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Abstract: A spherical antenna array (SAA) is the configuration of choice in obtaining an antenna
array with isotropic characteristics. An SAA has the capacity to receive an electromagnetic wave
(EM) with equal intensity irrespective of the direction-of-arrival (DoA) and polarization. Therefore,
the DoA estimation of electromagnetic (EM) waves impinging on an SAA with unknown mutual
coupling needs to be considered. In the spherical domain, the traditional multiple signal classification
algorithm (SH-MUSIC) is faced with a computational complexity problem. This paper presents a
one-dimensional MUSIC method (1D-MUSIC) for the estimation of the azimuth and elevation angles.
An intermediate mapping matrix that exists between Fourier series and the spherical harmonic
function is designed, and the Fourier series Vandermonde structure is used for the realization
of the polynomial rooting technique. This mapping matrix can be computed prior to the DoA
estimation, and it is only a function of the array configuration. Based on the mapping matrix,
the 2-D angle search is transformed into two 1-D angle findings. Employing the features of the
Fourier series, two root polynomials are designed for the estimation of the elevation and azimuth
angles, spontaneously. The developed method avoids the 2-D spectral search, and angles are paired
in automation. Both numerical simulation results, and results from experimental measured data
(i.e., with mutual coupling effect incorporated), show the validity, potency, and potential practical
application of the developed algorithm.

Keywords: spherical antenna array; Fourier series; polynomial root; spherical harmonic function;
DoA estimation

1. Introduction
1.1. Motivation and Incitation

Direction-of-arrival (DoA) is a topic of interest in electromagnetic (EM)-related fields
in both academia and industry. It finds application in mobile communication systems,
vehicular technology, radar, sonar, and military surveillance [1,2]. Knowing the DoA
of an incoming electromagnetic wave impinging on a receiving antenna is necessary to
effectively localize the positions of the corresponding sources. this enhances the adaptive
beamforming of the incoming pattern to boost the system sensitivity towards the wanted
signal’s direction and to mitigate undesirable interferences. Consequently, the antenna
array provides maximum beam to the desired users and nulls in the interference directions
to improve the mobile and base station’s performance. Hence, DoA estimation in antenna
array processing becomes important.

A spherical antenna array (SAA) is important whenever an array with isotropic
characteristics is required. A spherical phased antenna array is widely used in spacecraft
and satellite communications. The electronic beam scanning from a phased antenna array
provides a hemispherical scan and an almost uniformly distributed gain [2,3]. An SAA
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configuration (as in Figure 1) has three-dimensional symmetry, which is an advantage in
spatial signal analysis. Its size and geometry give the directivity and level of beam scanning
in the azimuth and elevation angles required from the array.
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Figure 1. SAA with 64 elements as modeled with CST: (a) side view and (b) top view [3].

A linear array that scans in one axis, and a planar array that scans in the x- and y-axes,
are acceptable for a bounded scan demand of 60–70◦ [3]. The projected apertures of these
arrays drop by the cosine factor of the scan angle. Hence, the array directivity is reduced
for a big scan angle. For larger steerability, a multifold planar configuration, or in a general
form, an SAA is preferred [3–5]. The directivity of an SAA remains almost the same when
an active source is moved over the surface of the SAA.

1.2. Related Works, Associated Problems, and Contributions

Researchers have developed different methods of estimating DoA in a spherical
harmonic domain. The subspace algorithms have been formulated in a spherical domain [6].
The estimation of signal parameter via rotational invariance technique (ESPRIT) in spherical
harmonic (SH) domain (SH-ESPRIT) has been developed based on a tangent function via
an SH recursion relationship. However, the SH-ESPRIT is ill-conditioned if the tangent
function tends to infinity close to the equator of the spherical system [7]. The two-stage
SH-ESPRIT (TS-SH-ESPRIT) uses two recurrence relations of SH functions to compute the
azimuth and elevation separately [8]. A two-stage decoupled method (TSDM) that uses
unitary SH-ESPRIT in the initial stage and unitary SH root-MUSIC in the second stage has
been developed in [9]. The DoA vector SH-ESPRIT (DoAV-SH-ESPRIT) was employed
in order to get the directional variables from three separate recurrence relations of SH
functions. These three variables are corresponding to the unconventional parts (three) of
the unit vector that are directional and point to the DoA [10,11]. DoAV-SH-ESPRIT does not
have angular complexity and the accuracy of estimation is independent of the DoA. In [12],
the SH-MUSIC (SH-MUSIC) approach is presented by Li et al., but it requires very high
computational load due to two-dimensional angle searching [13]. In addition, Kumar et al.
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developed SH root-MUSIC (SH-R-MUSIC) [14]. The SH-R-MUSIC approach circumvents
peak searches; however, it only estimates azimuth via polynomial rooting.

Furthermore, a few scientists attempted the manifold separation method (MSM) for
the expansion of the traditional root multiple signal classification towards the estimation
of azimuths for arrays with arbitrary configurations, giving birth to different search-free
techniques [15–18]. Joint estimations of elevation and azimuth for arbitrary arrays are
transformed into bivariate polynomial rooting via MSM [19]. However, the higher order
of the polynomial and the larger aperture causes complexity in the computation for the
rooting operation. The fast Fourier transform of multiple signal classification (FFT-MUSIC)
transformed the two-dimensional MUSIC cost function to the customary 2D-DFT by MSM,
and later used the 2D-FFT for the efficient computation of the spatial spectrum, which
mitigates the complexity in the computation of root-MUSIC or 2D MUSIC [19].

With the current trend in the growth of technology and applications, systems are
becoming smaller, leading to smaller inter-element distances in an array, leading to strongly
coupled arrays. This causes strong mutual coupling, impedance mismatch, and poor
radiation characteristics. Addressing DoA in the presence of mutual coupling remains an
important topic of interest.

This paper presents a 1D MUSIC (1D-MUSIC) method for the estimation of azimuth
and elevation of EM waves impinging on the SAA. The key innovations and contributions
of this study are as follow: A new method is proposed for computing a mapping matrix that
is responsible for building a link between Fourier series and SH functions. Furthermore,
if we consider the Fourier series structure that is associated with the Vandermonde feature,
it becomes effortless linking the polynomial roots to data containing the DoA. The elevation
is first estimated via a one-dimensional search considering the elevation estimates as
initialization, and then two polynomials are designed for the calculation of both the
elevation and azimuth accordingly. Furthermore, it is important to state that Huang and
Cheng [20], first looked into and developed 1D-MUSIC. The major novelty of our work
as compared with [20] is that we particularly extended the 1D-MUSIC method to the
antenna array as opposed to the microphone array, backed with experimental data in
electromagnetics vis-à-vis a spherical antenna array, which is, in the end, the ground truth
to test and evaluate any method. This is the major gap filled in our work.

2. System Model

Considering an SAA with radius r having V isotropic and mutually independent elements
with the assumption that no mutual coupling exists among the elements. For an SAA con-
figuration, with the v-th element localization expressed as r[sinΨvcosψv, sinΨvsinψv, sinΨv]

T

in spherical domain, Ψv and ψv represent the elevation and azimuth of v-th element, re-
spectively. [·]T is transpose operation. Assuming Q number of EM waves arrive on SAA
from far field. Let Φd = (ϑd, ϕd) for d = 1, . . . , D, where ϑ and ϕ represent azimuth and
elevation angles of arriving signal. Then the SAA output is expressed in form of matrix as

x(t) = G(Φ)s(t) + n(t) (1)

where G(Φ) = [g(Φ1), . . . , g(ΦD)] represents the steering matrix, which is the system-
function from origin to the SAA, and it carries the data of the DoA. t is index of snapshot.
x(t) = [x1(t), . . . , xV(t)]

T defines the vector of the output, s(t) = [s1(t), . . . , sD(t)]
T is the

signal source vector. n(t) = [n1(t), . . . , nV(t)]
T is the noise that is Gaussian white in vector

form with zero mean and σ2
n variance.

After SH decomposition, the output of SAA is expressed as [21]

x(t) = Y(Ω)B(kr)YH(Φ)s(t) + n(t) (2)
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where B(kr) = diag{b0(kr), b1(kr), b2(kr), b3(kr), . . . , bN(kr)} is an A× A strength matrix
in far field mode and A = (N + 1)2. N represents the highest order of SAA and diag {·} is a
diagonal matrix and bn(kr) is described as

bn(kr) = 4πin jn(kr) for open sphere (3)

bn(kr) = 4πin
(

jn(kr)− j′n(kr)hn(kr)
hn′(kr)

)
for rigid sphere

where jn(kr) and hn(kr) represent the nth order spherical Bessel function and spherical
Hankel function of first kind, respectively. The j′n(kr), hn′(kr) are the defined corresponding
derivatives. In open sphere, elements are positioned in the open with no capturing impair-
ment, while in rigid sphere, the elements are placed in rigid sphere. Here, the received
EM wave gets scattered by the interface with the rigid sphere [22]. [·]H is the Hermitian
transpose operator. k = 2π f /c denotes the signal wave number, f is the operation fre-
quency, and c is the speed of EM propagation. YH(Φ) is a A×D SH matrix having the d-th
column as

y(Φd) =
[
Y0

0 (Φd), Y−1
1 (Φd), Y0

1 (Φd), Y1
1 (Φd), . . . , Y−N

N (Φd), . . . , YN
N (Φd)

]H
(4)

and Y(Ω) = [y(Ω1), . . . , y(ΩV)]
H ε CV×A, where Ym

n (·) denotes the SH function with m,
n representing degree and order [22]. Ωv = (Ψv, ψv) is the spherical angle of the v-th
position of the element. Ym

n (·) can be expressed as

Ym
n (ϑ, ϕ) =

√
2n + 1

4π

(n−m)!
(n + m)!

Pm
n cos(cos ϑ)eiωϕ (5)

where n ∈ [0, N], m ∈ [−n, n] and Pm
n (·) is the Legendre polynomial.

Furthermore, applying the SFT (spherical Fourier transform) on the output with the
consideration of orthogonality relation YH(Ω)αY(Ω) = IA [23] and α = diag{α1, . . . , αV},
where αv denotes the sampling weight of the sampling scheme. From the left hand side of
Equation (2), multiply it by YH(Ω)α, then the model can be obtained in SH domain as

x̂(t) = B(kr)YH(Φ)s(t) + n̂(t), (6)

where x̂(t) = YH(Ω)αx(t) and n̂(t) = YH(Ω)αn(t). Multiplying Equation (6) from the left
with B−1(kr) to ensure frequency independent steering matrix, the system model can be
expressed as

x(t) = G(Φ)s(t) + n(t), (7)

where x(t) = B−1(kr)x̂(t), G(Φ) = [y(Φ1), . . . , y(ΦD)] and n(t) is defined as n(t) = B−1

(kr)n̂(t). The covariance matrix is expressed as

Rc = E
{

x(t)xH(t) = G(Φ)RsGH(Φ) + Rn (8)

where Rs = E
[
s(t)sH(t)

]
, Rn = E

[
n(t)nH(t)

]
. Nonetheless, the covariance matrix Rc is

unseen in practical sense, an approach is to employ sample covariance matrix R̂c in place
of the Rc

R̂c =
1
T

XXH (9)

where T denotes the number of snapshots and X = [ x(1), . . . , x(T)] represents system
matrix. If we take R̂c eigenvalue decomposition, the noise subspace Un = [uD+1, . . . , uA]
and signal subspace Us = [u1, . . . , uD] can be obtained. {ui}i=1 are regarded as the eigen-
vectors of the signal corresponding to the D sizeable λ1, . . . , λD eigenvalues. {ui}i=1

A
D+1

represents eigenvectors of the noise, corresponding to the other eigenvalues λD+1, . . . , λA.
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On this note, the output of the SAA has been transformed from spatial to SH domain.
The steering vector is only made up of the SH function. If we use the properties of SH
function, a mapping matrix can easily be constructed to design a connection between
Fourier series and SH function. The SH matrix is decomposed into the multiplication of
two matrixes, consisting of the azimuth and elevation information, respectively.

Considering the defined SH function in Equation (5), the SH vector y(ϑ, ϕ) can be
described as

y(ϑ, ϕ) = MD( ϕ)q(ϑ) (10)

M ε RA×A gives a diagonal matrix which consists the coefficient of normalization as

M = diag{ f0,0, f1,−1, f1,0, f1,1, . . . , fN,−N , . . . , fN,N} (11)

where fn,m =
√

2n+1
4π

(n−m)!
(n+m)! , n ∈ [0, N], m ∈ [−n, n]. D(ϕ) ∈ CA×A is diagonal with

the form
D(ϕ) = diag{d(ϕ)}, (12)

d(ϕ) =
[
1, ejϕ, 1, e−jϕ, . . . , ejNϕ, . . . , e−jNϕ

]T
(13)

q(ϑ) is expressed as

d(ϑ) =
[

P0
0 (cos ϑ), P−1

1 (cos ϑ), P0
1 (cos ϑ), P1

1 (cos ϑ), . . . , P−N
N (cos ϑ), . . . , PN

N (cos ϑ)
]T

. (14)

If Le ∈ CA×(2N+1) and La ∈ RA×(2N+1), then La matrix will satisfy

d(ϕ) = Laf(ϕ) (15)

f(ϕ) =
[
ejNϕ, . . . , 1, . . . , e−jNϕ

]T and Le is expressed as

q(ϑ) = Lef(ϑ) (16)

where f(ϑ) = [
[
e−jNϑ, . . . , 1, . . . , ejNϑ

]T [24]. We can establish a relationship between
Fourier series and SH function as

y(ϑ, ϕ) = <
(

f(ϑ)
⊗

f(ϕ)
)

. (17)

The matrix < is expressed as

< = Ĩ
T
(

IA
⊗

M)(La
⊗

Le

)
, (18)

where Ĩ = IA2
(
:,
[
1 : A : A2]) ∈ RA2×A, this implies Ĩ can be modeled via extraction from

columns IA2 and the interval of extraction is A.
⊗

is Kronecker product operator. < is
the mapping matrix that establish the connection between SH vector and Fourier basis
function (2D). The reason for < calculation is to determine La and Le because the La and Le
are not known in Equation (18). Hence, the next event is to the best method for La and Le
representation. Based on the features of d(ϑ) and f(ϑ) vectors, it becomes easier to verify
that the La matrix is of the form

La = [Q1 . . . QN+1]
T (19)

where Qz =
[
0(2z−1)×A2

I2z−1 0(2z−1)×A2

]T
, z = 1, . . . , N + 1 and A2 = N − z + 1. 0p×p

is zero matrix of p× p size. Le is calculated using two independent recurrence Legendre
function relationships that is complex and requires initializing the Legendre function [24].
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To ensure accuracy of Le, it is important to consider an easier method to calculate Le. Le is
described as the result or solution to Least Square problem

arg min
Le

{∣∣∣∣q(ϑq
)
− Lef

(
ϑq
)∣∣∣∣2

F

}
(20)

|| · ||F is the Frobenius norm [25]. The optimization problem of Equation (20) is
solvable if we choose the Q direction ϑ1, . . . , ϑQ distributed uniformly over (0, π]. The A×
Q matrix P = [q(ϑ1), . . . , q(ϑQ)] can be designed for various angles ϑ1, . . . , ϑQ. In a similar
way, A1 × Q matrix can be formed P = [f(ϑ1), . . . , f(ϑQ)] and A1 = (2N + 1). Then Le
matrix is expressed below

Le = pFH
(

FFH
)−1

(21)

The angle size satisfies Q ≥ 2N + 1. Therefore, inversion of Equation (21) exists.
Expressing Equation (18) as a function of Equations (19) and (21), the mapping matrix < is
obtainable. We can obtain it offline before the estimation of DoA.

Following the derivation of <, Equation (7) can be described as

x (t) = <
[
f(ϕ1)

⊗
f(ϑ1), . . . , f(ϕD)

⊗
f(ϑD)

]
s(t) + n(t) (22)

The information of DoA can be decomposed into matrixes with Vandermonde struc-
ture. Therefore, the root polynomial methods can be developed to compute the azimuth
and elevation.

3. Algorithm for Localization

In this section, the description of developed localization, azimuth, and elevation
algorithms is presented. Traditional SH-MUSIC works on noise subspace. If the noise and
signal subspace orthogonal properties are explored, the SH-MUSIC algorithm will search
the array manifold vector (which is continuous) over ϑ and ϕ for the computation of the
cost function D minima as below

{(ϑ̂d, ϕ̂d)}D
d=1 = arg min

ϑ,ϕ

{
yH(ϑ , ϕ)UnUH

n y(ϑ , ϕ)} (23)

Based on the above, the traditional SH-MUSIC method accepts the 2-D spectral search
with high computational complexity. The reason for proposing 1D-MUSIC is to ensure
reduced complexity in the computation of SH-MUSIC. f(ϑ) and f(ϕ) share the features of
Vandermonde structures, naturally the information of DoA is associated with polynomial
roots. However, the traditional root polynomial techniques in the SH domain only estimates
azimuth and elevation via the rooting of the polynomial. Using polynomial rooting for
the estimation of both elevation and azimuth, the elevation is first estimated and used
as initialization, then we design two root polynomials for the computation of both the
azimuth and elevation. Furthermore, the estimation of the azimuth firstly, and using the
azimuth estimated as an initialization is equally possible in 1D-MUSIC.

3.1. Initialization

The function h(ϑ, ϕ) in Equation (23) is defined to represent cost function as

h(ϑ, ϕ) = yH(ϑ, ϕ)UnUH
n y(ϑ, ϕ) (24)

Expressing Equation (17) as a function of Equation (24), h(ϑ, ϕ) is described in another
form as

h(ϑ, ϕ) = [f(ϕ)
⊗

f(ϑ)]H<HUnUH
n <[f(ϕ)

⊗
f(ϑ)]

= fH(ϕ)H(ϑ)f(ϕ)
(25)
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where H(ϑ) =
[
IA1

⊗
f(ϑ)

]H<HUnUH
n <
[
IA1

⊗
f(ϑ)

]
. It becomes simple to say that Equa-

tion (25) is a problem of optimization, which can be re-expressed as

min
ϑ,ϕ

fH(ϕ)H(ϑ)f(ϕ) s.t. eH
1 f(ϕ) = 1

e1 = [01×N 1 01×N ]
T ∈ RA1×1

(26)

The elevation can be computed as follows

{ϑ̂d}D
d=1 = arg max

ϑ
eH

1 H−1(ϑ)e1. (27)

Elevation estimation is achievable via the one-dimensional spectral search.

3.2. Estimation of Azimuth

Consider the estimated elevation as the initialization for the computation of azimuth.
H
(
ϑ̂d
)

can be found after we have obtained the elevation. If we consider the Vandermonde
structure of f(ϕd), it becomes easier to design the root polynomial for the association of

the information of DoA with the root polynomial. If the f(ld) =
[
lN
d , . . . , l−N

d

]T
, where

zd = ejϕd , then the cost function takes the form of a 4 N degree polynomial and is defined as

h
(
ϑ̂d, ϕd

)
=

2N

∑
u=−2N

culu
d (28)

where cu can be obtained via mathematics. The polynomial carries 4 N roots. Thus, if ld is
roots, then, (l∗d ) inversion is automatically roots. Therefore, the roots within and outside
the circle are 2 N each. The l̂d root closest and within the unit circle has the information of
the DoA; hence, azimuth is computed by

ϑ̂d = ς
(

ln
(

l̂d
))

(29)

where ς(·) represents the imaginary part of (·). As we estimate ϕ̂d using information from
H
(
ϑ̂d
)
, both ϑ̂d and ϕ̂d become paired.

3.3. Estimation of Elevation

We can use azimuth estimates as a pilot to estimate the elevation following the same
method that the azimuth was estimated. Equation (25) is then described in a new fashion as

h(ϑ, ϕ) = [f(ϕ)
⊗

f(ϑ)]H<HUnUH
n [f(ϕ)

⊗
f(ϑ)]

= fH(ϑ)H(ϕ)f(ϑ)
(30)

where H( ϕ) =
[
f(ϕ)

⊗
IA1

]H<HUnUH
n <[f(ϕ)

⊗
f(ϑ)], H(ϕ̂d) becomes known after calcu-

lating the azimuth ϕ̂d. In the same way that the azimuth was estimated, the elevation will
also be estimated. Hence, elevation estimation can be achieved using

ϑ̂d = ς
(

ln
(

l̂d
))

(31)

In conclusion, the elevation can be estimated based on the azimuth and the azimuth
can be estimated based on the elevation. It is therefore easy to compute the azimuth
and elevation iteratively. A step-by-step 1D-MUSIC procedure is presented in Table 1.
The results obtained via simulations indicate the accuracy of the proposed 1D-MUSIC and
the estimation does not vary following two consecutive iterations.
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Table 1. Systematic Implementation of the Proposed 1D-MUSIC.

(1) Calculate La and Le with Equations (19) and (21).
(2) Put Le, La into Equation (18) to calculate <.

Processes of Initialization
(1) Calculate covariance matrix using Equation (9) to obtain noise subspace and signal subspace.

(2) Elevation estimation
{
ϑ̂1

(1), . . . , ϑ̂D
(1)
}

via Equation (27) to complete initialization process.

Estimation of DoA
for z = 1 : Z
Step 1: Estimation of Azimuth angles

(1) Calculate H
(
ϑ̂d

(z)
)

with reference to elevations estimated
{
ϑ̂1

(z), . . . , ϑ̂D
(z)
}

.

(2) Design the root polynomial by employing Equation (28) and azimuth estimation
{
ϕ̂1

(z), . . . , ϕ̂D
(z)
}

via Equation (29)

Step 2: Estimation of Elevation

(1) Design H
(
ϕ̂d

(z)
)

referencing the estimated azimuth angles
{
ϕ̂1

(z), . . . , ϕ̂D
(z)
}

.

(2) Calculate the elevations
{
ϑ̂1

(z+1), . . . , ϑ̂D
(z+1)

}
just as for the azimuth via Equation (31).

End

4. Evaluation

This section presents the computational complexity evaluation and analysis of 1D-
MUSIC in comparison with FFT-MUSIC and SH-MUSIC. Multiplication operation is the
major computational factor in the estimators that causes complexity. The azimuth is
estimated at first and then used as initialization. In a one-dimensional spectrum search,
the time taken to initialize with the azimuth is double that when initializing with the
elevation. Hence, elevation is considered for initialization.

In 1D-MUSIC, the computational complexity majorly occurs when elevation is used as
initialization. Employing the fast subspace decomposition in [25], the complexity when finding
D-dimensional noise subspace Un is o

(
A2D

)
. Computing H(ϑ) and corresponding inverse

costs o
(

A1A + A2
1
)
(A−D) + A3

1 + AA2
1), then the one-dimensional spectral search for eleva-

tions requires o
(

Ne
(

A1A + A2
1
)
(A−D) + A3

1 + AA2
1
)
, where Ne is the value of spectral points

searched along the path of elevation. 1D-MUSIC computes both the azimuth and elevation us-
ing the two root polynomials when initialization ends. The nature of the complexity involved
while solving the roots of the polynomial will not be more than o

(
A3); hence, the complexity of

1D-MUSIC equals o
(

A2D + A3 + Ne
((

A1A + A2
1
)
(A−D) + A3

1 + AA2
1
))

. The conventional
SH-MUSIC algorithm is o

(
NaNe(A + 1)(A−D) + A2D

)
, where Na is the spectral points

search across the azimuth. In FFT-MUSIC, the coefficient matrix computational complexity and
two-dimensional fast Fourier transform is o

(
V2D + M2

t V2 + NaNe + NaNe log(NaNe)
)

[26],
for Mt ≈ 2.5 kR, where R denotes the biggest range between the elements of the SAA.
An overview of the comparison between SH-MUSIC, FFT-MUSIC, and the new 1D-MUSIC is
as given in Table 2. For Na = 4096, Ne = 256, 512, 1024, and 2048; search step in path of the
elevation is 0.60, 0.340, 0.160, and 0.070. EM signal considered is 2. For SAA, Mt = 16. Table 3
shows the operation of multiplication. Therefore, it is right to say that the proposed method
exhibits a lower complexity in computation compared with FFT-MUSIC and SH-MUSIC.

Table 2. Complexity in Computation.

Method Nature of Complexity

1D-MUSIC o
(

A2D + A3 + Ne
((

A1 A + A2
1
)
(A− D) + A3

1 + AA2
1
))

SH-MUSIC o
(

Na Ne(A + 1)(A− D) + A2D
)

FFT-MUSIC o
(
V2D + M2

t V2 + Na Ne + Na Ne log(Na Ne)
)
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Table 3. Multiplication Operational Complexity.

Step Size (Degree) 0.6 0.34 0.16 0.07

1D-MUSIC 5.4× 107 0.9× 108 1.5× 108 4.1× 108

FFT-MUSIC 1.3× 108 2.1× 108 5.7× 108 1.0× 109

SH-MUSIC 5.1× 109 0.89× 1010 1.6× 1010 4× 1010

5. Numerical Experiments, Results, and Discussion

This section presents the results of simulations for the purpose of illustration and
performance evaluation of the proposed 1D-MUSIC method in comparison with the MUSIC,
TSDM, ESPRIT, and SH-MUSIC methods. An SAA of 1.8 cm radius r, and 32 elements
operating at 8.4 GHz, which is uniformly distributed on a rigid sphere, was considered
for the simulations. The range between consecutive samples within the uniform sampling
framework was constant. The uniform sampling framework causes reduced platonic solids.
This only happens for a specific number of elements [23].The SAA has the highest order
of N = 4. We conducted simulations with 700 independent Monte Carlo events utilizing
MATLAB software, 2018b edition. A 0.1 degree search step was used for SH-MUSIC,
MUSIC, and the proposed 1D-MUSIC. The number of the employed iterations was two.
The kr was to be less than N to avoid an aliasing problem. In addition, narrowband AM
signals (amplitude modulation) in the far field were considered in all the simulated cases.

Case 1: Here, we conducted a study on the fitting error (Equation (20)). We calculated
the matrix Le using Equation (21) for a given value of Q. Assuming the elevation is from
0 to 180 degree to verify the validity of Equation (20). The equation for the error is as
given below

Error(ϑ) =
||Lef(ϑ)− q(ϑ)||F
||q(ϑ)||F

. (32)

where ϑ ∈ (0,π] [27]. Equation (21) is solvable when Q ≥ 2N + 1. We tested the impacts
of various Q on the error. Q is divided into two sections using 9 as a benchmark. Hence, Q
is put at 7, 9, 10, and 180, the consequent results of the simulation are depicted in Figure 2.
At Q above 9, the estimated error falls below 10−8; this implies that Le matrix is seen as
independent of the elevation. If Q is below 9, the error in fitting is big, which renders
Equation (21) invalid due to the fact that the inverse of Equation (21) does not always exist.
The curve slightly varies with elevation due to the Legendre function that takes cos ϑ as
the input. For other cases considered in this paper, Q is set at 180.

Figure 2. Error profile based on the elevation angles.
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Case 2: In this case, for various initialization, we evaluated the performance of both
the elevation and azimuth. The estimation accuracy of DoA was conducted using RMSEs.
Two uncorrelated waves arriving on SAA from (45, 34) and (76, 56) degree. The SNR
ranges were from −2 dB to 16 dB, with 200 snapshots. Equation (27) and TS-SH-ESPRIT
were utilized for the estimation of elevation to end the initialization process. As shown
in Figure 3a, based on a comparison with TS-SH-ESPRIT, higher estimation accuracy
of elevation is observed according to Equation (27). Based on the computed elevation,
the azimuth is obtained using SH-MUSIC. As depicted in Figure 3b, this indicates a higher
accuracy of azimuth estimation based on the initialization via Equation (27). Furthermore,
Equation (31) is employed to estimate elevation as a function of the estimated azimuth that
is known to be an iteration for the elevation.
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In conclusion, the elevation accuracy of the estimation could be enhanced further with
an iteration, which shows that the proposed algorithm runs iteratively.

Case 3: This example studies the impact of the number of iterations on the accuracy of
estimation of both the azimuth and elevation. We considered 400 snapshots and 3 iterations.
Two uncorrelated waves arrived on the SAA from (45, 34) and (76, 56) degrees. The SNR
ranged from −2 dB to 16 dB. Based on the results obtained in Figure 4b, there is an
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improvement in azimuth accuracy of estimation after the second iteration. The impact
of iteration on the elevation is depicted in Figure 3a. Since an initialization for elevation
has been taken with Equation (31) used for the estimation of elevation that is taken as an
iteration, then the elevation estimated is used for initialization and for commencement of
the other iteration. The RMSEs result after two iterations is as shown in Figure 4a. It reveals
the accuracy level of 1D-MUSIC remains constant after the second iteration.

Figure 4. RMSEs of the estimates (a) Elevation (b) Azimuth for various iterations with two sources.

Case 4: This case presents the simulation of the maximum number of signals. For H(ϑ)
of size A1 × A1 in Equation (26), the highest number of signal is A1. The results of
9 uncorrelated signals, with 15 dB SNR and 200 snapshots from (100, 35), (60, 140), (140, 60),
(169, 100), (45, 67), (67, 78), (53, 24), (78, 45) and (106, 89) degrees is as shown in Figure 5.
We can infer that the proposed 1D-MUSIC detects the whole of the sources effectively.
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Figure 5. 1D-MUSIC harsh map.

Case 5: This scenario presents the performance at 10 dB SNR with 2 uncorrelated EM
waves impinging SAA from (45, 34) and (34, 66) degrees sources. Snapshots range between
100 and 600. The RMSEs decay as we increase the snapshots as indicated in Figure 6,
together with CRB (Cramer–Rao bound). This demonstrates how good the proposed
1D-MUSIC performance is.
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Figure 6. RMSEs estimation versus number of snapshot with two sources. (a) Elevation (b) Azimuth.

Case 6: This section verifies the performance of the proposed method by comparing
the 1D-MUSIC, MUSIC, SH-MUSIC, TSDM, and ESPRIT algorithms to CRB using the
RMSEs. We computed the RMSEs of the methods against the SNR with 100 snapshots.
Two uncorrelated signals were impinging on the SAA from (45, 34) and (34, 66) degrees.
The computed RMSEs of the azimuth and elevation estimate are as shown in Figure 7.
The proposed 1D-MUSIC method shows better performance than TSDM, TS-SH-ESPRIT,
and DoAv-SH-ESPRIT methods.

Figure 7. RMSEs estimation versus SNR with two sources (a) Elevation (b) Azimuth.

Furthermore, the 1D-MUSIC method shares close performance with MUSIC and
SH-MUSIC, but reduced complexity in computation. This can be attributed to the fact
that both MUSIC and SH-MUSIC require a 2D angle search, but 1D-MUSIC requires a
1D angle search for the computation of the elevation and uses the estimated elevation for
initialization. The application of root polynomials to compute the elevation and azimuth
reduces the complexity in the computation of SH-MUSIC. Zhuang et al. [19] reports that
FFT-MUSIC shares close performance with the traditional MUSIC; this result exhibits
identical behavior with the result reported in this paper; however, the proposed algorithm
exhibits reduced complexity in computation than the FFT-MUSIC.

Case 7: In addition, using two EM signals the performance of the proposed 1D-MUSIC
method is evaluated. The signal length employed is 10 s and sampled at 48 MHz. A short-
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time Fourier transform is performed of SAA output. The parameters considered for the
short-time Fourier transform are: discrete Fourier transform of 128 size, 64 samples hopsize,
and the Hamming window. The two signals impinging on the SAA are from (45, 54) and
(65, 76) degree. The signal is transformed into a short-time frequency domain via short-time
Fourier transform. Each signal frame in the short-time frequency domain is transformed
into an SH domain utilizing the SFT. The proposed 1D-MUSIC is then used to compute the
azimuth and elevation for all signal frames in the SH domain. The average of the results
for all of the frames is considered the final azimuth and elevation. The comparison of
performance between DoAV-ESPRIT, 1D-MUSIC, and SH-MUSIC is as shown in Figure 8.
1D-MUSIC exhibits greater performance than DoAV-ESPRIT and SH-MUSIC. Therefore,
the proposed 1D-MUSIC algorithm has been demonstrated to be a better candidate in
DoA estimation.

Figure 8. RMSEs estimation versus SNR with two sources (a) Elevation (b) Azimuth.

Case 8: Finally, fulfilling the growing application requirements, a specific number of
elements are situated on the systems. The inter-element distance becomes shorter causing
strong mutual coupling with poor radiation performance and impedance matching. In or-
der to incorporate the mutual coupling effect that exists between elements, experimental
measured data, which are the ground truth to systematically evaluate any procedure,
are used. Therefore, experimental measurement data are further used for performance
evaluation and analysis. The SAA is positioned in the middle of the chamber, and the
source is situated at 74 DoAs, which are obtained from different combinations of 4 dif-
ferent elevations and 18 different azimuths. We selected the azimuths from 5 degrees to
365 degrees with 20 degrees as a step size. For detailed information on the measurement
architecture/setup using SAA, readers are referred to the previous paper [4] where the
measured data were first published. Gross error (GE) performance evaluation metrics
is equally employed to evaluate the methods. The comparison of performance between
DoAV-ESPRIT, 1D-MUSIC, and SH-MUSIC is as shown in Figure 9. 1D-MUSIC exhibits
greater performance than DoAV-ESPRIT and closer performance to SH-MUSIC, even with
unknown mutual coupling. Hence, 1D-MUSIC is a good candidate for estimation of the
DoA, particularly in practical cases.
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Figure 9. GE performance evaluation of methods against SNR using the measured data in [4].

6. Conclusions

In conclusion, a 1D-MUSIC method for estimation of the DoA of EM waves impinging
on the SAA with unknown mutual coupling is presented in this paper. The proposed
1D-MUSIC computes the elevation via a 1D spectral search using the estimated elevations
for initialization. Exploring the Vandermonde of Fourier series, we were able to design two
root polynomials for elevation and azimuth estimation in iteration without a requirement
for pair matching. This exhibits a higher accuracy in estimations in comparison with DoAv-
ESPRIT and TSADA. When compared with SH-MUSIC, the proposed 1D-MUSIC exhibits
close characteristics; however, the proposed technique exhibits a high reduction in the
complexity of computation of the SH-MUSIC. The RMSEs are simulated for the verification
of 1D-MUSIC. Furthermore, the estimation accuracy is improved when combining the
1D-MUSIC with subspace fitting, even in the presence of mutual coupling.

In spite of the results presented in this paper, there is a sizeable number of concerns
that require investigation in the future. For example, the resolution of 1D-MUSIC will
be looked into and improved. Finally, we will further extend this work to calibration
and measurement of the time-delay in various applications and compare them to the
state-of-the-art methods.
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