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Abstract: The geographical distribution of plants is influenced by macroclimate and dispersal limita-
tions, which have led to lineage isolation and subsequent diversification within and across various
environmental gradients. Macroclimatic variables in coastal wetlands influence plant species and
lineages across biogeographical boundaries. This study aimed to determine the influence of macro-
climatic variables on species and phylogenetic richness in South African estuaries. Open-source
chloroplast DNA barcoding sequences, species distribution and climatic data layers were used to
determine the relationship between species richness, MPD, MNTD and each bioclimatic variable
individually. Temperate species richness and phylogenetic diversity were positively correlated with
temperature bioclimatic variables whereas subtropical and tropical species were associated with
increases in precipitation. Phylogenetic niche conservatism is evident in malvids and rosids which
are restricted to tropical and subtropical regions due to their physiological adaptations to tropical cli-
mates. Caryophylales was mostly associated with temperate regions. Poales and Alismatales showed
wide distributions that is likely attributed to traits related to wind pollination and hydrochory, rapid,
clonal, and high reproductive output, tolerance to stressful conditions, and intraspecific genetic
diversity. The findings highlight the importance of considering macroclimate and phylogenetic
factors in understanding the distribution and diversity of coastal wetland plants.

Keywords: coastal wetlands; climatic zones; phylogenetic niche conservatism; dispersal limitations;
salt marsh; mangrove; coastal wetlands

1. Introduction

The primary purpose of DNA barcodes is for the identification of unknown sam-
ples [1,2]. However, the utilisation of DNA barcodes has extended to include species-level
data to reconstruct evolutionary relations among phylogenetically disparate community
members [3–7]. From this combined species community dataset and phylogenetic tree,
phylogenetic diversity (PD) indices were developed as a measure of biodiversity that now
incorporates the genetic differences between species to reflect how much evolutionary
history exists within a community [8–10]. Indeed, this approach has been applied to var-
ious ecosystems to understand the process of community structuring [11–13], and other
functional processes such as competition [14,15], environmental filtering [16], dispersal
limitation [17], facilitation [18], alien invasion [7,19], predation [20], parasitism [21] and
restoration [15].

The geographical distribution of plants is the result of the isolation of lineages due
to historical factors, such as plate tectonics and dispersal limitations, that further resulted
in their subsequent diversification across major environmental gradients [22,23]. Ecol-
ogists and evolutionary biologists have placed significant emphasis on unravelling the
relative importance of these macroclimatic factors (temperature and precipitation) and
geographic isolation in shaping the spatiotemporal assembly of plant communities [22,23].
Biogeographers have long been studying the latitudinal diversity gradient (LDG), where
plant species richness is highest in the warm, moist tropics and decreases towards the
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cold, dry poles [24–26]. The precipitation and temperature gradients between tropical and
temperate regions are characterised by predictable decreases and increases in seasonal and
daily temperature variations [27–31]. The capacity of plants to tolerate extreme ranges and
fluctuations in rainfall and temperature are important drivers of plant species distributions
along gradients and phylogenetic niche conservatism [31].

The phylogenetic niche conservatism hypothesis has been proposed to explain this
distinct pattern [26,31–33]. Speciation creates closely related groups of related species that
show similar macroenvironmental preferences within each group, and therefore, adaptive
divergence between distinct macroenvironments occurs infrequently [31]. The close evolu-
tionary relationship between species often leads to the inheritance of conservative similar
traits from their common ancestors that is the result of environmental requirements, and
tolerance to specific conditions. Tropical species, for example, are adapted to a narrow
and stable range of abiotic conditions, which would explain why only a few species and
lineages have managed to expand beyond the tropics [26,31,34,35].

Although not fully explored, on the global and regional scale the effect of evolution-
ary niche conservatism would be expected to be pronounced in coastal wetlands that are
divided into different bioclimatic zones. It has been found that macroclimatic variables in
coastal wetlands greatly influence the distribution of plant species across biogeographical
boundaries [27,29,30,36]. Furthermore, biogeographic studies have primarily focused on
the drivers of taxonomic diversity, with little to no attention given to the influence of
macroclimatic variables on the phylogenetic and functional diversity of regional assem-
blages. Nevertheless, adopting this approach holds promising potential to reveal valuable
insights into the eco-evolutionary processes that influence phylogenetic assemblages. In
addition, there is a sparsity of information on whether climate change may result in the
loss of phylogenetic diversity (PD). For example, it was found that for Californian plants,
the phylogenetic diversity of the woody flora increased with increasing mean annual
rainfall [30,36]. The authors also highlighted that there is a lack of understanding of the
turnover of tropical plant lineages due to the restrictiveness of most studies focusing on
areas with limited geographical extent, as well as the paucity of species distribution data
or phylogenies [37]. The same caveats exist in coastal ecosystems where most studies are
geared toward a regional setting (e.g., [38–41]), specific taxa (e.g., [42]) and whereas others
do not include bioclimatic variables (e.g., [27,29,40]).

The application of biogeographic and phylogenetic diversity studies may also be
useful to determine how climate change (temperature and precipitation) will influence
the distribution and adaptation ability of coastal species. The prevailing prediction is that
mangrove and coastal swamp forests will likely expand towards the south, resulting in
a decline of salt marsh habitats [27,29,30,36]. The same disruption in habitat distribution
is anticipated for many other regions, particularly where there is a tropical-temperate
climatic gradient, such as in Australia, New Zealand, South America, western North
America, southeastern Africa, the Middle East, and Asia [30]. For example, in the Southern
African region climate change will vary across different climatic zones. The tropical
and subtropical climatic zone along the eastern coastline of South Africa will experience
higher temperatures and rainfall, while the cool temperate climatic zone along the western
coastline will have lower rainfall. Such changes are likely to affect the essential components
of estuarine functioning, including river inflow and sediment depositions which will
ultimately impact the microclimatic conditions of various species [29,30,43].

This study aimed to determine the influence of macroclimatic variables on species and
phylogenetic richness in South African estuaries. The South African coastal environment
provides an ideal landscape to evaluate the phylogenetic niche conservatism hypothesis.
This is because the country has all three of the global coastal wetland climatic zones:
The tropics and subtropics that is warm and humid are often dominated by swamp and
mangrove forest; the cold and wet temperate climatic zone is composed of salt marshes of
the graminoid type, and the arid and semi-arid climatic zone where saltmarshes succulent
plants are most abundant [43,44]. Each of these regions may potentially support unique
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clades that diversified in response to dispersal limitations and trait adaptations with major
climatic zones.

There are also good DNA barcoding sequences [40], species distribution data [45] and
climatic data layers available that are open source. Therefore, this study also shows how the
utilisation of a combination of freely available data are used to study various hypotheses
related to coastal biogeography and the potential conservation application thereof.

2. Materials and Methods
2.1. Study Area, Data Acquisition, and Species and Biogeographical Classification

The study area encompasses the entire South African coastline (Figure 1). The estuaries
have previously constituted three climatic zones namely Subtropical, Warm Temperate
and Cool Temperate [46]. Recently, a new climatic zone has been designated Tropical
because certain species in the Kosi and uMgobezeleni Estuaries in the northern region
indicate tropical affinities [47]. This observation served as a strong encouragement to divide
the Subtropical region into distinct parts, incorporating a tropical transition zone in the
northeastern part of South Africa. Botanically, the region hosts unique species such as the
mangroves, Lumnitzera racemosa, and Ceriops tagal. The climatic zones (biogeographical
regions, per [47]) are now classified as tropical from Kosi to uMgobezeleni, the subtropical
that stretches from St Lucia in KwaZulu-Natal to the Mbashe Estuary in the Eastern Cape,
the warm-temperate from the Mendwana Estuary to the Ratel Estuary near Cape Agulhas,
and the cool-temperate from the Uilkraals Estuary to the Orange Estuary on the Northern
Cape coast. The Botanical Database of South African Estuaries contains records of the
distribution of macrophyte species [45]. Using multivariate analysis, the authors were able
to separate species according to different climatic zones (see [45] for a full description). The
same database was used to determine the distribution of species in relation to bioclimatic
variables in this study. In total 53 species were used to construct a community dataset
(absence and presence) distributed across the four climatic zones.
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Figure 1. The distribution of species richness and phylogenetic diversity across different climatic
zones in South Africa. Maps are based on the WGS 1984 Albers projected coordinate system. The
frames show species richness (SR) and the two measures of phylogenetic diversity. The size of the
circles indicates the relative values of each measurement. SR = Species richness, MPD = The average
of the distances between all pairs of species in the community, MNTD = The average of the distances
between each species and its nearest relative in the community.
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2.2. Macroclimatic Analyses

To explore the bioclimatic variables that may influence the distribution of the species
and phylogenetic clades the assumption was that the current species or community distri-
bution is in equilibrium with its environment [48]. For this reason, climate information was
obtained from the WorldClim database (version 1.4; https://www.worldclim.org/data/
worldclim21.html, accessed on 20 February 2023). These climatic layers (19) are based on
weather conditions recorded over 50 years from 1950 to 2000 on a grid of 30 s resolution.
Veldkornet and Rajkaran [43] used bioclimatic variables in combination with sea surface
temperature (SST) in species distribution modelling. They found that bioclimatic variables
are better predictors compared to SST, perhaps because of the semi-aquatic nature of the
plant species that are influenced by coastal climates. For this reason, SST was not included
in this study.

Multicollinearity between predictor variables was assessed using the variance inflation
factor (VIF) based on the square of the multiple correlation coefficient resulting from
regressing a predictor variable against all other predictor variables. Multicollinearity was
assessed using the vifcor function in the R package usdm (version 2.1-6) and variables
with a threshold greater than 0.7 were excluded from further analysis [49]. This resulted
in nine bioclimatic variables being selected: Mean Diurnal Range (◦C), Isothermality (◦C),
Temperature Seasonality (◦C), Minimum temperature of coldest month (◦C), Temperature
annual range (◦C), Mean temperature of wettest quarter (◦C), Annual precipitation (mm),
Precipitation of wettest month (mm), Precipitation of wettest quarter (mm).

To determine the differences in bioclimatic variables between different climatic zones
a Kruskal-Wallis multiple comparison with Bonferroni corrections was conducted, using
the package agricolae (version 1.3-6) in R. To determine the relationship between species
presence and each bioclimatic variable individually, linear regression models were fitted
and p-values using Bonferroni correction in the R package ggpmisc (version 0.5.4-1). To
determine the association of species and bioclimatic variables in relation to different biogeo-
graphical regions detrended correspondence analysis was conducted using the decorana,
with Hellinger transformation standardisation, in vegan (version 2.6-4).

2.3. Phylogenetic Diversity Analyses

To determine the phylogenetic diversity of individual estuaries a previously published
time-calibrated phylogeny of chloroplast DNA (rbcLa + matK sequences) was used to infer
the evolutionary history of 47 South African estuarine macrophyte species [5]. Species
names and their distribution in different climatic zones are in Appendix A (Table A1) and
GenBank Accession numbers are presented in the Supplementary Materials (Table S1). The
differences in the number of species between the community dataset and the phylogeny are
due to the presence of one species in an estuary that would not allow for the determination
of phylogenetic diversity in that estuary.

Two other measures of PD were calculated for each estuary. The first measure, Mean
Pairwise Distance (MPD), represents the average phylogenetic distance (branch length)
between all pairs of species within a given community. The second measure, Mean Nearest
Taxon Distance (MNTD), represents the average distance between each species within
a community and its closest relative. The calculations of MPD and MNTD were based
on a distance matrix and a phylogeny object, using a combination of the rbcLa + matK
datasets. To account for potential correlations of metrics with species richness, richness-
independent standardized effect sizes were computed for each metric, resulting in SESMPD
and SESMNTD. To assess whether individual estuaries exhibited significant phylogenetic
clustering or overdispersion, the MPD and MNTD values were compared to null mean
values. These null values were generated by randomising species across the tips of the
phylogeny 999 times. This process allowed for the determination of whether the observed
PD values were significantly different from random expectations. In the current study
Phylogenetic diversity (PD) [8], the sum of the branch lengths of a phylogenetic tree
connecting all species or taxa in a community was not determined as it was previously

https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html


Diversity 2023, 15, 986 5 of 15

shown to show significantly strong positive correlations with species richness (PD, r = 0.93;
p < 0.000; [5]). The ‘Picante’ package (version 1.8.2) in the R programming language was
used for this analysis [50]).

2.4. Phylogenetic Diversity Patterns in Relation to Bioclimatic Variables

To determine the relationship between species richness, MPD, MNTD and each biocli-
matic variable individually, linear regression models were fitted, and p-values determined
using Bonferroni correction. Only bioclimatic variables that were significantly correlated
with MPD and MNTD were included in further analyses these were Mean Diurnal Range
(◦C), Isothermality (◦C), Temperature annual range (◦C), Minimum temperature of the
coldest month (◦C). Annual precipitation (mm), Precipitation of wettest month (mm) and
Precipitation of wettest quarter (mm).

3. Results

Bioclimatic variables related to temperature and precipitation varied across climatic
zones (Table 1).

Table 1. Mean (maximum and minimum) values of the bioclimatic variables in the different climatic
zones.

Bioclimatic Variable Cool Temperate Warm Temperate Subtropical Tropical

Mean Diurnal Range (◦C) 9.91 (7.2; 13.4) 7.86 (7.1; 10) 10.4 (10.3; 10.5) 8.8 (6.8; 11.8)
Isothermality (◦C) 54.48 (43; 64) 55.40 (49; 60) 53.23 (50; 56) 56.5 (55; 58)
Temperature Seasonality (◦C) 28.44 (19.25; 41.03) 22.96 (19.16; 31.62) 22.59 (19.61; 28.12) 24.98 (23.6; 26.36)
Minimum temperature of coldest month (◦C) 0.80 (0.72; 1.02) 0.95 (0.63; 1.15) 1.19 (1.12; 1.32) 1.25 (1.2; 1.29)
Temperature annual range (◦C) 1.80 (1.37; 2.16) 1.572 (1.37; 2.13) 1.47 (1.28; 1.84) 1.87(1.77; 1.89)
Mean temperature of the wettest quarter (◦C) 1.35 (1.2; 1.56) 1.79 (1.36; 2.17) 2.30 (2.15; 2.52) 2.54 (2.52; 2.55)
Annual precipitation (mm) 526 (93; 873) 768 (424; 1087) 1078 (966; 1150) 924 (916; 932)
Precipitation of wettest month (mm) 84 (17; 143) 90 (46; 147) 138 (119; 148) 144 (139; 150)
Precipitation of wettest quarter (mm) 237 (45; 399) 241(126; 365) 379 (352; 401) 374 (374; 375)

The multivariate analysis (DCA) of estuaries (sites) and bioclimatic variables in the
different South African estuarine climatic zones are presented in Figure 2. The first two
axes (DCA1 and DCA2) account for 63.05% of the total variation. Estuaries were separated
in ordination space where tropical estuaries were separated from cool and warm temperate
estuaries, subtropical estuaries were separated from cool temperate estuaries. Univariate
analysis showed that all bioclimatic variables have significantly influenced the associations
of species (p < 0.05). Temperate species were positively correlated with temperature
bioclimatic variables (temperature diurnal range, r = 0.12; Isothermality, r = 0.12; minimum
temperature of the coldest month, r = 0.1; temperature annual range, r = 0.55; temperature
of the wettest quarter, r = 0.46; p = 001), whereas subtropical and tropical species were
associated with increases in precipitation (annual precipitation, r = 0.46; precipitation of
the wettest month, r = 0.48; precipitation of the wettest quarter, r = 0.52; precipitation of the
warmest quarter r = 0.54; p = 001).

In total eight (8) clades representing 47 estuarine plant species are represented in the
phylogenetic tree (Figure 3). Clades that were found in all climatic zones are Alismatales
and Poales. No clades were restricted to the cool temperate climatic zone. Caryophy-
lales was mostly associated with the temperate regions, except for one species (Salicornia
polystachia). The malvids clade (Hibiscus tiliaceus) was only associated with the tropical
climatic zone. Polypodiales (Acrostichum aureum) was only associated with the tropical
climatic zone. Except for Avicennia marina (warm temperate, subtropical, and tropical
distribution) and Barringtonia racemosa (subtropical), most of the Asterid clade was found
in the temperate regions. Charales was restricted to the temperate regions. All rosids were
restricted to the tropical (Lumnitzera racemosa) and subtropical biogeographic (Bruguiera
gymnorrhiza and Rhizophora mucronate, subtropical and tropical distribution).
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The results of the regression analysis of phylogenetic diversity and bioclimatic vari-
ables are presented in Figure 4. There was a significantly negative correlation between
MNTD and annual precipitation (p = 0.0137). MNTD significantly decreased with pre-
cipitation of the wettest month (p = 0.030) where the highest values of precipitation were
associated with the tropical regions. MNTD also significantly decreased with precipitation
of the wettest quarter (p = 0.008) where the highest values of precipitation were associ-
ated with the tropical regions. MPD significantly decreased with the mean diurnal range
(p = 0.010) with the highest MPD found in the subtropical estuaries associated with the low
diurnal range. In contrast, cool temperate estuaries were associated with higher diurnal
ranges. Phylogenetic diversity significantly increased with isothermality (MPD, p = 0.034;
MNTD, p = 0.001) with cool temperate estuaries associated with higher isothermality.
Phylogenetic diversity (MPD) significantly increased with an increase in the minimum
temperature of the coldest month (p = 0.014) where cool and warm temperate estuaries
were associated with lower minimum temperatures compared to subtropical and tropical



Diversity 2023, 15, 986 7 of 15

estuaries. MPD significantly decreased with temperature annual range where the highest
MPD was found for subtropical estuaries. Cool temperature estuaries were associated with
higher temperature ranges.
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4. Discussion

The global distribution of coastal wetlands is governed by the macroclimate that
creates large-scale climatic zones where they can generally be divided into three bioclimatic
zones: the tropics, cool temperate and dry climatic zones [20,29,51–54]. This study provides
empirical evidence for the biogeographical separation of South African tidal coastal wet-
lands into at least three climatic regions and the climatic variables that are responsible for
these patterns. This study explores the climatic association of species in relation to biocli-
matic variables without describing the species associated with each of these. A description
of the species in the different climatic regions in South Africa can be found in [45].

The separation of species and estuaries in ordination space into tropical, subtropical,
cool warm temperate, can be directly attributed to variations in temperature and precip-
itation across the South African coastline. On the biogeographic scale (macroecology)
temperature and rainfall have been deemed the most important factors affecting estuar-
ine species distribution and evolutionary change [52,55,56]. Thresholds of temperature
and precipitation are known to dictate the physiological response of plants (see [57,58]
for a complete review). Plants can experience stress and reduced metabolic activity due
to extreme temperatures like heatwaves or frost events [58–60]. Water uptake is also
critical for photosynthesis and nutrient transport, and rainfall plays a crucial role in this
process [56]. Conversely, insufficient rainfall can lead to drought stress [61,62] and frost, neg-
atively impacting stomatal conductance, nutrient uptake, and overall plant metabolism [62].
Therefore, the positive association of temperate species with high variations in the mean
diurnal range and isothermality can be attributed to adaptation to temperature variability.
Temperature diurnal range refers to the difference between the maximum and minimum
temperatures that occur within 24 h and isothermality refers to the degree of temperature
variation throughout the year. Plants that are adapted to temperate climates tend to do well
in areas with significant temperature differences between day and night. These plants have
developed various physiological and biochemical mechanisms to survive and thrive in
changing temperatures and can, therefore, withstand both high daytime temperatures and
lower nighttime temperatures [63]. In contrast, tropical and subtropical species richness
were negatively influenced by temperature diurnal range. In tropical regions, the tempera-
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ture diurnal range is often relatively small compared to temperate regions. Forests (such
as mangrove and swamp forests) are also buffered from temperature extremes, and this is
most prominent in summer months when understorey plants are most likely to experience
extreme heat and drought stress [64,65]. Furthermore, a wide diurnal temperature range
influences species diversity because some clades have evolved in tropical climates and
cannot disperse into cold regions owing to their niche conservatism [63]. Therefore, the
inability of tropical species in this study to tolerate temperature fluctuations throughout
the day may be responsible for their lack of distribution into temperate climates.

The association between temperate species and the minimum temperature of the
coldest month may reflect their ability to tolerate frost conditions. Unlike tropical plants,
most temperate plant species can tolerate frost conditions [63]. Frost occurs when tem-
peratures drop below freezing point, causing ice crystals to form in plant tissues and on
surfaces, thereby becoming a limiting factor for plant survival and distribution [56]. At
evolutionary time scales, frost and freezing temperatures have posed significant barriers
to the establishment and survival of tropical woody evergreen plants [26]. Many tropical
clades face obstacles in colonising areas where frost occurs [26]. Frost also poses a major
barrier to dispersal and adaptation of most terrestrial and marine organisms, and areas
experiencing frost, resulting in high phylogenetic turnover among continents and across
the tropical-temperate divide, which manifests in tropical niche conservatism [66].

A significant relationship was also found between the presence of cool temperate
species and the temperature of the wettest quarter. The temperature of the wettest quarter is
an important climatic factor that can significantly influence species distribution, particularly
in temperate regions with distinct wet and dry seasons. In South Africa, cool temperate
estuaries are characterised by high salinity and low turbidity because of low rainfall and
runoff, high seawater input and evaporative loss [5,67]. Higher temperatures during the
wettest quarter can also lead to increased evaporation of soil moisture between rain events.
As water evaporates, it leaves behind dissolved salts in the soil, resulting in higher soil
salinity. In cool temperate estuaries such as the Orange, Olifants, Berg and Verlorenvlei
estuaries the average annual precipitation is approximately 50 mm per year, with an
average potential evaporation of over 3000 mm per year [45]. In the newly described South
African estuary type, arid predominantly closed estuaries, in the cool temperate regions
salt tolerant, succulent Salicocornia spp. can live in open water salinities reaching greater
than 200 ppt [47,68].

Subtropical and tropical species were associated with increases in precipitation (an-
nual precipitation, precipitation of the wettest month, precipitation of the wettest quarter,
precipitation of the warmest quarter). Precipitation is the primary axis influencing the
distribution of tropical plants [66]. Studies have also found that higher species diversity is
found in low-altitude areas such as the tropics (e.g., [26,36,59,63,66]) where species diversity
of trees significantly increased with precipitation and significantly decreased with climate
variability. It can, therefore, be assumed that the presence of woody species in estuarine
habitats such as mangroves and swamp forests is in relation to water availability and
temperature stability.

The phylogenetic niche conservatism hypothesis states the observed patterns of phy-
logenetic relatedness among species and their ecological niches tend to retain ancestral
ecological traits and have similar niche requirements [69–71]. According to this hypothesis,
the phylogenetic niche conservatism (PNC) of ancestral traits adapted to tropical conditions
has significantly influenced the phylogenetic structure and composition of regional species
pools. The ability of clades to persist in different regions is largely determined by the
minimum temperatures experienced in those regions [23,31,36,59,71]. In the current study,
it was found that three clades were restricted to the tropical and subtropical (malvids,
Polypodiales, rosids), two clades (Caryophylales and asterids) were mostly associated with
the temperate regions, and two clades (Alismatales and Poales) had species distributed
across all four climatic zones.
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The distribution of malvids and rosids in the tropical and subtropical climatic zones
can be explained by the warm and humid climates, which provide favourable conditions
for the growth and proliferation of diverse plant species. In malvids, Hibiscus tiliaceus
(Malvaceae), occurs only in subtropical estuaries. This could be due to phylogenetic
niche conservatism in the tribe with populations not being able to survive the cooler
temperatures at higher altitudes. This species favours environments with uniform rainfall
(900–2500 mm) patterns and can tolerate a minimum temperature of 14 ◦C, characteristic
of tropical temperatures [43]. It has been suggested that Malvaceae evolved in the tropical
ancestors but later diversified at a rate comparable with many tropical lineages in the
family [72]. These results are consistent findings that species of Malvaceae are tropical and
the family thus conforms to a latitudinal gradient in species diversity. In a climate change
modelling approach, low habitat suitability and potential distribution were found for H.
tiliaceus in warm temperate estuaries because future minimum temperatures (2050) will not
increase above the minimum temperature tolerance of the species [43].

Polypodiales is composed of all major polypod ferns, and like H. tiliaceus, Acrostichum
aureum is also restricted to the tropical climatic zone. It was found that the diversity
of fern species increased with decreasing latitude and with increasing temperature and
precipitation which is congruent with the tropical niche conservatism hypothesis, indicating
physiological adaptations to tropical climates [73,74].

The rosids clade was composed of mangrove species that were restricted to the tropical
and subtropical climatic zones. The restriction of rosids to the tropics supports phylogenetic
niche conservatism which predicts that few lineages can colonise and radiate in colder
and/or drier regions. This will produce clusters of phylogenetically closely related species.
It was also found that Rosaceae species richness increased significantly with mean annual
temperature, mean temperature of the coldest quarter and mean annual precipitation
significantly decreased with temperature annual range [59]. Mangroves in the rosids group
are particularly sensitive to low temperatures where the species are limited to the 16 ◦C
air temperature isotherm of the coldest month [75]. In contrast to the mangroves in the
rosids clade, Avicennia marina (asterids) can tolerate colder temperatures due to its ability
to recover from extreme winter air temperatures and responses to chilling and freezing
conditions [75].

The asterids clade had the highest species richness, particularly, Asteraceae in temper-
ate regions. Most of these species were associated with salt marshes. Asterids generally
have a wide ecological niche, allowing them to tolerate a broad range of environmental
conditions. This adaptability enables the clade to thrive in different climatic zones, in-
cluding both tropical and subtropical regions. However, the greatest diversity of asterids
occurs in the arid and semi-arid regions compared to subtropical and lower temperate
latitudes [76]. In estuaries, asterids are also found in different estuarine habits, for example,
Cotula coronopifolia is found in the lower intertidal zone, whereas Samolus porosus is found
in the upper intertidal zone, suggesting ecological niche specialisation [45,77]. The drivers
of such ecological niche differentiation along a tidal elevation gradient should be explored
from a phylogenetic perspective.

The species richness and restrictiveness of Caryophylales to the temperate zone can
be explained by the adaptations of this clade to salt marsh conditions [77]. In this study,
the clade was represented by 16 species in five families, with the genus Salicornia being the
most diverse. The centre of diversity of the genus is in southern Africa where 12 species
are found in salt marshes with high soil salinity due to seasonal lack of precipitation, frost,
and frequent and often prolonged flooding [70]. The genus also shows ecological niche
differentiation of taxa along a salt marsh elevation [78]. Approximately 21.4% of halophytic
angiosperm species can be found in nine families of Caryophyllales. Among these families,
Amaranthaceae has the highest number of halophytes [79]. The common ancestor of the
subfamilies Salicornioideae, Suaedoideae, Camphorosmoideae, and Salsoloideae, which
existed 61–35 million years ago, also had salt tolerance [80]. It can, therefore, be concluded
that the phylogenetic niche conservatism in halophytes is associated with low annual
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rainfall and high evaporation rates that favour the retention of similar adaptive traits
related to saline environments among closely related species.

This study found two clades, Poales and Alismatales, that did not exhibit phylogenetic
niche conservatism and were present in all four climatic zones. This is likely because
these clades contain species with varying dispersal abilities. Some species have efficient
mechanisms for long-distance dispersal, allowing them to establish new populations in
different environments and adapt to new habitats [81]. The wide distribution of Poales can
be attributed to several traits such as wind pollination and seed dispersal, rapid, clonal, and
high reproductive output, and tolerance to stressful and disturbed environments [81,82]. It
was also found that coastal species in Poales have high haplotype diversity compared to
their terrestrial conspecifics suggesting a genetic adaptation for along a climatic diverse
coastline [81–83]. Similar to Poales, Alismatales exhibit long-distance dispersal traits
(e.g., [18], for seagrasses). In Southern Africa, the seagrass Zostera capensis can establish
through a persistent rhizome structure and vegetative re-growth [84]. However, in contrast
to Poales which exhibit high haplotype diversity, the dispersal of clonal parts via ocean
current may also be responsible for the low genetic diversity that is observed in this
species [85,86]. Also, within Alismatales, the species Triglochin bulbosa was only found in
the temperate climatic zone, whereas T. striata was found in all climatic zones. Von Mering
and Kadereit (2015) [87] suggested that the dispersal by sea currents or birds seems a likely
explanation for the wide distribution of T. striata. All these traits can reduce the expression
of phylogenetic niche conservatism of these species.

It has been observed that regions with higher levels of annual precipitation also have
higher levels of phylogenetic diversity (MPD). In the subtropical and tropical climatic
zones, where water is essential for plant growth and survival, increased precipitation
often results in greater water availability. This can support a greater number of plant
species, leading to speciation and diversification, and ultimately resulting in higher MPD
values. Additionally, areas with higher annual precipitation may experience more stable
environmental conditions due to water availability [64,66].

A significant negative correlation between the temperature range, mean diurnal tem-
perature range, isothermality and MPD was observed suggesting that regions such as the
cool temperate biogeographic with higher temperature fluctuations tend to have lower PD
values. In contrast, these arid areas also are associated with higher MPD values. These
harsh environmental conditions can result in strong selective pressures on plant species,
leading to the evolution and persistence of specialized and unique lineages. The ability of
certain species to withstand extreme aridity and adapt to a wide range of arid habitats may
contribute to higher MPD values [63,78–80].

MNTD, which measures the average distance between each species and its closest
relative within the community showed a negative correlation with annual precipitation
and more precipitation during the wettest month and wettest quarter. This suggests that
the phylogenetic relatedness of co-occurring species in the community tends to decrease.
These habitats were phylogenetically overdispersal possibly due to the presence of dif-
ferent clades (Polypodiales, asterids, rosids, malvids, Caryophyllales). Due to the benign
conditions in the tropics resulting in higher species richness biotic interactions, such as
competitive exclusion, are likely to play a dominant role in determining species coexis-
tence [15]. Similar results were also found by [4], where along streams and in swamps,
species assemblages were no different from those expected by chance, which suggests that
phylogenetic relatedness may not play a role in determining the structure of communities
in these habitats.

5. Conclusions

This provides valuable insights into the biogeographic distribution and climatic influ-
ences on coastal wetlands in South Africa. Empirical evidence is given for the influence of
climatic variables on the biogeographic botanical separation estuaries and the patterns of
species distribution in relation to phylogenetic relatedness. Moreover, temperature and rain-
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fall are crucial factors influencing estuarine species distribution and evolutionary change at
the macroecological scale. The temperature diurnal range and isothermality influence the
distribution of temperate species, with higher values associated with temperate regions. In
contrast, tropical and subtropical species are negatively influenced by temperature diurnal
range and show limited niche conservatism. Phylogenetic niche conservatism is evident
in certain clades, such as malvids and rosids, which are restricted to tropical and sub-
tropical regions due to their physiological adaptations to tropical climates, or rather their
inability to tolerate large fluctuations in temperatures. However, Poales and Alismatales
showed a wide distribution, likely due to species with varying dispersal abilities. The
findings highlight the importance of considering macroclimate and phylogenetic factors in
understanding the distribution and diversity of coastal wetland plant species.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d15090986/s1, Table S1: Selection of species for phyloge-
netic diversity analysis.
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Appendix A

Table A1. Species names and their distribution in different climatic zones.

Species Family Clade Climatic Zone Habitat

Acrostichum aureum Polypodiaceae Polypodiales Tropical Mangrove
Avicennia marina Acanthaceae Asterids Tropical.Subtropical Mangrove
Barringtonia racemosa Lecythidaceae Asterids Tropical Swamp Forest
Bassia diffusa Amaranthaceae Caryophyllales Temperate Supratidal Salt Marsh
Bolboschoenus maritimus Cyperaceae Poales All Reeds and Sedges
Bruguiera gymnorrhiza Rhizophoraceae Rosids Tropical.Subtropical Mangrove
Centella asiatica Asteraceae Asterids Temperate Intertidal Salt Marsh
Chara vulgaris Charophyceae Charales Temperate Submerged Macrophytes
Nidorella ivifolia Asteraceae Asterids Temperate Supratidal Salt Marsh
Cotula coronopifolia Asteraceae Asterids Temperate Intertidal Salt Marsh
Cynodon dactylon Poaceae Poales All Supratidal Salt Marsh
Cyperus laevigatus Cyperaceae Poales All Reeds and Sedges
Disphyma crassifolium Aizoaceae Caryophyllales Temperate Supratidal Salt Marsh
Frankenia pulverulenta Frankeniaceae Caryophyllales Temperate Supratidal Salt Marsh
Halophila ovalis Hydrocharitaceae Alismatales Temperate Submerged Macrophytes
Hibiscus tiliaceus Malvaceae Malvids Tropical Swamp Forest
Isolepis cernua Cyperaceae Poales All Reeds and Sedges
Juncus acutus Juncaceae Poales All Reeds and Sedges
Limonium scabrum Plumbaginaceae Caryophyllales Temperate Supratidal Salt Marsh
Lumnitzera racemosa Combretaceae Rosids Tropical Mangrove
Phragmites australis Poaceae Poales All Reeds and Sedges
Plantago carnosa Plantaginaceae Asterids Temperate Intertidal Salt Marsh
Poecilolepis ficoidea Asteraceae Asterids Temperate Supratidal Salt Marsh

https://www.mdpi.com/article/10.3390/d15090986/s1
http://hdl.handle.net/20.500.12143/6707
https://www.worldclim.org/data/worldclim21.html
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Table A1. Cont.

Species Family Clade Climatic Zone Habitat

Rhizophora mucronata Rhizophoraceae Rosids Tropical.Subtropical Mangrove
Ruppia cirrhosa Ruppiaceae Alismatales Temperate Submerged Macrophytes
Salicornia meyeriana Amaranthaceae Caryophyllales Temperate Intertidal Salt Marsh
Salicornia uniflora Amaranthaceae Caryophyllales Temperate Intertidal Salt Marsh
Salicornia pachystachya Amaranthaceae Caryophyllales Subtropical Intertidal Salt Marsh
Samolus porosus Theophrastaceae Asterids Temperate Intertidal Salt Marsh
Salicornia capensis Amaranthaceae Caryophyllales Temperate Supratidal Salt Marsh
Salicornia decumbens Amaranthaceae Caryophyllales Temperate Intertidal Salt Marsh
Salicornia natalensis Amaranthaceae Caryophyllales Temperate Intertidal Salt Marsh
Salicornia pillansii Amaranthaceae Caryophyllales Temperate Supratidal Salt Marsh
Salicornia tegetaria Amaranthaceae Caryophyllales Temperate Intertidal Salt Marsh
Schoenoplectus scirpoides Cyperaceae Poales All Reeds and Sedges
Schoenoplectus triqueter Cyperaceae Poales All Reeds and Sedges
Spartina maritima Poaceae Poales All Intertidal Salt Marsh
Spergularia media Caryophyllaceae Caryophyllales Temperate Supratidal Salt Marsh
Spergularia rubra Caryophyllaceae Caryophyllales Temperate Supratidal Salt Marsh
Sporobolus virginicus Poaceae Poales All Supratidal Salt Marsh
Stenotaphrum secundatum Poaceae Poales All Supratidal Salt Marsh
Stuckenia pectinata Potamogetonaceae Alismatales Temperate Submerged Macrophytes
Suaeda inflata Amaranthaceae Caryophyllales Temperate Supratidal Salt Marsh
Suaeda fruticosa Amaranthaceae Caryophyllales Temperate Supratidal Salt Marsh
Triglochin bulbosa Juncaginaceae Alismatales Temperate Intertidal Salt Marsh
Triglochin striata Juncaginaceae Alismatales All Intertidal Salt Marsh
Zostera capensis Zosteraceae Alismatales All Submerged Macrophytes
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