS-2 and its flanking regions) were deposited in GenBank,
with the following accession numbers: ON185622 and OM791388.

N

A

!

Inexpressible Island

Ross Sea

Figure 1. Map of Inexpressible Island, the sampling site is defined by the blue pin. The red circle
indicates the location of Terra Nova Bay.

2.2.2. Phylogenetic Analyses and Species Delimitation Methods

Separate datasets were created for the 185 rDNA gene and ITS-2 region, includ-
ing the sequences obtained in this study and other sequences available in the GenBank®
database [24] for the genus Microglena, for Wislouchiella planctonica UTEX 1030,
Phacotus lenticularis SAG 16.99, Chaetophora incrassata CCAP 413/1 and Aphanochaete magna
UTEX B 1909 (Table S1). These taxa were included in our analysis according to previous phy-
logenetic studies [4,11,12]. The 29 185 rDNA sequences were aligned with CLUSTALW [25]
implemented in MEGA-X 10.2.4 [26]. The obtained alignment (hereafter 185rDNA.aln) was
1781 positions long. The secondary structures of ITS-2 sequences were initially generated
using the UNAfold software [27]. A multiple alignment of 29 ITS-2 sequences (hereafter
ITS-2.aln) was produced with the 4SALE program [28] taking into consideration both the
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primary sequence and secondary structure. The ITS-2.aln was 779 aligned positions long.
The 18SrDNA .aln and ITS-2.aln were successively concatenated in a single dataset (here-
after CONC.aln) in MEGA X 10.2.4. Phylogenetic analyses were performed on CONC.aln
according to the maximum likelihood method (ML), implemented in the IQTree 1.6.12
program [29] and to Bayesian Inference (BI) approach available in MrBayes v3.2.7 [30]. In
the ML analysis, ModelFinder [31] was used to find the best fitting evolutionary models
for each of the two subsets (185 rDNA and ITS-2). The Akaike Information Criterion was
used to select the best-fitting evolutionary models. For the 185 rDNA partition, a K2P
model [32] with a proportion of invariable sites (I) and a gamma shape parameter (G) was
adopted, while for the ITS-2 partition a TPM2u model [33] with empirical base frequencies
(F), proportion of invariable sites (I) and a gamma shape parameter (G) was chosen. The
robustness of the topologies was assessed by approximate Likelihood Ratio Tests (aLRT)
based on Shimodaira-Hasegawa (SH)-like procedures [34], and bootstrap (BT) re-samplings
(1000 replicates) in IQTree. The BI analyses consisted of two separate concurrent Markov
chain Monte Carlo (MCMC) runs, each composed of four chains (three heated and one cold),
for 5 x 10° generations, sampling trees every 100 generations. At the end of each run, the
posterior distribution was considered adequate if the average standard deviation of the split
frequencies was <0.01. The first 12,500 trees were discarded as burn-in and the consensus
topology and posterior probabilities (PP) were derived from the remaining trees. Alterna-
tive topologies were evaluated in IQTree using the RELL method [35], Kishino-Hasegawa
test [36], Shimodaira-Hasegawa test [37], expected likelihood weights [38] and approxi-
mately unbiased (AU) test [39] with 10,000 resamplings. Five species delimitation methods
were employed on the ITS-2 dataset: (1) a distance-based method, Automatic Barcode Gap
Discovery (ABGD) [40], (2) a tree-based method, Poisson Tree Processes (PTP) [41] and
(3) its Bayesian implementation (bPTP), (4) an ultrametric tree-based method, Generalized
Mixed Yule Coalescent (GMYC) [42,43] with single threshold (ST) and (5) multi threshold
(MT). AGBD was performed directly on the input alignment (ITS-2.aln) using the web
interface (https:/ /bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html, accessed on 10 April
2022) with the K80 Kimura distance and relative gap width (X) set to 0.5. PTP and bPTP
with 500,000 MCMC generations were run with thinning every 100 generations on the web
server (http://species.h-its.org/ptp, accessed on 10 April 2022) using the best maximum
likelihood phylogeny tree (constructed in IQTree) as an input. ST and MT GMYC were
calculated on the web server (http:/ /species.h-its.org/gmyc, accessed on 10 April 2022)
using an ultrametric tree as an input. The ultrametric tree was calculated with BEAST
2.6.3.0 [44] using a GTR+G+T model, a ‘log normal relaxed molecular clock’” (MCMC:
10 x 10°, sampling every 1000 generations), a ‘coalescence tree with constant population’,
and a 0.25 burn-in. Tree annotator 1.8.0 [45] from the BEAST package was used to build the
consensus of sampled trees.

2.2.3. DNA Barcoding, CBCs/p-Distances

ITS-2 sequences of the species belonging to the former ‘Monadina clade” were aligned
in MARNA [46] and the conserved regions were extracted manually from this alignment.
According to Coleman instructions [47], conservative ITS-2 regions were used to find
species-specific molecular differences among species. The regions selected for DNA barcode
consisted of the first 15 bp in 5.85-LSU stem, the first 5 bp of Helix 1, the first 11 bp of
Helix II and the alignable base-pairs of Helix III. The extracted portions were aligned
again in MARNA. Base-pairs alignments among all sequences were converted by numbers
according to different base pairings (1 = A-U 3 =G-C5=GeU 7 = mismatch 2 =U-A 4 =C-G
6 = UeG 8 = deletion, unpaired of single bases) using R-Statistics® 3.5.3 version. Sequence
alignment was used to detect compensatory base changes (CBCs) using CBCAnalyzer
version 1.1 [48]. Uncorrected p-distances among species were calculated using PAUP [49]
and the resulting matrix was visualized using a non-metric multidimensional scaling
(NMDS) calculated with the ‘vegan’ package implemented in R [50]. Results of these
analyses were used to create a CBC/p-distances matrix.
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2.3. Morphological Analysis

The isolate was studied under differential interference contrast (DIC) microscopy
with a Leitz DM IRB microscope (Leica, Wetzlar, Germany) and a Zeiss LSM 700 confocal
microscope (ZEISS, Jena, Germany) equipped with a digital image acquisition system. To
prepare samples for SEM microscopy, cultured cells were fixed in glutaraldehyde 2.5% in
0.1 M cacodylate buffer (pH 6.9) and then post fixed in 1% OsO4 in the same buffer for
2 h. Samples were dehydrated in a graded concentration increasing ethanol series with
centrifugation following every different concentration step. After these steps, ethanol was
removed by Critical Point Drying and finally samples were gold coated. SEM observations
were carried out using a scanning electron microscope FEI Quanta 200 variable pressure-
environmental /ESEM (FEI, Eindhoven, Netherlands) working at a working distance of
13.9 mm and at a 20 kV voltage. For TEM analyses, samples after post fixation were dehy-
drated in ethanol as above and treated in propylene oxide to be then included in araldite
and maintained at 60° for 72 h in order to polymerize the resin. Ultrastructural analyses
were carried out through a FEI Tecnai G2 (FEI, Eindhoven, Netherlands) transmission
electron microscope, equipped with a side mounted camera Olympus Veleta (Olympus,
Miinster, Germany) and a bottom mounted camera TVIPS F114 (TVIPS, Gauting, Germany).
Morpho-ecological data for strain IMAO076A and phylogenetically related species were
summarized in a matrix and visualized using a principal component map calculated with
the PCAmixdata’ package implemented in R.

3. Results
3.1. Phylogeny and Species Delimitation Methods

High-quality sequences were obtained for the two markers amplified from the newly
studied green microalga strain IMA(076A. We amplified 1781 bp for the 185 rDNA gene
and 1241 bp for the ITS-2 and its flanking regions. Phylogenetic analyses performed on the
CONC.aln, based on ML and BI approaches, provided identical topologies (Figure 2). The
best unconstrained tree showed three distinct and well-supported lineages, two marine
clades: ‘clade I’ (including polar-strains IMA076A, CCCryo 309-06, ICE-L and ICE-W and
M. redcarensis SAG 18.89), “clade II (including Microglena reginae SAG 17.89 and M. uva-maris
SAG 19.89) and one freshwater lineage ‘clade III. In the best tree, strain IMA076A grouped
with three strains of Antarctic green algae: CCCryo 309-06, ICE-L and ICE-W. This grouping
received strong statistical support: 99% SH-aLRT value, 1 posterior probability, 100%
bootstrap. This lineage formed a well-supported clade (100% SH-aLRT value, 1 posterior
probability, 100% bootstrap) with the marine species described by Nakada et al., 2018 [11]
as M. redcarensis SAG 18.89. This last clade was sister taxon to the other species of the
genus Microglena. Five species delimitation methods were used to test if the polar-strains
IMAQ76A, CCCryo 309-06, ICE-L and ICE-W belong to the same species (Figure 2). All
the species delimitation methods (PTP, bPTP, ABGD, ST-GMYC and MT-GMYC) showed
unequivocally that the polar strains belong to a single species, which is closely related to
the strain SAG 18.89.

3.2. Hypothesis Testing

The tree constrained to monophyly M. redcarensis SAG 18.89 with Microglena reginae
SAG 17.89 and M. uva-maris SAG 19.89 (clade II) was significantly worse than the best
unconstrained tree (Figure 2), as was the tree constrained the monophyly of M. antarctica
(IMAQ76A, CCCryo 309-06, ICE-L and ICE-W) and M. redcarensis SAG 18.89 (clade I)
with freshwater species (clade III). A tree constrained to the marine strains (M. antarctica
IMAQ76A, CCCryo 309-06, ICE-L and ICE-W, M. redcarensis SAG 18.89, Microglena reginae
SAG 17.89 and M. uva-maris SAG 19.89) to monophyly was not significantly different from
the best unconstrained tree found (Table 1).
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Figure 2. Maximum likelihood (ML) phylogeny of concatenated the 185 rDNA and ITS-2 regions
alignment with members of the genus Microglena. Approximate Likelihood Ratio Tests based on
Shimodaira-Hasegawa-like procedures (SH-aLRT) values (%), Bayesian Posterior Probabilities (PP)
and ML bootstrap values (%) are shown above branches (SH-aLRT supports >80%, posterior probabil-
ities >0.70 and bootstrap values >50%). Results of species delimitation methods: PTP = Poisson-Tree
Processes and bPTP (Bayesian version), ABGD = Automatic Barcode Gap Discovery, GMYC = Gener-
alized Mixed Yule Coalescent (ST: single threshold and MT: multiple threshold) are summarized on
the right side of the tree.

Table 1. Results of topology test. Scores of constrained trees: (BT) = Best unconstrained tree, (Clade
I + II) = M. uva-maris, M. reginae, M. recarensis and M. antarctica. (Clade I + III) = M. recarensis,
M. antarctica and freshwater Microglena species and (Clade II + R) = M. redcarensis, M. uva-maris and
M. reginae. In each case, all exemplars within the constraint were initially assumed to be unresolved
with respect to one another. deltal: logL difference from the maximal logl in the set; bp-RELL:
bootstrap proportion using RELL method; p-KH: p-value of one-sided Kishino-Hasegawa test; p-SH:
p-value of Shimodaira-Hasegawa test; p-WKH: p-value of weighted KH test; p-WSH: p-value of
weighted SH test; c-ELW: Expected Likelihood Weight; p-AU: p-value of approximately unbiased
(AU) test. Plus signs denote the 95% confidence sets. Minus signs denote significant exclusion. All
tests performed 10,000 resamplings using the RELL method.

Tree logl deltal bp-RELL p-KH p-SH p-WKH p-WSH c-ELW p-AU

BT —9255.53 0 0.625+ 0.645+ 1+ 0.645+ 0.881+ 0.62+ 0.648+

Clade I+IT —9257.77 2.2402 0.349+ 0.354+ 0.803+ 0.354+ 0.782+ 0.348+ 0.483+
Clade I+III ~ —9320.01 64.485 0— 0.0001— 0.0002— 0.0001— 0.0001— 0.0002 0.0398—
Clade II+R  —9266.84 11.313 0.0263— 0.12+ 0.321+ 0.0578+ 0.108+ 0.0326—  0.0355—

3.3. ITS-2 Secondary Structure, DNA Barcoding, CBCs/p-Distances

The secondary structure analyses of the ITS-2 rDNA (Figure 3) revealed a high simi-
larity between strain IMAO76A and polar strains (CCCryo 309-06, ICE-L and ICE-W) and
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remarkable differences in III and IV helices between IMA076A and Microglena species.
Helix Il in IMAO76A consisted of 228 bases, as in polar-strains CCCryo 309-06, ICE-L and
ICE-W, and resulted longer compared to helix III of the species of the genus Microglena.
Interestingly, while the proximal region of the helix was conserved among Microglena
species, the distal region represented an expansion detectable only in polar strains. Helix
IV was 80 bases long in IMAO076A and ICE-L, while it consisted of 78 bases in ICE-W
and CCCryo 309-06. In contrast, Microglena species have reduced IV helices, usually less
than 30 bases. Our results highlighted that p-distances among polar strains were equal
to zero, and ITS-2 sequences of polar strains did not show CBCs in the barcode-alignable
region (Table 2), which supports the view, with a reasonable probability (about 76%), that
these microalgae belong to the same species [13]. The marine strain SAG 18.89, which
resulted the sister species to the polar algae (Figure 2), noticeably showed the lowest
values in genetic distance and CBCs differences with IMAQ076A with respect to all the
other Microglena species (Table S2). In particular, the NMDS plot of p-distances (Figure 4)
showed that the closest strains to the Antarctic clade species (ICE-L, ICE-W, CCCryo 309-06
and IMAO076A) were SAG 18.89, SAG 17.89 and SAG 19.89, which were clearly separate
from other Microglena species.

Ain CCCryo 309-06

missing in CCCryo 309-06

Figure 3. Hypothetical secondary structure of the ITS-2 spacer for Microglena antarctica sp. nov. The
nucleotide sequences of the spacers between the four main helices are reported on the structure. A-U
pairings are represented with a single line, G-C pairings with a double line, and unconventional
pairings with a line interrupted by a circle. Orange boxes include the barcode regions. Nucleotide
differences between M. antarctica IMAO76A and other strains of the same species are represented by
coloured circles (light green for strain CCCryo 309-06, red for strain ICE-W and blue for insertion
detected only in IMAQ76A).
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Table 2. ITS-2 DNA Barcode of the Microglena species. Base-pair alignment is coded using a num-
ber for each base-pair (1 = A-U, 2 = U-A, 3 = G-C, 4 = C-G, 5 = GeU, 6 = UeG, 7 = mismatch
and 8 = deletion, unpaired of single bases). % = M. opisthopyren [12], @ = M. media [12]. * = non-
homoplasious synaphomorphies. ** = 2 non-homoplasious synaphomorphies.

Species - Strains Barcode 5.8S-LSU Helix I Helix IT Helix III

M. antarctica IMAO76/CCCryo 309-06/ICE-L/ICE-W A 234421342453326 64243 65341574441 38888851321885418221541133884488835144541142353613113613138

_______________ * . J T
M. redcarensis SAG 18. 89 B 234421342453326 64141 65341574441 58881831368813488212541135184488885144541142353613113413148
................... * R T
M. reginae SAG 17.89 C 234421342453327 64144 63344774441 33821831588881818485321133184421335544541148553885883213848
.............. * LT P T .. T
M. uva-maris SAG 19.89 D 234421342453326 64143 65141374441 32811831588881828483348133184425135544541142353215885413848
______________________ LI I T S S S
M. lobata SAG 31.72 E 234421342453326 64124 65347374441 38821831338885838483888133844488833344541186535215883413848
M. braunii SAG 50.86 F 234421342453326 64112 65342374441 38821831331885838483888853144488833344541186535215883413848
--------------- * F

) 234421342453326 64126 65344374641 36828831538881818485888133844488833344541162553881883413848

M. globulifera CCAC 0015/CCAC 0017 G

............... * e R e e e e e e R
M. longirubra SAG 5.92 H 234421342453326 64142 65344374441 36828851338813818483888133844488835344541126553285883413848
M. coccifera SAG 54.91/SAG 55.91 I 234421342453326 64142 65344374441 36821831338815878787887133844488833344541122553885883413848

M. opisthopyren SAG 8.87/SAG 54.90/CCAP 11/46 %

M. opisthopyren NIES-2744 %

M. basinucleata SAG 67.72

M. monadina SAG 55.72

M. charkoviensis ACKU267-03/ ACKU274-03

M. indica SAG 46.96

M. media SAG 16.90 «

M. media NIES-2743 »

n 234421342453326 64142 65344374441 36821831338883838483888133844488833344541122553885883413848
2 234421342453326 64142 65344374441 32821831338883858483888133644488833344541122553885883413846
......................................................................................... *
" 237421342453326 54142 65342374441 32831833328681818483841833884488855344541142535885883413848
Rl e s e E e N
L 234421342453326 64142 65344374441 38888331888883885483888833844488833344541142535215883413848
__________________________________ T
M 234421342453326 64144 65344374441 368388313382658514838488336844488833344541142553881883413848
.......................................... M R e ittt essssesssessasesasesnassnnnnn
N 234421342453326 64124 65363374441 32821833318883858485888833844488833344541142553685883413848
....................... KR
o 934491342453326 ca16a 5347374041 38861833318883858485841833184488833344541122553685883413842
1

02 234421342453326 64164 65347374441 32121833318883858485841833184488833344541122553685883413842

3.4. Cell Morphology and Ultrastructure

Through differential interference contrast, scanning electron and confocal microscope
observations, strain IMAO76A appeared as a unicellular motile green alga, characterized by
the presence of two flagella (Figure 5a—c), projecting from the apical part of the cell. Cells
were oval in shape with average length and width of 17 & 3 um and 12 & 3 um, respectively
(Figure 5a,b,d). Moreover, the cells were characterized by the presence of bulges, emerging
from the cell surface (Figure 5b). Asexual reproduction was by sporulation with the
production of two or four zoospores (Figure 5c). TEM investigations confirmed the oval
shape of the cells, with the nucleus located in the anterior-central position (Figure 5d). A
single cup-shaped chloroplast with a thick basal part, occupied almost all the cell volume
(Figure 5d) and was characterized by a pyrenoid. This was spherical or ellipsoidal in shape,
surrounded by a single layer of several starch platelets (Figure 5d,f) and penetrated by
thylakoid membranes (Figure 5f). A trapezoidal wall papilla with the insertion of flagella
and contractile vacuoles were located in the apical part of the cell (Figure 5e). Morpho-
ecological data of IMA(Q76A and phylogenetically related species (Table 3) were visualized
in Figure 6.
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Table 3. Morphological characters and ecology of Microglena species.
. Basal Thickening of
Species ﬁhlomplas{ Pyrenoid-Shape Pyrenoid Fragmentation Pyrenoid-Starch the Chloroplast of Nucleus-Position Cell Shape Ecology
orphotype Granules
Mature Cells
M. uva-maris (0] ellipsoid absent several and large present central ellipsoid to widely ellipsoidal marine
M. redcarensis (0] ellipsoid absent several and large present central ellipsoid to spherical marine
M. reginae (0] ellipsoid absent many and small present central ellipsoid to oval to spherical marine
M. antarctica (U] ellipsoid to spherical absent several and large present central-anterior ellipsoid to oval marine
M. globulifera (IIm) halfring present many and small absent central ellipsoidal to spherical freshwater
M. braunii (I halfring sometimes fragmented many and small absent central el.lipsgidal to widgly freshwater
ellipsoidal to spherical
M. lobata (1) halfring absent many and small absent central ellipsoid to widely ellipsoidal freshwater
M. longirubra (1m) halfring absent many and small absent central ellipsoid to widely ellipsoidal freshwater
M. charkoviensis (1] ellipsoid absent many and small absent central ellipsoid to widely ellipsoidal freshwater
M. monadina (I halfring absent many and small absent central ellipsoid to widely ellipsoid freshwater
M. basinucleata (I halfring absent no starch absent basal ellipsoid to widely ellipsoid freshwater
M. coccifera (1) ellipsoid to spherical present many and small present central widely ellipsoid freshwater
M. indica (I halfring absent many and small absent central widely ellipsoid to spherical freshwater
M. opisthopyren (I halfring to ellipsoid sometimes fragmented many and small present central ellipsoid to widely ellipsoid freshwater
M media (I ellipsoid sometimes fragmented many and small absent central ellipsoid to widely ellipsoid freshwater
o
—
o
M. basjnucleata
T
o
) M. media
= (NIES-2743)
(As/fA 310' a M. indica
M. redcarensis
M. braunfi
o 2 .
n o M. charkoviensis
O o P M/lobata
= : M. opistho yren @ M. opisthopyren
= M. antarctica (NIES-2744) (SAG 54.90,5AG 8.87,
M. uva—-maris M. longirubra EAR 11/46)
M. coccifera
o) M. globulifera
o
o
1
M. reginae
o
—
?

I I \ \ I
-0.15 -0.10 -0.05 0.00 0.05

NMDS1

Figure 4. Non-metric multidimensional scaling of p-distances of marine (blue) and freshwater (green)
Microglena species.
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Figure 5. Differential interference contrast (a), scanning electron (b), confocal (c) and transmission
electron (d—f) microscopy images of Microglena antarctica sp. nov. Single cell showing the cup-
shaped chloroplast characterized by the presence of a pyrenoid (p) (a), overview of vegetative cells
showing the presence of bulges emerging from the cell surface (arrows) (b), asexual reproduction
by sporulation with production of zoospores (c), longitudinal section of a vegetative cell showing a
cup-shaped chloroplast (ch) with a pyrenoid (p) and a nucleus in anterior-central position (n) (d),
detail of the apical part of the cell showing the papilla (pa) and contractile vacuoles (cv) (e), detail of
pyrenoid (p) showing thylakoid membranes (t). Scale bars: 10 pm (a), 10 pm (b), 10 um (c), 2 pm (d),
1 um (e), 2 pm (f).
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Figure 6. Principal component map showing morphological and ecological dissimilarities between
marine (blue) and freshwater (green) Microglena species.

3.5. Taxonomy

Our findings strongly support the view that the Antarctic strains belong to a new
species deserving the inclusion in the genus Microglena.

Microglena antarctica Trentin, Negrisolo, Moschin, Veronese, Cecchetto & I.Moro sp. nov.

DESCRIPTION: Ovoid vegetative cells with two flagella, 11.9-24.4 um in length and
7.1-19.1 um in diameter, with a granular cell surface. Chloroplast cup-shaped with a thick
basal part. Pyrenoid spherical to ellipsoidal, surrounded by a single layer of several starch
platelets. Lateral bright stigma composed of small drops arranged in two layers, located in
medial position. Nucleus medial-anterior. Asexual reproduction by sporulation into two or
four zoospores. Sexual reproduction not observed.

HOLOTYPE: Strain IMAO76A resin-embedded sample deposited in the Italian Na-
tional Antarctic Museum (MNAIT, Section of Genoa) with the voucher code MNA147301.

TYPE LOCALITY: Inexpressible Island (Penguin Lagoon, Terra Nova Bay, Ross Sea,
Antarctica), coordinates: 74°54’ S 163°39’ E

ETYMOLOGY: The species name ‘antarctica’ is derived from the continent where it
was collected.

DNA SEQUENCE AVAILABLE: ON185622 (185 tDNA) and OM791388 (ITS-2).

4. Discussion

Since green unicellular algae, especially Chlamydomonas-like species, have similar
cell morphologies [4], we mainly relied on the use of molecular data for the taxonomic
identification of the Antarctic isolate IMA076A. Our phylogenetic analysis showed that
the Antarctic strains belong to a new species Microglena antarctica. This taxon was not
closely related to any well-established species, as shown by the molecular phylogenetic
analysis, CBCs and p-distances comparisons, as well as the application of five species
delimitation methods. In our phylogenetic reconstruction, the Antarctic strains (IMAQ76A,
ICE-L, ICE-W and CCCryo 309-06) grouped with M. redcarensis SAG 18.89 and formed
a well-supported clade (100% SH-aLRT value, 1 posterior probability, 100% bootstrap).
Our best tree resolved three lineages within the genus Microglena: ‘clade I’ (formed by
M. antarctica IMA076A, CCCryo 309-06, ICE-L and ICE-W and M. redcarensis SAG 18.89)
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and ‘clade II" (including M. reginae SAG 17.89 and M. uva-maris SAG 19.89), consisting of
marine species, and ‘clade III’, consisting of freshwater species. We tested different tree
topologies to evaluate alternative hypotheses of the evolution of the genus Microglena.
A tree constrained to monophyly all the marine Microglena species was not significantly
different from our best unconstrained tree. However, the recoveries of ‘clade I’ together
with ‘clade III” and of M. redcarensis SAG 18.89 with ‘clade II” were significantly worse than
the best unconstrained tree.

The evidence gathered in recent investigations on the biflagellate unicellular green alga
suggests that closely related groups to the genus Microglena, such as Moewusinia clade [51],
ancestrally inhabits freshwater, while other algae in Xenovolvoxa, such as clade Phacotinia,
and Chlamydomonas chlamydogama could only be found in freshwater habitats [11,52-54].
As proposed by different authors, Microglena species likely evolved from freshwater an-
cestry [4,11]. Despite the monophyly of Microglena is supported by several DNA-based
phylogenies [4,11,12], including the one reported here, none of these studies focused on the
evolution of the marine subclades within Microglena.

M. antarctica (IMA076A, CCCryo 309-06, ICE-L and ICE-W), M. redcarensis SAG 18.89,
Microglena reginae SAG 17.89 and M. uva-maris SAG 19.89 could represent the transition
state from freshwater to marine and polar environments. Particularly, Microglena antarctica
tolerates a wide salinity range [55], a possible adaptation to Antarctic environmental
conditions, where salinity could vary during the freezing and melting process of water.
The growth rate of Microglena antarctica strain ICE-L has been reported to decrease with
the increasing salt concentration [55], indicating that it may prosper during the summer
when the ice pack melts. This hypothesis is corroborated by the characteristics of the
sampling area where Microglena antarctica IMAO76A was collected; specifically, the Penguin
Lagoon is a transitional environment with high salinity fluctuations. Another possible
adaptation to marine life is represented by the activity of contractile vacuoles. Freshwater
Microglena species have two anterior contractile vacuoles, which can be also observed in
Microglena uva-maris SAG 19.89, if cultivated in freshwater (3N-BBM p V) medium [4].
Microglena reginae SAG 17.89 is unable to grow in freshwater conditions and its contractile
vacuoles do not function in seawater [4], while Microglena redcarensis SAG 18.89 activates
its contractile vacuoles in freshwater as a short-term defence response against low osmotic
pressure [11]. Microglena antarctica showed two anterior contractile vacuoles if cultivated in
salt water. Future investigations on the activity of contractile vacuoles may shed light on
the role of these organelles in the adaptation in freshwater and in marine environments.
Furthermore, marine species are characterized by the presence of a cup-shaped chloroplast
with a thick basal part, in which a single pyrenoid is located. The morphological features
of this shape of chloroplast were described by Demchenko et al., 2012 [4] and referred to
as morphotype 1. However, this morphotype is not a unique characteristic of the marine
species, and could be also detected in M. charkoviensis (ACKU 267-03 and ACKU 274-03).
Despite M. charkoviensis being isolated from a freshwater habitat, future studies could
assess its physiological responses to different ranges of salinities. This could shed light
on the variability of chloroplast morphotypes within this genus and on the evolution of
this organelle.

5. Conclusions

The present work upholds the importance of sequence-based approaches in the recog-
nition of new species and genera. The discovery of a new species of Chlorophyceae in
Antarctica highlights that the photosynthetic diversity of the Ross Sea is more extensive
than previously thought. A current problem for reliable molecular analysis of psychrophilic
algae is considered to be the low resolution of the 185 rDNA marker at the species level [5].
In this sense, more strains will probably have to be transferred to the genus Microglena. This
could be the case for some Antarctic strains described through the 185 rDNA marker and
for which complete ITS-2 sequences are not yet available. Another issue in the resolution of
the molecular phylogeny of the ‘Microglena clade’ is the lack of sequences of other molecular
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markers, such as rbcL and tuf A. For the detection of these cryptic species, more variable
barcodes might be used to unambiguously identify different taxa, bearing in mind that a
single barcode represents only a fraction of an organism’s variation [56].

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/d14050337/s1. Table S1. List of species, strains and GenBank
accession numbers of sequences used in this study. Table S2. Compensatory base changes (CBCs)
and uncorrected p-distances among the ITS-2 DNA barcodes of Microglena. The upper-right half of
the table shows the total number of compensatory changes (CBC/Hemi-CBCs), while the lower-left
half gives the uncorrected p-distances calculated in PAUP. Figure S1. 185 rDNA ML tree. Approx-
imate Likelihood Ratio Tests based on Shimodaira-Hasegawa-like procedures (SH-aLRT) values
(%), Bayesian Posterior Probabilities (PP) and ML bootstrap values (%) are shown above branches.
Figure S2. ITS-2 ML tree. Approximate Likelihood Ratio Tests based on Shimodaira-Hasegawa-like
procedures (SH-aLRT) values (%), Bayesian Posterior Probabilities (PP) and ML bootstrap values (%)
are shown above branches.
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