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Abstract: Megabalanus coccopoma (Darwin, 1854) is a globally invasive species in Balanomorpha
(Crustacea). This species is a model organism for studying marine pollution and ecology. However,
its mitogenome remains unknown. The mitogenome sequencing of M. coccopoma is completed in the
present study. It has a 15,098 bp in length, including 13 protein-coding genes (PCGs), 2 ribosomal
RNAs (rRNAs), 22 transfer RNAs (tRNAs), along with a putative regulatory area. A substantial
A+T bias was observed in the genome composition (68.2%), along with a negative AT (0.82) and
GC (−0.136) skew. Compared to the gene sequence of the ground model of pan-crustacea, 13 gene
clusters (or genes), such as 10 tRNAs and 3 PCGs, were observed in a different order. This was in line
with the previously observed large-scale gene rearrangements of Balanomorpha. Among the 37 genes,
the gene cluster (M-nad2-W-cox1-L2-cox2-D-atp8-atp6-cox3-G- nad3-R-N-A-E-S1) Balanomorpha was
conserved. Furthermore, phylogeny analysis indicated that the existing Balanomorpha species family
was divided into nine rearrangement patterns, supporting the polyphyly of Balanoidea.

Keywords: Megabalanus coccopoma; mitochondrion; gene rearrangement; phylogeny

1. Introduction

Barnacles are important model organisms in marine ecology and biofouling studies
in the superorder Thoracicalcarea (Crustacea: Thecostraca) [1]. The Balanomorpha order
is a highly evolved, complex, and morphologically differentiated Thoracicalcarea barna-
cle [1,2]. However, the phylogeny of this group, particularly at higher taxonomic levels, is
poorly understood [3]. Megabalanus coccopoma (Darwin, 1854) belongs to the Balanidae of
Thoracicalcarea and is an invasive global species [4]. M. coccopoma is native to the tropical
eastern Pacific [5]. Several studies on M. coccopoma have focused on larval development
and species distribution [6]. However, its molecular characteristics are relatively unknown.
M. coccopoma presents considerable difficulties in accurate species identification and phylo-
genetic relationship determination. This is because of the significant variation in the shell
morphology during development and response to the habitat. The taxa of balanomorphan
species have been controversial. Using complete mitogenomes in species identification is
increasingly common, particularly for contested taxa with a similar outward appearance [7].
However, no studies have been published describing the entire mitochondrial genome of
M. coccopoma.

The mitochondrial genome is a reliable and effective molecular marker in biological
phylogenetic studies [8]. The mitochondrial genome sequence can reveal Balanomorph
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evolution. There are 37 genes within the circular mitochondrial genome of balanomorphan
barnacles, with 13 protein-coding genes (PCGs), 22 transport RNAs, and 2 ribosomal RNAs.
Some Balanomorph species could have more or less than 37 mitochondrial genes. For
instance, a unique S2-C-Y repeat was identified in Epopella plicata of the Tetraclitidae [9].
Moreover, a C deletion was found in Chthamalus malayensis in the Chthamalidae [10]. In a
few cases, the number of protein-coding genes may also vary other than changes in the
number of genes transporting RNA [11].

The arrangement of mitochondrial genes could effectively analyze the phylogenetic
relationship between species [12]. The Balanomorph mitochondrial genome underwent
significant gene rearrangements involving smaller transport RNA and gene blocks with
multiple PCGs and transport RNA [13]. Lim and Hwang (2006) sequenced the entire
mitochondrial genome of the pollicipedid Capitulum mitella. They compared it with
Pollicipes polymerus, Tetraclita japonica, and Megabalanus volcano. Moreover, they found
that there is a Thoracicacalcarea-specific translocation, particularly (1) K-Q between the
control region and I, (2) A-E between N and S1, (3) P between nd4l and T, and (4) Y-C
between S2 and nd1 [14]. Subsequently, the first mitochondrial whole genome was deter-
mined from the coral symbiotic pyrgomatid, Nobia grandis. At least seven transporter RNAs
rearranged in mitochondrial genes were compared to the plesiomorphic gene arrange-
ment order of pancrustaceans [15]. Shen et al. performed mitochondrial whole-genome
sequencing of Epopella plicata. They identified the gene string S2-C-Y unique repeats and
raised questions concerning the Balanoidea monophyly [9]. In the same year, Shen et al.
further sequenced the whole mitochondrial genome of Tetraclita serrata. Based on gene
alignments and phylogenetic analyses, they demonstrated the non-monophyletic nature
of Balanidae. However, it is necessary to establish the non-monophyly of the barnacle
family due to the low bootstrap values in the evolutionary tree [16]. This is supported by
the growing evidence pointing to an ancestral arrangement of mitochondrial genes in the
Balanomorpha. However, the mitochondrial gene plesiomorphic arrangement pattern in
Balanomorpha is unknown [17]. Therefore, the Balanomorpha mitochondrial genome rear-
rangement study can provide vital information on the profound systemic evolution within
the Balanomorpha collective group [18–20]. However, the Balanomorpha mitochondrial
genome data are still scarce, seriously restricting understanding of the systematic evolution
across various groups [21,22].

In this study, (i) the entire mitogenome of an M. coccopoma individual was sequenced
to provide a comprehensive description of the findings, (ii) the gene rearrangement in the
mitogenome of Balanomorpha was addressed, and (iii) a Thoracicalcarea phylogenetic tree
was obtained to determine the relationship of M. coccopoma with other barnacles.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

The M. coccopoma specimen was obtained from Haizhou Bay, situated in Ganyu District,
Lianyungang City, Jiangsu Province, China (119.208767◦ N, 34.944531◦ E). It was kept in the
Museum of Ocean University, Jiangsu, China (voucher number: TkuLYG-012). The whole
genomic DNA was extracted from 95% ethanol-preserved muscle tissue with the TIANamp
Marine Animal DNA Kit (TIANGEN, China) based on the manufacturer’s instructions.
The collected specimen was classified based on the morphological characteristics provided
by Liu and Ren (2007), other than partially sequencing the cox1 and H3 genes [23].

2.2. PCR and Sequence Determination

Universal and specific primers were employed to amplify the cox1 and Histone 3
(H3) genomic regions (Table 1). The reaction mixture for amplifying the cox1 and H3
gene fragments comprised 1 µL of DNA template, 12.5 µL of ExTaq polymerase, 9.5 µL of
sterile distilled water, and 1 µL of each primer. The cox1 gene amplification was carried
out with the following cycle parameters: initial denaturation at 94 ◦C for 5 min, followed
by denaturation for 35 cycles at 94 ◦C for 1 min; annealing at 40 ◦C for 1 min; further
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elongation at 72 ◦C for 1.5 min; and, ultimately, extension at 72 ◦C for 7 min. The H3 gene
was denatured for 3 minutes at 95 ◦C. Then, we performed 35 cycles of denaturation for 30 s
at 95 ◦C, annealing at 58 ◦C, elongation at 72 ◦C for 1 minute, and extension for 5 minutes at
72 ◦C. The PCR results obtained from the cox1 and H3 genes were sent to Shanghai Maple
Biological Company for further sequence analysis.

Table 1. Mitochondrial gene amplification employs general and highly specialized primers.

Primer Name Sequence (5′–3′)

dgLCO GGTCAACAAATCATAAAGAYATYGG
dgHCO TAAACTTCAGGGTGACCAAARAAYCA
H3-F1 ATGGCTCGTACCAAGCAGACVGC
H3-R1 ATATCCTTRGGCATRATRGTGAC

Note: Degenerate bases: R = A/G, Y = C/T, V = C/A/G.

The DNA was ultrasonically fragmented into 350 bp fragments after analyzing and
quantifying the DNA samples. After this step, the DNA fragments were subjected to end
repair by adding a 3’-end A nucleotide and a sequencing junction. The fragments were
purified, and PCR amplification was performed to build the sequencing library. After
going through Illumina’s quality control, the libraries were sequenced by Illumina HiSeq
4000 instruments. The following served as an outline for the step-by-step experimental
procedure: data processing involves checking the quality (removing connectors and data of
low quality), comparing the data to a reference genome, and assembling the mitochondrial
genome, followed by its annotation.

2.3. Gene Identification

Sequence splicing was performed with Geneious [24] and rechecked using SeqMan [25]
for the whole mitochondrial genome length of the species. The preliminary gene prediction
was made using the MITOS WebServer [26]. The tRNAscan-SE 1.21 [27] online website for
preliminary gene predictions of mitochondrial genes was individually selected and blast-
compared using the NCBI website. The gene annotation was finalized by combining the
corresponding characteristics of each gene with other Cirripedia species from the database.
The annotated sequences were submitted online through the BankIt platform in NCBI.
The full length, base composition, base offset, gene number, coding strand, codon usage,
amino acid usage, non-coding regions, and control regions of mitochondrial DNA were
obtained from the PhyloSuite software [28]. Mitochondrial genomes were applied through
the OGDRAW [29] online website.

2.4. Genome Analysis and Phylogenetic Analysis

According to the pancrustacean plesiomorphic arrangement, the mitochondrial gene
order of 34 species from the Balanomorpha and Altiverruca navicular in Verrucomorpha
(Supplementary Table S1) was mapped. The gene order of these 35 species was separated
into 10 models based on the original gene order (Model 1–10). The gene rearrangements
were analyzed using CREx [30].

The 44 mitochondrial genomes from Cirripedia and the newly obtained mitochondrial genome
sequence of M. coccopoma were used for phylogenetic analysis (Supplementary Table S2). The
species sequences downloaded from NCBI were imported into PhyloSuite, and multiple
sequence alignment was performed with MAFFT [31]. The tree model of the IQ-TREE [32]
was determined using ModelFinder [33]. The protein-coding genes of the barnacle mito-
chondrial genome helped construct the IQ-TREE (main parameters: Model, GTR; Bootstrap,
1000; and Outgroup, Polyascus gregaria). The editing and beautification of the phylogenetic
tree were completed on Interactive Tree Of Life (iTOL) [34–36].
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3. Results
3.1. General Characteristics

The ring-shaped mitochondrial genome of M. coccopoma is a 15,098 bp molecule, the
same as other Balanomorpha barnacles. Besides 13 PCGs genes, 22 tRNA genes and 2 rRNA
genes exist. The complete details are reported in (Table 2, Figure 1). The heavy chain (H
chain) of M. coccopoma encodes 30 genes, while the light chain (L chain) encodes 7. The
light chain encodes the PCG nd1 and 2 ribosomal RNAs, while the heavy chain encodes
the other 12 PCGs. There are seven gene overlaps within the mitochondrial genome of
M. coccopoma. Seven bases overlap between atp8 and atp6, nd4 and nd4L, and one or two in
the other genes. The mitochondrial genome of M. coccopoma has a non-coding region of
546 bp, the longest of which is located between srRNA and I and has 415 bp. Additionally,
it is located in the regulatory area within the mitochondrial genomes of other genera of
Balanomorpha. The mitochondrial genome sequence of M. coccopoma was submitted to
GenBank with the accession number OK631889.

Table 2. The mitochondrial genome of M. coccopoma.

Gene Stand
Position

Nucleotide
Codons

Anti-Codon
Intergenic
Sequence *Start Stop Start Stop

cox1 H 10 1545 1,536 CGA TAA 2
L2 H 1548 1615 68 taa 5

cox2 H 1621 2304 684 ATG TAA 0
D H 2305 2368 64 gtc 0

atp8 H 2369 2527 159 ATT TAA −7
atp6 H 2521 3186 666 ATG TAA −1
cox3 H 3186 3972 787 ATG T- 0

G H 3973 4036 64 tcc 0
nad3 H 4037 4388 352 ATT T- 0

R H 4389 4451 63 tcg 0
N H 4452 4515 64 gtt 0
A H 4516 4581 66 tgc 1
E H 4583 4648 66 ttc 0
S1 H 4649 4707 59 gct 75
P H 4783 4846 64 tgg 0

nad4L H 4847 5140 294 GTG TAA −7
nad4 H 5134 6463 1330 ATG T- 0

H H 6464 6528 65 gtg 0
nad5 H 6529 8230 1702 ATT T- 0

F H 8231 8294 64 gaa 5
T H 8300 8366 67 tgt 0

nad6 H 8367 8855 489 ATG TAA −1
cob H 8855 9994 1140 ATG TA- −2
S2 H 9993 10,062 70 tga 24
Y H 10,087 10,150 64 gta 24
K L 10,175 10,240 66 ttt 9
Q L 10,250 10,317 68 ttg 1
C L 10,319 10,380 62 gca −2

nad1 L 10,379 11,305 927 ATA TAA −3
L1 L 11,303 11,370 68 tag 0

rrnL L 11,371 12,689 1319 0
V L 12,690 12,737 48 tac 1

rrnS L 12,739 13,486 748 415
I H 13,902 13,969 68 gat 0

M H 13,970 14,035 66 cat 0
nad2 H 14,036 15,034 999 ATG TAA −2

W H 15,033 15,098 66 tca 9

* Negative numbers depict the overlapping nucleotides between the adjacent genes.
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Figure 1. The genetic map of the M. coccopoma mitochondrial genome. The GC content is displayed
within the inner ring. Genes encoded on the exterior appeared on heavy strands, while the interior-
encoded genes appeared on light strands.

3.2. Codon Use and The Genetics of Protein Synthesis

The 13 PCGs observed in M. coccopoma have a nucleotide sequence of 11,056 bp
long. It accounts for 73.22 % of the total mitochondrial genome length. All 13 PCGs in
M. coccopoma begin with ATN (N=A, T, G, and C), except for nd4L, which has GTG as
the start codon. This reflects the conservation in Balanomorpha genes. In addition, five
PCGs (cox3, nd3, nd5, nd4, and cob) terminate with incomplete terminators (TA- or T-). In
contrast, the remaining PCGs are terminated using complete TAA termination. (Table 2).
Moreover, incomplete terminators are prevalent in Balanomorpha [15,37,38]. The 13 PCGs
of M. coccopoma have 3,663 codons (without the incomplete terminators), with the six most
frequent ones being UUU > AUU > UUA > AUA > UCU > UUC, 2.94% to 7.05%, and the
lowest being CGC (0.11%). The multiple codons are UUU (259), followed by AUU (257)
(Figure 2, Supplementary Table S3). The most commonly utilized amino acids were leucine
(Leu) (544), phenylalanine (Phe) (367), serine (Ser) (359), and isoleucine (Ile) (317).

3.3. Composition of The Base and Skew

The relative quantity of nucleotides A and T can identify the variation in base com-
position found in each gene, indicated as the AT and GC skew [39]. In the mitochondrial
genome sequence of M. coccopoma, nucleotide A involves 31.3% of the total. In comparison,
nucleotide C makes up 18.1%, nucleotide G makes up 13.8%, and nucleotide T makes up
36.9%. Atp8 genes had the highest proportion of A codons than the other 13 PCGs (34.6%).
The cox3 and cob genes had the highest C content at 20.8%, nd1 had the highest G content
at 15.8%, and nd1 possessed the highest T content at 46.0%. The A + T content ranged
between 64.5% (cox2) and 71.7% (atp8). All 13 PCGs revealed T to A shifts ranging from
0.035 (atp8) to 0.292 (nd1). Two protein-coding genes had G to C (nd1 and nd4L) ranging
from 0.004 (nd4L) to 0.236 (nd1), and another eleven PCGs possessed C to G from 0.01 (nd4)
to 0.478 (nd6) (Table 3). Previous studies demonstrated that the AT content of Metazoa
species is usually higher than the GC level [40].
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Figure 2. Codon usage among the 13 mitochondrial protein-coding genes of M. coccopoma.

Table 3. Nucleotide composition and skew of M. coccopoma mitochondrial genes.

Gene
Nucleotide Proportion

A + T (%) AT Skew GC Skew
A (%) C (%) G (%) T (%)

atp6 30.3 18.6 11.0 40.1 70.4 −0.139 −0.257
atp8 34.6 20.1 8.2 37.1 71.7 −0.035 −0.420
cob 27.0 20.8 14.5 37.7 64.7 −0.165 −0.178
cox1 27.5 18.6 16.9 36.9 64.5 −0.146 −0.048
cox2 30.6 19.7 14.0 35.7 66.2 −0.077 −0.169
cox3 26.3 20.8 15.8 37.1 63.4 −0.170 −0.137
nd1 25.2 11.0 17.8 46.0 71.2 −0.292 0.236
nd2 28.2 17.8 13.7 40.2 68.5 −0.175 −0.130
nd3 28.7 18.2 12.5 40.6 69.3 −0.172 −0.186
nd4 27.4 15.6 15.3 41.6 69.0 −0.206 −0.010

nd4L 29.4 14.3 15.5 40.8 70.2 −0.162 0.040
nd5 28.6 16.9 15.7 38.8 67.5 −0.151 −0.037
nd6 31.7 22.1 7.8 38.5 70.1 −0.097 −0.478

srRNA 34.4 12.8 21.5 31.3 65.6 0.047 0.254
lrRNA 36.4 10.2 16.9 36.6 73.0 −0.003 0.247

All PCGs 28.2 17.8 14.8 39.3 67.5 −0.164 −0.092
All genes 31.3 18.1 13.8 36.9 68.2 −0.082 −0.136
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3.4. Genes for Ribosomal and Transfer RNA

The 22 transport RNAs encoded by the mitochondrial genomes of M. coccopoma fold
into cloverleaf secondary structures of varying sizes. This is consistent with the anti-
codon utilization of most known Balanomorpha species. The M. coccopoma srRNA gene is
positioned between the non-coding region and the V gene, which is 748 bp long, and the
lrRNA gene is situated between the L1 and V genes, which are 1319 bp long. Light-strand
encoding of lrRNA and srRNA leads to 73.0 and 65.6% A+T, respectively. The AT skew and
GC offset of the lrRNA gene were, respectively, −0.003 and 0.247. In contrast, the AT and
GC skews of the srRNA gene were −0.164 and 0.254, depicting T-A and G-C skew (Table 3).

3.5. Gene Arrangement

Based on the plesiomorphic order of pancrustaceans, the present study mapped
and classified the mitochondrial gene order of 35 barnacles (Figure 3). This yielded
10 different types, each with a unique conserved gene block. Compared to the origi-
nal crustacean arrangement, M. coccopoma revealed translocations in four genes (A, S1,
T, Q, and C), inversions in two (Y and K), and seven conserved gene blocks (cox1-L2-
cox2, D-atp8-atp6-cox3-G-nad3, R-N, F-nad5-H-nad4-nad4L, nad6-cob-S2, nad1-L1-lrRNA-V-
srRNA-I, and M-nad2-W). Furthermore, M. coccopoma indicates an inversion (from light
to heavy strand) of the gene cluster (P-nd4L-nd4-H-nd5-F) with three PCGs and three
transporter RNAs. This gene rearrangement is consistent with previous studies [41–43].
The Balanidae, in which M. coccopoma is found, has three Models: Model 1, Model 3,
and Model 6. M. coccopoma shares Model 3 with Balanidae (M. volcano, Megabalanus
tintinnabulum, Megabalanus ajax, Acasta cyathus, Acasta sulcata, and Balanus trigonus). The
Pyrgomatidae is Model 1. In this gene arrangement, the Tetraclitidae are predominantly
Model 2, Austrobalanidae (Model 7), Chelonibiidae (Model 8), Catophragmidae (Model 4),
Chthamalidae (Model 4, Model 5, and Model 9), Chionelasmatidae (Model 4), and Verruci-
dae (Model 10). In addition, the 10-type gene arrangement order is only conserved in the
genera and not between different families. For instance, the Balanidae (Armatobalanus allium,
Striatobalanus amaryllis, Amphibalanus amphitrite, Balanus Balanus, Fistulobalanus albicostatus,
and Semibalanus cariosus) and the Pyrgomatidae (Nobia grandis, Pyrgopsella youngi, and
Savignium sp. BKKC-2014) depict the same gene arrangement model (Figure 3, Model 1).
The Chthamalidae (Octomeris sp. BKKC-2014), the Catophragmidae (Catomerus polymerus),
and the Chionelasmatidae (Eochionelasmus ohtai and Eochionelasmus coreana) have the same
gene arrangement model (Model 4). In the phylogenetic tree, the different gene arrange-
ments are well clustered. For example, Balanus trigonus (Model 3) and A. amphitrite (Model 1)
cluster together, and Semibalanus cariosus (Model 1) and Striatobalanus amaryllis (Model 1)
cluster together. Therefore, the order of Balanomorpha genes is consistent with the results
of the phylogenetic tree (Figure 4). The nine model gene arrangements in the barnacle
suborder indicate that two gene clusters (cox1-L2-cox2-D-atp8-atp6-cox3-G-nad3-R-N-A-E-
S1) and the gene cluster (M-nad2-W) are conserved in the barnacle suborder through a
consistent structure. Additionally, these two gene clusters could be combined to form a
single lengthy gene cluster (M-nad2-W-cox1-L2-cox2-D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1)
since the mitochondrial genome of the Balanomorpha is circular. It can be observed that
this specific connection may exist between different models, requiring more mitochon-
drial gene arrangement order of Balanomorpha species. Therefore, it is possible to infer a
primitive arrangement in the barnacle suborder, and this connection may exist between
different models.
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While examining the gene arrangement order, we found it highly differentiated in
Balanomorpha. A comparison with the original gene arrangement order revealed conserved
blocks between different families due to the specificity of the mitochondrial gene ring
structure. Still, the evolutionary tree results did not cluster the taxa depending on these
blocks. The “duplication/random loss” mechanism is currently the most well-recognized
theory and is frequently utilized to explain translocations in the mitochondrial genome.
However, this mechanism causes duplication of gene areas, followed by deletion of some
of the tandem duplicated regions due to mismatches in the downstream strand during
replication [44]. Consequently, the duplication–random loss and recombination models
explain the observed large-scale gene rearrangements. In many cases, repeated random loss
(TDRL) events could indicate the evolutionary direction of rearrangements. This would
allow the ancestral state reconstruction by comparing two gene orders without accounting
for the outgroups. Using the CREx estimated scenario, we investigated the mitochondrial
gene rearrangements, focusing on the TDRL event, across 34 species belonging to the
Balanomorpha and 1 species belonging to the Verrucomorpha. Balanomorpha can be
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divided into three TDRL events, TDRL(a), TDRL(b), and TDRL(c), while Verrucomorpha is
TDRL(d) (Figure 5).
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Model 1 starts with the transposition of genes (A, S1, and T), followed by TDRL events
of gene clusters (nad1-L1-lrRNA-V-srRNA-I-Q-M-nad2-W-C) which is different from the
plesiomorphic pancrustacean arrangement. Consecutive copies of the gene cluster nad1-L1-
lrRNA-V-srRNA-I-Q-M-nad2-W-C are followed by randomly losing duplicate genes. The
first consecutive copies of the nad1-L1-lrRNA-V-srRNA-I-Q-M-nad2-W-C-nad1-L1-lrRNA-
V-srRNA-I-Q-M-nad2-W gene cluster are followed by the accidental loss of gene blocks
nad1-L1-lrRNA-V-srRNA-I, M-nad2-W, Q and C to form gene cluster Q-C-nad1-L1-lrRNA-V-
srRNA-I-M-nad2-W. This is followed by gene (Y and K) inversions and, finally, by TDRL
events of gene clusters (K-D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1-F-nad5-H-nad4-nad4L-P-
T-nad6-cob-S2-Q-C-nad1-L1-lrRNA-V-srRNA-I-M-nad2-W-Y). First, the consecutive copies
are K-D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1-F-nad5-H-nad4-nad4L-P-T-nad6-cob-S2-Q-C-nad1-
L1-lrRNA-V-srRNA-I-M-nad2-W-Y-K-D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1-F-nad5-H-nad4-
nad4L-P-T-nad6-cob-S2-Q-C-nad1-L1-lrRNA-V-srRNA-I-M-nad2-W-Y. This is followed by
the random loss of gene blocks, such as K, Q-C-nad1-L1-lrRNA-V-srRNA-I-M-nad2-W, D-
atp8-atp6-cox3-G-nad3-R-N-A-E-S1-F-nad5-H-nad4-nad4L-P-T-nad6-cob-S2, and Y, forming a
gene cluster (D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1-F-nad5-H-nad4-nad4L-P-T-nad6-cob-S2-Y-
K-Q-C-nad1-L1-lrRNA-V-srRNA-I-M-nad2-W).

Model 3, represented by M. coccopoma, differs from Model 1 only in the inversion
of transposition and a gene cluster reversal (P-nd4L-nd4-H-nd5-F). Model 6 and Model 1
differ by one gene cluster (K-Q-C) inversion. Model 1, Model 3, and Model 6 have the
same TDRL(a) events. Therefore, these three models could have originated from the same
ancestor, which is consistent with the phylogenetic tree. Model 2, Model 7, and Model 8
share the same TDRL(b) event, indicating that they could have originated from the same
ancestor. Model 4, Model 5, and Model 9 also share the same TDRL(c) event. There are
two TDRLs in Verrucomorpha, where only the second differs from TDRL(c). Therefore, we
speculated that the second TDRL in Model 10 is associated with the Balanomorpha origin
(Figure 4).

3.6. Phylogeny Analysis

A phylogenetic reconstruction based on 13 PCGs obtained from the mitochondrial
genomes of 44 different Cirripede species is represented in Figure 6. Balanidae, the
M. coccopoma family, is nested within Pyrgomatidae to form a monophyletic group of
Balanoidea (Bootstrap, BP = 100), consistent with previous research [3,45]. The representa-
tive of Austrobalanidae (E. plicata) is nested within Tetraclitidae, forming a clade sister to
Chelonibiidae (Chelonibia testudinaria). Together, these two clades develop a monophyletic
grouping called Coronuloidea [16,37,46–48]. However, the Catophragmidae belongs to the
monophyletic Chthamaloidea and are included with the branches of Balanoidea and Coro-
nuloidea [21]. More data can shed light on the phylogeny of Balanomorpha and the families
of this superorder, such as the Chthamalidae and Catophragmidae [47–50]. Chionelasmati-
dae (E. ohtai and E. coreana) forms a monophyletic group. [20,51] The Pollicipedomorpha
species observed in the intertidal zone (Capitulum mitella and Pollicipes polymerus) develop
a monophyletic group [52,53]. Four species of Lepadomorpha (Glyptelasma annandalei (Poe-
cilasmatidae), Lepas australis (Lepadidae), Lepas anatifera (Lepadidae), and Lepas anserifera
(Lepadidae) create a monophyletic group at the bottom of the phylogenetic tree with high
bootstrap values (BP = 100). The two deep-sea Scallomorpha (Vulcanolepas fijiensis and
Arcoscalpellum epeeum) created separate branches and did not cluster together, inconsistent
with previous findings [54,55]. The mitochondrial genome of Balanomorpha is derived
from 34 species. In contrast, Verrucomorpha, Scalpellomorpha, and Pollicipedomorpha
have only nine species [56]. Therefore, the evolution of Verrucomorpha Verrucomorpha,
Scalpellomorpha, and Pollicipedomorpha must be further verified.
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4. Discussion

The barnacle mitogenome ranges from 14,906 bp (Chelonibia testudinaria) to 17,374 bp
(V. fijiensis) [54]. The mitochondrial genome length of M. coccopoma (15,098 bp) is within
this range. The mitogenome of M. coccopoma contained 37 genes typical of the metazoan mi-
togenome. lrRNA and srRNA are situated in the light strand of the mitochondrial genome
and are separated by V. This rRNA arrangement is consistent with other Balanomor-
pha species, except for Chthamalus challengeri, C. malayensis, and Chthamalus antennatus.
The rRNAs of these three Chthamalidae species are on the heavy strand, where srRNA
and lrRNA are separated by V [17]. Similarly, in the stop codon for M. coccopoma, each
protein-coding gene is the complete terminator TAA, TAG, or terminated by the incomplete
terminator T-. In contrast, the start codon preference uses ATN (N=A, T, C, G); notably,
cox1 starts with CGA, and nd4L starts with GTG. The same is true for Tetraclitella divisa,
E. plicata, M. ajax, M. tintinnabulum, and M. volcano [43]. The total number of M. coccopoma
codons utilized was 3663, with AUU, UUU, and UUA being the most frequently used.
CGC was the least frequently used codon in M. coccopoma. The most commonly involved
amino acids were leucine (Leu), serine (Ser), phenylalanine (Phe), and isoleucine (Ile), as
in most Balanomorpha species. The M. coccopoma mitochondrial whole genome was rich
in AT, with the highest AT content in lrRNA (73.0%) and the least in cox3 (63.4%). This
could be due to the depletion of synthetic nucleotides. Nucleotides G and C synthesis
requires adequate resources, and this selection leads to efficient resource use for an adaptive
evolutionary choice [57].

The gene arrangement of M. coccopoma is similar to Megabalanus mitogenomes with
four translocations (A, S1, T, Q, and C), two inversions (Y and K), and seven conserved
gene blocks (nad6-cob-S2, nad1-L1-lrRNA-V-srRNA-I, and M-nad2-W), [42]. The conserved
blocks between different families were determined for comparison with the original gene
arrangement of crustaceans due to the specificity of the mitochondrial gene ring structure.
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Still, the evolutionary tree results did not cluster based on these blocks. In our mitogenome
phylogenetic tree, M. coccopoma clusters in a single clade with other Megabalanus species.
Balanidae and Pyrgomatidae are nested within each other, creating the Balanoidea clade.
The species of Balanoidea experienced the same TDRL(a) event, and the phylogenetic
relationships can be associated with gene rearrangement models. Thus, it could be as-
sumed that the same mechanism occurred when the mitochondrial genome was rearranged
from the original arrangement among the same families. Our results supported the recent
taxonomic revision incorporating the “Archaeobalaninae” subfamily into the Balanidae
after undergoing the same rearrangement [1]. The rearrangement mechanism in the Coro-
nuloidea and Chthamaloidea also presents the same way between species families within
the two superfamilies. The Coronuloidea species experienced the same TDRL(b) event,
and the Chthamaloidea species experienced the same TDRL(c) event (Figure 4). Therefore,
the phylogenetic tree based on the mitogenome revealed that Catophragmidae species
(C. polymerus) formed an independent branch and was situated basal to Pyrgomatidae, Bal-
anidae, Tetraclitidae, and Austrobalanidae. The results were inconsistent with the previous
pattern addressed from the phylogenetic analysis of multiple markers [50]. The rearrange-
ment of C. polymerus, Eochionelasmus coreana, Eochionelasmus ohtai, and Octomeris sp. in
Model 4 (Figure 3) experienced the same TDRL(c) event as other Chthamalidae species, in-
cluding Notochthamalus scabrosus (Model 9), C. antennatus (Model 5), C. challengeri (Model 5),
and C. malayensis (Model 5) [51,58]. Mitochondrial genome rearrangement indicates that
Catophragmidae belongs to Chthamaloidea, consistent with previous findings [59–61].
However, species data are limited for these two superfamilies, and validation requires
additional data.

A comparison of Balanomorpha mitochondrial gene rearrangements indicated that
the gene arrangement order is relatively conserved within subfamilies but not at the
superfamily level. The mitochondrial genome rearrangement could better represent the
relationship between Balanomorpha families, particularly between the superfamilies. We
discovered one conserved gene block in the balanomorphan species (M-nad2-W-cox1-L2-
cox2-D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1). Future studies should investigate the primitive
arrangement of the Balanomorpha mitochondrial genome based on this conserved gene
block to determine the gene rearrangement pattern and the evolutionary relationships with
other suborders.

In the phylogenetic tree, Pollicipedomorpha and Verrucomorpha created two separate
branches. The two deep-sea scalpellomorphan Vulcanolepas fijiensis and Arcoscalpellum epeeum
clustered into different branch groups, contrary to earlier studies [54]. We attempted to
analyze the arrangement between these species and examine whether each species had a
different arrangement, more gene rearrangements, gene deletions, and duplications than
in the Balanomorpha. Therefore, further species data are required for insights into the
Thoracicalcarea phylogeny.

5. Conclusions

We described and characterized the full mitogenome of M. coccopoma. It contained
37 genes and a putative regulatory area, similar to most metazoan mitogenomes. However,
the genes of this species have a completely different order, unlike the crustaceans from
which it evolved. We found five gene clusters (or genes) that rearranged based on the
pancrustacean ground pattern gene order. These gene clusters contained 10 tRNA genes and
3 PCG genes. The duplication–random loss and recombination theories could explain the
large-scale gene rearrangements. The constructed evolutionary trees revealed observations
that agreed and disagreed with previous research. Gene cluster (M-nad2-W-cox1-L2-cox2-
D-atp8-atp6-cox3-G-nad3-R-N-A-E-S1) was arranged in a similar order in the 34 species of
Balanomorpha. Therefore, there are basal alignments in the Balanomorpha. This particular
linkage may exist between different models, requiring more mitochondrial gene alignments
in the balanomorphan species to confirm the pattern.
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