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Abstract: Dense aggregations of serpulid worms were encountered in the Daymaniyat Islands (Gulf
of Oman) from 10 to 20 m depth, over the period January–March, 2021. The species responsible for
these aggregations belongs to the Filograna/Salmacina-complex (Annelida: Serpulidae). This species
has been present in the area and observed along the Oman coastline, but high-density aggregates
like this have not been reported before. The most probable cause of the aggregations, supported by
field observations and Aqua-MODIS satellite data, was natural eutrophication with a subsequent
algal bloom linked to the local winter monsoon. This observation emphasises the importance of
documenting biodiversity and dynamics of reef communities along the Oman coastline.

Keywords: algal blooms; outbreak; bioindicator; coral reefs; eutrophication; infestation; Serpulidae;
monsoon; Daymaniyat Islands

As sedentary filter-feeders in coastal waters, tube-dwelling polychaetes of the families
Sabellidae and Serpulidae are often considered bioindicators owing to potential increases in
their abundance in relation to eutrophication [1–3]. Some serpulids occur in clusters and are
considered habitat formers, especially as fouling organisms on manmade substrates [4,5].
Furthermore, serpulid worms account for 15% of the alien polychaetes species recognized
worldwide [6–8].

Dense aggregations and outbreaks of Serpulidae can be opportunistic responses to
changes in environmental conditions [9], especially to nutrient pollution [10]. These worms
may thrive in conditions that are unfavourable to many other marine fauna [11,12]. The ag-
gregations often develop in sheltered areas, sometimes at salinity levels outside the normal
oceanic range [9,13], and with limited water movement facilitating larval settlement [14].

In January–March, 2021, dense aggregations of serpulid worms were observed in reef
communities of Jabal Al Kabir Island (also known as D3 Island) in the Daymaniyat Islands
Nature Reserve, north of Oman (Figure 1). The worms were mainly overgrowing hard
substrates in the sheltered bays and seaward cliffs, forming fragile, branching clusters up
to 20 cm in diameter from 10 to 20 m depth (Figure 2). The aggregations occurred during a
phytoplankton bloom and were relatively short-lived. By the end of April, the density of
the worms had decreased, and only remnants of the tube clusters remained. They were no
longer evident in February 2022 when we revisited the area.
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of the worms had decreased, and only remnants of the tube clusters remained. They were 
no longer evident in February 2022 when we revisited the area. 

 
Figure 1. (a) Coastline of Oman with the Daymaniyat Islands in the north (inset). (b) The inset shows 
Jabal Al Kabir (D3) bathymetric data around the islands. Daymaniyat Islands consist of nine unin-
habited islands (also called aD1–D9 islands), composed of Miocene limestones uplifted by Pliocene 
folding [15]. The northern shores have small cliffs and narrow embayments, whereas sandy beaches 
line most of the southern side of the islands. (c) Image series of monthly average concentration of 
Chlorophyll data from the Aqua/MODIS satellite. Notice the high concentration in February-March, 
2021, representing algal blooms. 

These serpulids, although uncommon, have been present in the area and observed 
along the Oman coastline as individuals or in small clusters. However, high density ag-
gregates and outbreaks of these worms have not been reported until now and we do not 

Figure 1. (a) Coastline of Oman with the Daymaniyat Islands in the north (inset). (b) The inset
shows Jabal Al Kabir (D3) bathymetric data around the islands. Daymaniyat Islands consist of
nine uninhabited islands (also called aD1–D9 islands), composed of Miocene limestones uplifted
by Pliocene folding [15]. The northern shores have small cliffs and narrow embayments, whereas
sandy beaches line most of the southern side of the islands. (c) Image series of monthly average
concentration of Chlorophyll data from the Aqua/MODIS satellite. Notice the high concentration in
February-March, 2021, representing algal blooms.
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Figure 2. Serpulid aggregations of Filograna/Salmacina-complex. (a,b) Pseudo-colonies forming frag-
ile constructions, Jabal Al Kabir (D3). (c) Individual tubes covered by algae. Green arrows: inflated 
tips of the radioles. Pinnately branched radioles resemble octocoral polyps with eight tentacles and 
pinnules, Bandar Al Khiran. (d) Aggregations over hard surfaces and crustose coralline algae, Day-
maniyat islands, D3 (photos a,b,d J. Al Asfoor; c, M. Claereboudt). 

Figure 2. Serpulid aggregations of Filograna/Salmacina-complex. (a,b) Pseudo-colonies forming fragile
constructions, Jabal Al Kabir (D3). (c) Individual tubes covered by algae. Green arrows: inflated
tips of the radioles. Pinnately branched radioles resemble octocoral polyps with eight tentacles
and pinnules, Bandar Al Khiran. (d) Aggregations over hard surfaces and crustose coralline algae,
Daymaniyat islands, D3 (photos (a,b,d), J. Al Asfoor; (c), M. Claereboudt).
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These serpulids, although uncommon, have been present in the area and observed
along the Oman coastline as individuals or in small clusters. However, high density
aggregates and outbreaks of these worms have not been reported until now and we
do not have field observations to confirm the formation of high-density aggregations in
other locations.

The observed species can be attributed to the Filograna/Salmacina-complex. While
nearly 800 polychaete species, including 48 serpulids, have been recorded from the wa-
ters around the Arabian Peninsula, only two nominal species have been reported in
this complex: Filograna implexa Berkeley, 1835, and Salmacina dysteri Huxley, 1855 [16].
Filograna implexa is the only valid species in that genus [17], characterised by two spoon-
shaped opercula. The genus Salmacina, which comes closest to our specimens, includes
nine species and one uncertain attribution, all non-operculate, some with inflated radiole
tips (Figure 2c). Poor descriptions of most species in this group, and lack of assessment of
intra-specific variability, make it currently impossible to confidently identify the specimens.

Molecular studies have shown that some of the previously reported serpulids with
wide, almost circumtropical distributions are actually a mix of several taxa, each with
restricted regional distributions [18–20]. For example, the widespread taxa Spirobranchus
kraussii and S. tetraceros (both recorded from Arabian Seas), appear each to consist of more
than six species, all with geographically limited distributions [18,19]. The same is likely
true for the taxa Filograna implexa and Salmacina dysteri, both originally described from the
temperate coasts of south-eastern Great Britain and later reported from around the globe,
including the Arabian Seas [16,17,21]. Although it is likely that the worms encountered in
Oman represent a new species, any further identification requires genetic studies and a
taxonomic revision to establish diversity and relationship within the Filograna/Salmacina
complex [21,22].

Filograna/Salmacina species construct calcareous tubes attached to hard substrates. The
individual adults are small, usually less than 350 µm in diameter, and a length of only a
few millimetres [11,23]. They reproduce sexually, and asexually by scissiparity. Even if
sexual reproduction can contribute to the growth of aggregates [23], the branching tube
pattern is a consequence of asexual reproduction [24]. Although the worms and aggregates
observed in the Daymaniyat Islands show signs of both sexual and asexual reproduction,
the asexual reproduction is likely the main mode of “pseudo-colony” formation [23,24],
followed by settlement of larvae on conspecific tubes [9,25]. The tube accretion rate depends
on environmental parameters, such as water temperature, salinity, food availability, and
can reach up to several millimetres per day in S. dysteri [23]. As a result, pseudo-colonies
are formed from numerous joined branching tubes, protruding from the seabed [21,26].
Similar aggregations of tubes (Figure 2a,b) were illustrated by Dalyell [27] (for Salmacina
dysteri, as Filipora filograna most probably from subtidal Scotland, North Sea), by Pernet [24]
(for Salmacina amphidentata from intertidal and shallow subtidal zones of the Indian River
Lagoon), by Bianchi [28] (for Filograna sp., Italy, probably Ligurian Sea), and by Enrichetti
et al. [29] (for Filograna/Salmacina complex, at 30–160 m depth on a muddy–sandy seafloor
of the Ligurian Sea). The fragile structures of this group often do not accrete to form reefs
and are sensitive to physical disturbances [30,31], unlike some other serpulid species that
can make aggregates larger than 1 m in diameter and make extensive bioherms [26,32–35].
All the aggregates encountered in our study site were also fragile and did not accrete to
form reefs, but grew on the rocky surfaces (Figures 2–4).

Nutrient levels in coastal waters of Oman are mostly linked to monsoonal cycles. A
strong, moist, summer southwest monsoon, and a weaker, dry, winter northeast monsoon,
both result in upwelling and advection of nutrients to the surface in coastal water [36,37].
These are reflected in the algal bloom patterns, with two annual peaks in January–April
and August–September along the northern Oman coastline [38].

Increase in nutrient concentrations create a cascade of effects: shifts in phytoplankton
composition and biomass, increase in the abundance of phytoplankton grazers, followed
by phytoplankton die-off, decomposition, and oxygen depletion [39,40] particularly below
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the thermocline, occasionally accompanied by mass mortalities of other organisms [41–44].
These natural cycles in productivity contribute to ocean acidification and specialized
shallow-water communities [45].
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Figure 3. Rocky walls in the seaward side of the Daymaniyat Islands, reaching about 30 m depth, 
covered with Filograna/Salmacina aggregations (a) Aggregations starting with tubes overgrowing 
surfaces, then joining up, and building thicker branches. White arrow: overgrowth on a sponge. (b) 
Aggregations on overhangs, in between gorgonians, such as Bebryce stellata (white arrow), and 
Astrogorgia sp. (square outline), slowly getting smothered by the overgrowing worms. (c) Worms 
growing over rocks, crustose coralline algae, and sponges. (d) View of the wall in upward direction, 
with worm pseudo-colonies up to 20 cm in diameter (photos J. Al Asfoor). 

Figure 3. Rocky walls in the seaward side of the Daymaniyat Islands, reaching about 30 m depth,
covered with Filograna/Salmacina aggregations (a) Aggregations starting with tubes overgrowing
surfaces, then joining up, and building thicker branches. White arrow: overgrowth on a sponge.
(b) Aggregations on overhangs, in between gorgonians, such as Bebryce stellata (white arrow), and
Astrogorgia sp. (square outline), slowly getting smothered by the overgrowing worms. (c) Worms
growing over rocks, crustose coralline algae, and sponges. (d) View of the wall in upward direction,
with worm pseudo-colonies up to 20 cm in diameter (photos J. Al Asfoor).
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Figure 4. Filograna/Salmacina aggregations south of Oman, Dhofar region. (a) Worm clusters over-
growing black coral stem. (b–e) Aggregations growing over rocks, crustose coralline algae, and 
sponges. (f) Square outline in figure e, showing the branching asexual pattern, as described by Per-
net [24]) (photos M. Claereboudt, G. Paulay). 
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Figure 4. Filograna/Salmacina aggregations south of Oman, Dhofar region. (a) Worm clusters over-
growing black coral stem. (b–e) Aggregations growing over rocks, crustose coralline algae, and
sponges. (f) Square outline in figure e, showing the branching asexual pattern, as described by
Pernet [24]) (photos M. Claereboudt, G. Paulay).

Our field observations together with Chlorophyll–a data obtained from Aqua–MODIS
satellite, confirmed an algal bloom during February–March, 2021, in the Daymaniyat Is-
lands, with monthly averages of 11.17 mg/m3 and 4.65 mg/m3 [46] (23.8◦ N, 58.1◦ E;
0.1◦–pixel), presumably driven by elevated nutrient levels in the water column. The tempo-
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ral correlation between the high abundance of Filograna/Salmacina and the phytoplankton
bloom, the rapid growth rate of these animals, and the tendency of serpulids to respond to
elevated food levels, all suggest that the bloom could be partly responsible for the outbreak.

During field work in the Arabian Sea coast of Oman around Mirbat (Figure 1) in
January 2022, we encountered smaller aggregations of what appeared to be the same
species (Figure 4, vouchers deposited at Florida Museum of Natural History, UF Annelida
10242, 10255, 10456). This coast undergoes much more intense upwelling than the Gulf of
Oman, and therefore these worms might regularly bloom in that area, lending support to
phytoplankton productivity driving these population increases.

Although serpulid outbreaks could be a sign of environmental degradation, it seems
that they responded indirectly here to a natural increase in planktonic productivity driven
by upwelling-enhanced nutrient levels. It is unknown how these serpulids affected the
benthic communities in the Daymaniyat Islands, but they could potentially increase water
clarity through their suspension feeding [47] and affect their habitat by providing shelter,
food, and substrate for epibiont organisms [9,48–50]. We did not observe any sign of
smothering or overgrowth on corals, unlike serpulid infestations in the Persian Gulf [51]
and the Gulf of Oman following the 2008–2009 Cochlodinium polykrikoides bloom [42], and
high densities of Spirobranchus in the Caribbean [50].

These observations illustrate the need for a better taxonomic coverage of invertebrate
biodiversity in the region and the importance of long-term monitoring of benthic communities.
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