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Abstract: In this paper, an efficient method based on volume integral equation is developed to
analyze the effects of ablation of a radome on the boresight error. To avoid recalculating the whole
impedance matrix when the permittivity of the radome or the shape of the top portion is slightly
changed due to ablation, the radome is divided into unaffected and affected parts and the volume
equivalent current instead of the displacement current is used as the unknown. This permits us
to reassemble rather than recalculate the impedance matrix when the ablation condition is altered.
Moreover, a viable preconditioning technique is introduced and integrated with the multilevel fast
multipole algorithm (MLFMA) to cope with the electrically large antenna-radome system (ARS).
Simulation results are provided for the boresight error (BSE) and boresight error slope (BSES) of the
ARS at some different ablation states. The present approach is considerably faster than using the
conventional methods.

Keywords: ablation; antenna-radome system (ARS); boresight error (BSE); multilevel fast multipole
algorithm (MLFMA); volume integral equation (VIE)

1. Introduction

The antenna-radome system (ARS) plays an indispensable role in many fields [1].
Traditionally, ARS is usually designed for stable environments. However, due to the
influence of environment changes, such as temperature and external forces, the permittivity
of the radome may vary in a narrow range and a little defection of the top portion may
happen. For example, ablation of the radome is common for supersonic vehicles flying in
the high atmosphere [2]. The performance of the antenna in ARS may be influenced a lot
by ablation, including the radiation pattern (RP), boresight error (BSE) and boresight error
slope (BSES). Therefore, accurately analyzing the effects of ablation on the performance is
of great importance for practical applications.

The concept of BSE is described in [3], which describes the shift from the real target
location when processed by the antenna looking through the radome. In recent years,
there exists an increasing concern about the BSE problem of ARS. Many methods including
geometrical optics (GO) [4], ray tracing (RT) [5,6], method of moments (MoM), multi-
level fast multipole algorithm (MLMFA) [7,8] and some hybrid methods [9,10] have been
employed to analyze the ARS problems. However, GO- and RT-related methods are not
accurate enough especially for inhomogeneous radomes, while the common MLFMA
accelerated MoM are not efficient for problems with changing permittivity and shape.
In consideration that an MLFMA-accelerated volume integral equation (VIE) method
should be one of the most suitable candidates [11–15], we are motivated to develop a
tailored scheme under the MLFMA-VIE framework if either the permittivity, shape or both,
are time-varying.

In this paper, an efficient method is proposed by taking full advantage of the results
obtained at the initial moment, in order that many calculations can be bypassed at sub-
sequent moments, including the filling of a large part of the impedance matrix elements
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and acquiring of the preconditioner. The program is written in the Julia language, paral-
leled with multi-threading techniques, and is successfully applied to simulate a real-sized
ARS discretized with millions of unknowns. The RPs of the ARS under different ablation
states are calculated, and then the BSE and BSES are examined to investigate the degree of
influence due to ablation.

2. Volume Integral Equation (VIE) Method

For MoM, the VIE of EFIE is expressed as

Ei(r) + Es(r) = E(r), r ∈ V (1)

where Ei(r), Es(r) and E(r) are the incident, scattering and total electric field at r, respec-
tively, and V denotes the volume region. Moreover, Es(r) can be expressed by a volume
equivalent current JV(r′) according to the equivalence principle.

Es(r) = η0L
[
JV(r

′)
]

(2)

where η0 =
√

µ0/ε0 is the characteristic impedance of background space, and the operator
L is defined as

L
[
X(r′)

]
= −jk

(
1 +

1
k2∇∇·

)∫
V

G(R)X(r′)dV′ (3)

in which k is the wave number of background space, and G(R) is the Green function
G(R) = e−jkR/(4πR) with R = |r− r′|.

After choosing suitable basis functions and weighting functions to discretize
Equation (1), a matrix equation is obtained

ZI = V (4)

where Z is called the impedance matrix, I is a column vector containing the expansion
coefficients of the unknown current and V is the excitation vector. Specifically,

Zmn =
∫

Vn
wm(r) ·

{
E(r)− η0L

[
JV(r

′)
]}

dV (5)

Vm =
∫

Vm
wm(r) · Ei(r)dV (6)

where wm(r) is the weighting function, and JV(r′) and E(r) are determined through ex-
panding them using basis functions.

There are generally two ways to solve Equation (4), namely, direct solvers and iter-
ative solvers. For electrically large problems, iterative solvers are usually used because
their computational complexity is relatively lower. Among them, the generalized mini-
mum residual method (GMRES) is usually preferred for its optimal performance in most
problems [16]. Besides, direct solvers require storing a full impedance matrix, which is pro-
hibitive for an electrically large problem. Furthermore, for better convergence performance,
a preconditioner such as sparse approximate inverse (SAI) is usually adopted in iterative
solvers [17,18]. Once the matrix equation is solved and the equivalent current is found,
post-processing such as RP and radar cross section (RCS) are examined.

Traditionally, to simulate ARS with ablation on a radome, the process described
above needs to be solved at every moment, including the recalculations of the impedance
matrix and preconditioner time by time, which is very inefficient. Therefore, an alternative
approach is introduced below, which takes full advantage of the impedance matrix and
preconditioner at the initial moment.
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3. Modification for Changing Permittivity and Shape

The consequences of ablation on the radome include defecting on the radome and
altering of permittivity. The two situations may be handled separately. In this paper, a
real-sized radome given by Wang in [4] is used, as shown in Figure 1a.
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Figure 1. A real-sized radome model from [4] is used in this paper: (a) The shape of the radome with
sizes; (b) the meshes of radome with mixed tetrahedra and hexahedra.

To accurately fit the ablation interface and reduce the unknowns, the top portion of
the radome that may be ablated is meshed by tetrahedrons, while the remaining parts are
meshed by hexahedrons, as shown in Figure 1b. Moreover, piecewise constant (PWC) basis
functions [19] are used to expand the currents, and the Galerkin test is used to generate the
impedance matrix. The PWC basis function is defined as

fn(r) =
{

êx|y|z, r ∈ Vt

0, else
(7)

where ê denotes the unit vector. Each tetrahedron or hexahedron contains 3 PWC basis
function in x, y and z directions, respectively. For better convergence and close relationship
with the impedance matrix [18], SAI is chosen to construct the preconditioner.

3.1. Consideration for Changing Permittivity

Traditionally, for inhomogeneous problems, the displacement current JD = jωD
is taken as the unknown function to be expanded by using the linear SWG basis func-
tions, which automatically meet the continuity requirement for D on common faces of
meshes [20,21]. In this way, the electric field E and volume equivalent current JV are ex-
pressed as E = JD/[jωε(r)] and JV = jω[(ε(r) − ε0]E =[1− ε0/ε(r)]JD. Unfortunately,
when they are inserted into Equation (2), all the matrix elements need to be recalculated
again and again when the ε(r) of the radome is time-changing.

To avoid the situation mentioned above, we expand JV and E as

JV(r) =
N

∑
n=1

Infn(r), E(r) =
1

jω
JV(r)

ε(r)− ε0
(8)

Substituting these into Equation (5), we obtain the matrix element as Zmn = Ze
mn(εn) +

Zs
mn, which corresponds to the two terms in Equation (5). It is obvious that Zs

mn has nothing
to do with ε(r) regardless of whether it changes or not, while Ze

mn(εn) is changed only
when involved in the region that ε(r) is altered. As a result, we can write the matrix Z as

Z = Ze +Zs (9)

where Zs is a dense matrix but needs to be calculated only once, while Ze is a very sparse
band matrix and only a small part of it needs to be recalculated when the permittivity
is changed.
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3.2. Consideration for Defect Due to Ablation

All basis functions are marked as un-defected in the initial state. Subsequently, the
basis functions related to defection at a specified moment are marked as defected. The
matrix Z can be written as

ZN×N =

[
Zrr

Nr×Nr Zrd
Nr×Nd

Zdr
Nd×Nr Zdd

Nd×Nd

]
(10)

where the superscripts r and d stand for the remaining and defected regions, respectively;
and Nr and Nd are the number of basis functions of the two regions, respectively. Usu-
ally, Nr � Nd in practice. The three sub-matrixes Zrd

Nr×Nd , Zdr
Nd×Nr and Zdd

Nd×Nd that are
involved in the defected region should be discarded. However, doing so will destroy
the structure of Z and we cannot reuse it at another moment or ablation condition. We
may allocate another matrix to store Zrr, but the increased memory requirement may
be unavailable.

To keep Z intact and without requiring extra memory, we write I =
[
IrId

]T
and then

assign Id = 0 before every iteration. The iteration process that involves the matrix-vector
multiplication may be illustrated by

Z
[
Ir

Id

]
Id=0

=

[
ZrrIr

ZdrIr

]
=

[
Fr

Fd

]
Fd=0

(11)

that is, we just need the part Fr and assign Fd = 0 to update I =
[
IrId

]T
and then assign

Id = 0, and then assign Id to start the next iteration.

3.3. Construction of Preconditioner

In practice, the time cost for acquisition of a preconditional matrix P usually takes
more time than that to assemble the impedance matrix. Therefore, a fast-updating strategy
for the preconditioner is required. For better manipulating of the preconditioner, the SAI
method is preferred because its sparse pattern is the same as the impedance matrix of the
near-interacting region Znear in MLFMA.

For a defected radome due to ablation, the elements in preconditioner P are influenced
by the basis functions in the defected region. However, they are far-neighbors in the leaf
level of the octree, which could easily be efficiently updated by looping and re-calculating
on far-neighbors of the defected cubes.

For changing of permittivity due to high temperature, the handling is more compli-
cated. In SAI, P is calculated by minimizing

‖PZnear − I‖min (12)

which means that a little perturbation on Znear may lead to recalculation of all elements in P.
However, for our problem at hand, an efficient updating strategy can be devised. Suppose
that the P at the initial stage has been obtained, which is approximately the inverse of
Znear = Ze +Zs

near , i.e.,
P ≈ (Ze +Zs

near )
−1 (13)

where Ze is the same as (5), which is a sparse band matrix, and Zs
near is the near-interacting

part of Zs, then, when the permittivity in some region is changed at a moment thereafter,
the new preconditioner P′ can be found by

P′≈ (Z′e +Zs
near)

−1
= (P−1 + ∆Ze)

−1

= [P−1(I+ P∆Ze)]
−1

= (I+ I)−1P
≈ [(I− I)∑∞

n=0 I
2n]P

(14)
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where ∆Ze = Z′e − Ze and X = P∆Ze. Because X2n decreases rapidly as n increases, a
few terms in the summation are sufficient. Both P and ∆Ze are sparse, and calculations of
X = P∆Ze and X2n are very cheap. The new P′ can be stored as the same pattern as P to
share the memory.

3.4. Integration with MLFMA

MLFMA is an essential algorithm for analyzing electrically large problems. When the
permittivity is changed, only the matrix Ze will be changed, which are the near-interactions
that do not relate to the far-region interaction in MLFMA. Thus, the original MLFMA
program can be directly utilized without any modification for this case. If the shape is
defected due to ablation, we can treat the case in the same way as described in Section 3.2,
i.e., keeping the original matrix Z intact, but assigning those currents that are marked in the
defected region to be zero in each iteration using MLFMA to accelerate the multiplication
of a far-interacting matrix with a vector. The modification of codes to suit this case is
very slight.

4. Numerical Results

In this section, a real-sized ablating ARS as shown in Figure 1 is simulated to validate
the correctness of the proposed procedure. In all examples, the antenna array in the
ARS is composed of 14 × 14 sized dipoles and works at 5 GHz. The excitation voltages
of the array elements adopt the Taylor distribution, which generates patterns with low
sidelobe [22]. The initial permittivity of the radome is taken to be 2.82(1− 0.002j) and
uniformly distributed.

All the programs in this paper are coded in the Julia language, which is an excellent
language developed in recent years. It has comparable performance to C, C++ and Fortran,
while its grammar is as concise as Python and Matlab [23]. These features free researchers
from heavy coding work and make it easier to write high-performance programs. It is
believed that Julia is going to be a rising star in scientific computing.

The platform used in this paper is an Ubuntu 2004 server with 40 cores Intel(R)
Xeon(R) Gold 5215L CPU @ 2.50 GHz processor. The number of threads is set to 16 for
better efficiency. The GMRES solver is provided by an open-source package released on
GitHub [24].

4.1. Validation of the Present MoM (P-MoM)

It is important to validate the correctness of the proposed method before any further
application. Here we compare the simulation results of an ARS with ablation using the
conventional MoM and the present MoM for perturbating shape or permittivity. The
maximum defection depth is set to 10 mm, and the permittivity changes in the range from
2.82(1− 0.002j) to 2.96(1− 0.01j). More details are provided in Section 4.3.

The sum and difference patterns of the ARS are calculated by MoM and P-MoM, and
the normalized far-field patterns are shown in Figure 2. For these two cases, the patterns
calculated by the MoM and P-MoM are found to be in good agreement. Moreover, in solving
the MoM and P-MoM, the SAI and the present SAI (P-SAI) were adopted, respectively. The
overlapped results shown in Figure 2 confirm the correctness and accuracy of the proposed
method and programs.
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Figure 2. Patterns of the ARS obtained by MoM and P-MoM are compared to demonstrate the
correctness of P-MoM: (a) Normalized sum pattern; (b) normalized difference pattern.

4.2. Performance of the Present SAI (P-SAI)

The most important feature for a good preconditioner is to improve the convergence
speed. For analyzing the convergence performance, the two examples in Figure 2 are used
again. No preconditioner, SAI and P-SAI preconditioners are adopted in the solving process
of P-MoM. Then, the relative residual errors are compared, which are defined as

ε =
‖ZI−V‖2
‖V‖2

(15)

As Figure 3 shows, in both graphs, P-SAI has the same accelerating performance as
the traditional SAI. This proves that the approximation in P-SAI theory is applicable and
effective in practice.
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Figure 3. The relative residual errors in convergence history of GMRES are recorded by P-MoM with
no preconditioner, SAI preconditioner and P-SAI preconditioner. The same examples in Figure 2 are
used here: (a) Convergence history in solving the sum pattern; (b) convergence history in solving the
difference pattern.

Meanwhile, once the SAI is obtained at the initial moment, the time spent to construct
the P-SAI in subsequent simulations is only about 35% of that in the traditional SAI. More
detailed results about the time costs will be listed in the following section.

4.3. BSE of Ablating Radome

As the P-MoM has been proven to be a valid method to analyze electromagnetic per-
formance of perturbation problems for changing permittivity/shape, we use it to simulate a
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real-sized ablating ARS working at 5 GHz as mentioned above. It is meshed by 24,292 tetra-
hedrons and 702,632 hexahedrons, which results in a total of 2,180,772 unknowns by using
the PWC basis functions.

The simulation is carried out at five different moments, where t0 stands for the initial
moment, and t1–t4 are ablating moments. The permittivity of the radome is uniform at
the t0 moment, which is taken as 2.82(1− 0.002j). At the t1, t2, t3 and t4 moments, the
permittivity varies from the minimum 2.82(1− 0.002j) at the bottom to the maximums
2.855(1− 0.004j), 2.89(1− 0.006j), 2.925(1− 0.008j) and 2.96(1− 0.01j), respectively, near
the top.

Figure 4a shows the distribution of relative amplitude of permittivity on the radome,
where 0 corresponds to the initial permittivity 2.82(1− 0.002j) and 1 represents the maxi-
mum permittivity at the specified moment. For defecting on the top portion of the radome,
the defection depths are set to be 1 mm, 4 mm, 7 mm and 10 mm from t1 to t4 as shown in
Figure 4b. The value and distribution results of permittivity on the radome and defection
depth are referred to in [4].
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Figure 4. Distribution of permittivity and defection on the radome for simulation of ablation process:
(a) Relative amplitude of permittivity of the radome; (b) three-dimensional views of defection on the
radome at four ablating moments.

At the five moments, the boresight of the antenna array rotates from 0◦ to 20◦ in plane
φ = 90◦ to calculate the BSE, which is defined as the difference between the aiming angle
of the antenna and ARS. BSES is defined as the slope of BSE. In a fixed meridian plane, say
φ = 90◦, they are calculated by

BSE(θ) = fr(θ)− θ

BSES(θ) = ∂
∂θ BSE(θ) ≈ ∆BSE(θ)

∆θ

(16)

where θ is the intended aiming angle or scanning angle of the antenna array, and fr(θ) is
the real aiming angle of the ARS.

The numerical results of BSE and BSES are shown in Figure 5a,c, respectively. The BSE
relative to no ablation (RBSE) is also shown in Figure 5b for comparison.

As shown in Figure 5a, without ablation (red line), the BSE increases as the aiming
angle θ increases when θ < 5◦, then reaches a plateau between 5◦ and 10◦, then increases
rapidly to 0.6◦ at θ = 17◦ and after that it begins to decline.

When ablation happens, the BSE follows the same tendency but with different degrees,
which is clearly shown in Figure 5b, where the differences of each line minus the red line
are plotted. The maximum difference is about 0.13◦ when θ = 18◦. This tiny difference
of aiming angle may result in a missed distance of tens of meters for a target tens of
kilometers away.

As shown in Figure 5c, the BSES varies sharply when θ < 5◦, which seems to be
inaccurate because of insufficient resolution. After that the BSES varies smoothly.
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Figure 5. Five ablating moments of the ARS mentioned above are simulated using P-MoM. The
BSE, RBSE and BSES at the five moments are calculated to examine the influence of ablation on ARS
performance: (a) BSE; (b) RBSE; (c) BSES.

In Figure 6, the overall difference patterns for the antenna without radome (red line),
antenna with intact radome (blue dot) and antenna with defected radome (green dot) at
t4 and θ = 18◦ are displayed. A zoomed-in look of the valley region is given in the inset,
which shows the obvious differences between one another. It can be seen from the inset
that the ablation makes the zero-depth about 1 dB deeper and the BSE 0.13◦ smaller than
the original ARS. These small variations are meaningful for real engineering applications.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 10 
 

 

As shown in Figure 5c, the BSES varies sharply when 5   , which seems to be in-

accurate because of insufficient resolution. After that the BSES varies smoothly. 

   

(a) (b) (c) 

Figure 5. Five ablating moments of the ARS mentioned above are simulated using P−MoM. The 

BSE, RBSE and BSES at the five moments are calculated to examine the influence of ablation on 

ARS performance: (a) BSE; (b) RBSE; (c) BSES. 

In Figure 6, the overall difference patterns for the antenna without radome (red line), 

antenna with intact radome (blue dot) and antenna with defected radome (green dot) at 
t4 and 18 =   are displayed. A zoomed-in look of the valley region is given in the inset, 

which shows the obvious differences between one another. It can be seen from the inset 

that the ablation makes the zero-depth about 1 dB deeper and the BSE 0.13  smaller than 

the original ARS. These small variations are meaningful for real engineering applications. 

 

Figure 6. The overall difference patterns of ARS with and without ablation are compared when 

aiming angle θ = 18° and the local magnification graph near the valley of the pattern are also shown 

to make things clear. 

4.4. Performance of P−MoM 

The present MoM (P−MoM) and the traditional MoM require almost the same 

amount of core memory, thus we focus on comparing the CPU time. The time consumed 

by using MoM and P−MoM for the five ablating moments described in the last section are 

compared, as shown in Table 1. 

At the first moment, P−MoM does the same things as the MoM, thus they take the 

same time. After that, the P−MoM will save about 99% and 65% time in constructing the 

impedance matrix and preconditioner, respectively, which are remarkable improvements. 

However, the overall speed up is only 27% because the CPU time to solve the matrix 

Figure 6. The overall difference patterns of ARS with and without ablation are compared when
aiming angle θ = 18◦ and the local magnification graph near the valley of the pattern are also shown
to make things clear.

4.4. Performance of P-MoM

The present MoM (P-MoM) and the traditional MoM require almost the same amount
of core memory, thus we focus on comparing the CPU time. The time consumed by using
MoM and P-MoM for the five ablating moments described in the last section are compared,
as shown in Table 1.

At the first moment, P-MoM does the same things as the MoM, thus they take the
same time. After that, the P-MoM will save about 99% and 65% time in constructing
the impedance matrix and preconditioner, respectively, which are remarkable improve-
ments. However, the overall speed up is only 27% because the CPU time to solve the
matrix equation takes a large proportion of the total simulation time, which is nearly the
same for the two approaches. More efforts are needed in follow-up work to reduce the
memory requirement and increase the computational scale to meet the demand for higher
operating frequency.
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Table 1. The time consumption at different stages of the five moments using MoM and P-MoM.

Moments Stage
Time Consumption (s)

Reduction
MoM P-MoM

t0
Impedance Assembling 196 196 0%

Preconditioner Assembling 2272 2272 0%
Solving 2523 2523 0%

t1
Impedance Assembling 196 1.6 99%

Preconditioner Assembling 2230 728 67%
Solving 2564 2575 0%

t2
Impedance Assembling 192 1.7 99%

Preconditioner Assembling 2214 801 64%
Solving 2503 2494 0%

t3
Impedance Assembling 193 1.7 99%

Preconditioner Assembling 2193 765 65%
Solving 2476 2491 −1%

t4
Impedance Assembling 193 1.7 99%

Preconditioner Assembling 2166 761 65%
Solving 2451 2465 −1%

Total 24,368 17,881.7 27%

5. Conclusions

In this paper, a viable procedure based on the MLFMA-VIE framework is presented to
analyze the pointing error problem due to ablation of an antenna-radome system (ARS). The
ablation may result in the change of permittivity of the radome because of high temperature
and defect of the top portion because of burning-out. By using the volume equivalent
current instead of the displacement current as the expanded unknown, recalculations of
most impedance matrix elements are avoidable when the permittivity or shape is changing
in a small range. As a result, a reduction of 99% for time for impedance matrix assembling
and 65% for time for preconditioner constructing is achieved. A real-sized ablating ARS
working at 5 GHz, having 2,180,772 unknowns, is analyzed to predict the boresight error
(BSE) and boresight error slope (BSES), and the results seem reasonable, which should have
important reference values for real engineering applications.
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