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Abstract: The lean blowout is the most critical issue in lean premixed gas turbine combustion.
Decades of research into LBO prediction methods have yielded promising results. Predictions can be
classified into five categories based on methodology: semi-empirical model, numerical simulation,
hybrid, experimental, and data-driven model. First is the semi-empirical model, which is the initial
model used for LBO limit prediction at the design stages. An example is Lefebvre’s LBO model that
could estimate the LBO limit for eight different gas turbine combustors with a ±30% uncertainty.
To further develop the prediction of the LBO limit, a second method based on numerical simulation
was proposed, which provided deeper information and improved the accuracy of the LBO limit.
The numerical prediction method outperformed the semi-empirical model on a specific gas turbine
with ±15% uncertainty, but more testing is required on other combustors. Then, scientists proposed a
hybrid method to obtain the best out of the earlier models and managed to improve the prediction
to ±10% uncertainty. Later, the laboratory-scale combustors were used to study LBO phenomena
further and provide more information using the flame characteristics. Because the actual gas turbine
is highly complex, all previous methods suffer from simplistic representation. On the other hand,
the data-driven prediction methods showed better accuracy and replica using a real dataset from a
gas turbine log file. This method has demonstrated 99% accuracy in predicting LBO using artificial
intelligence techniques. It could provide critical information for LBO limits prediction at the design
stages. However, more research is required on data-driven methods to achieve robust prediction
accuracy on various lean premixed combustors.

Keywords: gas turbine; lean premixed combustor; lean blowout; prediction technique; data-driven

1. Introduction

Gas turbines have gained favor in the power industry as of late. The gas turbines of
today are highly efficient and low maintenance. They have numerous benefits as a means
of energy production on a variety of scales, including more fuel flexibility, lower weight,
lower vibration levels, and a lower weight to net power output ratio [1,2]. A constant flame
is supported by the turbulence and high rate of heat production in the reacting flow within
a gas turbine combustor. In a turbine, gas may be ignited in one of three ways: premixed
combustion, non-premixed combustion, or partially premixed combustion. Prior to the
introduction of stringent NOx regulations, the early gas turbines with the diffusion flame
were used widely in industry and were efficiently managing CO emissions because of
the high flame temperature, at the same time achieving high combustion efficiency and
low-pressure loss. On the other hand, NOx emissions were extremely high. As regulations
on NOx emissions became more stringent, however, attention switched to the creation
of alternative combustion techniques that would comply with these new regulations [3].
Because of this shift, lean premixed combustion technology for gas turbines was developed.
The lean premixed (LPM) combustion has significantly reduced NOx emission while
keeping high efficiency in power production. On the contrary, lean premixed combustors
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suffer from an undesirable event called lean blowout caused by the low flame temperature
and combustion instability [4]. The lean blowout is a significant event that may cause
serious harm to the combustor. The phenomenon has been investigated on a variety of
combustors deeply. In order to determine the performance of gas turbine combustors and
engines, cut-and-try testing is often used. Since the high expense of experimentation makes
it impractical to routinely test complex combustion systems, combustion experts have
developed a wide range of methods and processes for predicting combustor instabilities as
simplified in Figure 1 [5].

Figure 1. Diagram of the techniques used for LBO prediction.

Starting from the 1970s, the industrial heavy duty gas turbine manufacturers have been
required to meet the emission limitations on carbon oxide (CO) and nitrogen oxide (NOx)
and satisfy the environmental rules and legislation of the country [6,7]. However, because
of the significant increase in pollution and its extreme harm toward the environment
and humanity, the regulations on emission limits have become even more strict over
time [8,9]. Therefore, the technology has evolved from the conventional gas turbines to
the water/steam injection systems to lean premixed gas turbines such as the dry low
emission/NOx (DLE/DLN) technologies [10]. Nowadays, advanced combustors may
achieve NOx and CO emissions with a single digit by ultra-lean premixed combustion at
very low air/fuel equivalence ratios. On the other hand, ultra-lean combustion is very
prone to thermoacoustic instabilities and lean blowout [11,12].

Similarly in aircraft engines, with the conventional gas turbines, the LBO issue was
considered to be of minor importance. These types of gas turbines with a poor mixing of
fuel/air have the advantageous property of letting the combustion operate even with low
combustion efficiency, which in return produces high emissions [13]. Therefore, endless
efforts have been made over the last decades to reduce the harmful emissions produced
by aircraft engines [14]. In order to achieve relatively lean combustion, high-efficiency
combustion along with better fuel and air mixing prior to combustion have been extensively
used, which has resulted in a reduction in stability and the emergence of the LBO as a
serious issue in aircraft operation. From the statistical graph in Figure 2, such phenomenon
have been studied by a variety of fields as well.
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Figure 2. The fields studied the phenomenon of LBO.

Basically, LBO is a total flameout of one or more combustion chambers in heavy duty
gas turbines using lean premixed technologies. It may have a variety of effects depending
on the severity of the factors that caused it. Incipient LBO may occur randomly and resolve
without affecting gas turbine performance, for example, during load or combustion mode
transients, or it can occur with full flameout and a subsequent unscheduled engine stop [15].
The latter leads to the gas turbine’s unavailability, faster component deterioration, ultimate
loss of output and increase in CO emissions [16,17].

Furthermore, LBO has been detected as a result of variations in the composition of the
fuel gas, incorrect fuel split, poor operation/tuning of control components, instrumentation
failure or calibration shift, and difficulties with the combustion hardware. When an LBO
occurs, the gas/air premix continues to enter the combustion chamber with decreased or
absent combustion, resulting in two immediate effects: load reduction and the appearance
of a cold spot in the Exhaust Gas Temperature (EGT) profile [18]. Even by tuning of the
lean premixed system, as in optimizing the distribution of fuel streams in the combustion
chambers across the whole operating range, is thus essential to achieve an optimal balance
between emissions level, limits from LBO, and an acceptable level of dynamics, and even
with a correctly calibrated system, drastic changes in ambient conditions (in general, any
factor affecting the fuel/air ratio) may have an effect on emissions or diminish the LBO
limits [19].

Since LBO is the major critical error in a premixed gas turbine, that could cause a major
financial loss and component damages, besides the fatality of such an error in the aerojet
lean premixed combustors. The prediction of LBO has emerged as a significant research area
for combustion scientists and combustor design engineers in recent decades, as Figure 3
shows the top contributed scientist to the field of LBO prediction [20]. Nowadays, the most
widely used approaches for LBO prediction are semi-empirical, the numerical simulation,
the hybrid of the first two, the experimental laboratory combustor approach and the recent
method of a data-driven approach. This paper represents a comprehensive review of the
techniques used to predict the LBO error in the LPM combustors. A comparison of their
advantages and disadvantages and the prediction accuracy follows.
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Figure 3. Top authors contributed to the LBO prediction field.

2. LBO Prediction Techniques
2.1. The Semi-Empirical Model

The combustors’ geometries are pretty complicated. Because of the high complexity,
the semi-empirical model is proposed based on the physical approach to simplify the
system because the physical-based model is the preferred model within the semi-empirical.
In addition, the semi-empirical model could help provide a good estimation of the gas
turbine performance and can be used to improve the LBO limits at the design stages of
the LPM combustors. Because of this simultaneous complexity, it is recommended that a
semi-empirical model be used to simplify the system [20].

The swirl-stabilized combustor is the most common form of the gas turbine. The LBO
mechanism and prediction techniques for such combustors have been extensively explored
during the last decades. One of the most widely used approaches for predicting the lean
blowout gas turbine is the the semi-empirical-based model. Since the semi-empirical
approach was developed earlier, it has gone through a lengthy study process and has been
progressively changed and enhanced to ensure its suitability for engineering applications.
The model is mainly used for LBO limits prediction in the gas turbine. It was an essential
tool for designing a lean premixed combustor with better LBO limits. The semi-empirical
approach can be divided into two categories: the first is the characteristic time (CT) and the
second is the perfect stirred reactor (PSR).

The CT model is based on the Damkohler (Da) number, and it was was pioneered by
Zukoski and Marble [21], who made a breakthrough in the semi-empirical models in 1955.
The authors used the ignition delay time of the fuel/air mixes as an equivalent to the time
required for shear layer mixing. In another word, The LBO would occur when the ignition
delay time is longer than the particle time spent in the shear layer. On the opposite side,
the combustion is stable when the ignition delay time is shorter. Therefore, the indication
of LBO is when both times are equal. The equation can be written as follows

τsh = τig (1)

where τsh and τig are the particle time spent in a shear layer and the ignition delay time,
respectively. Such a simple equation was beneficial in the early stages of LPM combustion
design to predict the LBO limits in terms of determining the best recirculating zone length
and the stream velocity, as the equation can be further written as follows

τsh ∼ Lrz

Vs
(2)
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where Lrz and Vs are the length of the recirculation zone and the steam velocity. Because
of the simplicity of the model, it needed further development to predict the LBO limit
accurately. Later, Plee and Mellor [22] improved the characteristic time model’s prediction
formula of Zukoaki and Marble, and they added droplet evaporation rates to the preceding
model and successfully validated the model on three types of combustors [23–26]. The
equation of Plee and Mellor can be expressed as follows

τsh ∼ τig + τdr (3)

where τdr is the droplet evaporation rate. However, the performance of the model was not
optimum.

On the other hand, Longwell et al. [27] in 1953 hypothesized that the recirculation zone
behind a bluff body might be idealized as a Perfect Stirred Reactor (PSR), with the burning
zone being the PSR. The PSR model became a central tenet in the research of the LBO
semi-empirical models. The authors suggested that when the heat loss in the recirculation
zone and the heat released are equal, LBO will occur. Additionally, they observed that the
pressure of the recirculation zone is proportional to the stability of LBO velocity.

Later, Lefebvre [28,29], one of the pioneers of the semi-empirical model, developed a
model and advanced the prediction formula and expression based on Longwells’s work
to make it capable of predicting LBO limits in the swirl-stabilized combustors. According
to Lefebvre’s LBO model, the LBO limitations are determined by combustor geometries,
operation conditions, and fuel characteristics. The main assumptions of Lefebvre’s model
are that the whole inlet air flow is involved in the fuel mixing and combustion at the LBO,
and secondly, the turbulent flame filled the whole combustor at LBO, as shown in the
physical model of Lefebvre’s expression in Figure 4. The model was validated on eight
different combustors with uncertainties of ±30% [30].

Figure 4. The physical model of Lefebvre’s LBO expression [31].

Afterward, numerous works to improve the Lefebvre model have been suggested,
as Lefebvre’s formula uses a constant to represent the combustor configurations of the
upstream dilution holes, which limits the model’s applicability in different variations of
combustors. Therefore, a study used a formula to replace the constant value in Lefebvre’s
model, as documented by Ateshkadi et al. [32], and they included a temperature-based
parameter collected from their experimental results. However, Mongia et al. [33] revealed
that none of the existing models can be used for modern combustion and suggested that
the focus should be on the flame volume rather than the combustion volume to improve
Lefebvre’s model further. Later, Mongia et al. [34] used a data reduction to evaluate the test
data in order to achieve more accurate predictions. They then optimized Lefebvre’s LBO
model’s parameters and exponents to be applicable to 5 different combustors.

Furthermore, Xie et al. [31] proposed a new semi-empirical model based on Lefebvre’s
model better to investigate the impact of geometrical structural factors on combustors.
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The authors used the concept of flame volume (FV) observations based on a visualization
experiment of the flame size at different fuel/air ratios. It was noticed that the flame could
not fill the whole area within the combustor liner near the LBO, and it was instead very
short. Adding the FV approach has improved Lefebvre’s model. It considers the effect
of the variation in primary zone configuration and the dome geometry as the FV varies
depending on the combustor’s design. The main assumptions of the FV model at LBO are
that the inlet airflow can be divided into two parts: the airflow involved in the combustion
(dome airflow and part of the liner airflow) and the airflow in the dilution downstream, as
shown in the physical model of FV LBO expression in Figure 5. The second assumption
is that the remaining airflow enters the liner uniformly, and the airflow involved in the
combustion depends on the size of the turbulent flame zone.

Figure 5. The physical model of FV LBO expression [31].

The flame volume approach offers a more direct link between LBO performance and
flame characteristics, so increasing the modeling depth and, consequently, the prediction
accuracy [35]. On the other hand, with the recent development in LPM combustion,
the ultra-low NOx emission gas turbine came into existence. The geometry of the new
combustor’s dome differs from the previous combustors to achieve lower NOx emission
and better stability. The fuel/air inlets are divided into the main and pilot stages. Only the
pilot stages operate near LBO to ensure power and flame stability. Due to the differences
in the previous and the current dome configuration, the earlier models’ performance
was not ideal for predicting the LBO limits. Therefore, another study was conducted by
Sun et al. [36], who improved the FV model by using a novel flame volume and multi-point
(FV-MP) to be used for the low NOx combustor. As shown in Figure 6, the airflow is
subdivided into the main and pilot stages. The study showed better accuracy than both
Lefebvre’s and FV models in predicting the LBO limits, which could be beneficial at the
design stages of the combustors.

Similarly, Rowen’s model is a well-known semi-empirical model that is used explicitly
for heavy-duty gas turbines [37]. Rowen’s model is a simplified mathematical representation
of the conventional gas turbine, as shown in the simplified block diagram in Figure 7.
However, due to the recent development and the existance of the dry low emission (DLE)
gas turbine, the model was improved by Omar et al. [38–41] by adding a pilot fuel valve
based on the DLE gas turbine operational data. The improved model could produce high
accuracy prediction for the gas turbine performance, and it can be used for LBO limits
prediction for the new combustors.
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Figure 6. LBO MPLDI combustor flow pattern schematic [36].

Figure 7. Rowen’s simplified semi-empirical model block diagram [40].

When it comes to dealing with lean blowout limit prediction, the semi-empirical
methodologies are often the most practical options due to their simplicity, robustness, and
cost-effectiveness. Its primary use is in the design stage, where it assists in the investigation
of the limits of the LBO and developing combustors that are more resistant to such an
occurrence. Until today, the semi-empirical model is widely utilized in aero-engine lean
blowout prediction but not in heavy-duty industrial gas turbines. Although this strategy is
the oldest one compared to the others, and even though it has undergone many different
types of development and refinement, it still has significant drawbacks, as shown in
Table 1. It exhibits little generalizability in a variety of combustors; therefore, the degree of
uncertainty might be as high as fifty percent, particularly with regard to newly developed
combustors [42]. Similarly, the lack of depth in the semi-empirical modeling substantially
impacts the accuracy and inability to associate the geometric variation with the LBO
events [35]. On the other hand, as was mentioned earlier, various semi-empirical models,
such as Rowen’s model, show promising results in presenting the lean premixed heavy-duty
gas turbines. These results are especially promising when the models are associated with a
numerical simulation approach or a data-driven configuration to improve their accuracy of
LBO limits predictions.
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Table 1. Development stages of the semi-empirical approach.

Semi-Empirical
Models Authors Concept Drawback

CT

Zukoski and
Marble [21]

LBO is occurring when the ignition delay time is longer
than the particle time spent in the shear layer; therefore,
when both times are equal, it is the LBO indicator

High uncertainty for LBO limits
prediction

Plee and
Mellor [22,23]

Adding the particle evaporation rate to Zukoski and
Marble concept instead of the particle time spent in the
shear layer

Limited to three types of combustors

PSR

Longwell et al. [27]
LBO occurs when the heat loss in the recirculation
zone is equal to the heat release and the pressure of
the recirculation zone is proportional to the stability of
blowout velocity

Not capable of predicting LBO limit in
swirl-stabilized combustors

Lefebvre et al. [28,29] Developed Longwell concept to be used in the
swirl-stabilized combustors for LBO prediction

High uncertainty of 30%

Mongia et al. [34] Improved Lefebvre mode to be used in 5 different
combustors by improving the parameters of the model

Limited to specific combustors
configuration

Ateshkadi et al. [31] Improved the Lefebvre equation by introducing
temperature-dependent parameters instead of the
constant A

Not generalized for new combustors

Xie et al. [32]
By using the flame volume to improve the accuracy and
generalizability of the Lefebvre model by two parameters
of mass fraction of the airflow in the combustor’s dome
and the non-dimensional flame volume

Cannot be used for the new ultra low
NOx combustors

Sun et al. [36] Improving the Lefebvre and flame to be applicable in
ultra-low NOx combustors

Does not satisfy the industrial
acceptable level of accuracy

2.2. Numerical Simulation

The semi-empirical model provided fundamental information for the prediction
of LBO limits. However, it was a simplistic approach and does not provide deeper
knowledge on the matter as shown in the development process in Figure 8. Therefore,
there has been an increase in the reporting of numerical prediction methods in recent
years. The LBO limits are often determined using either the Large Eddy Simulation (LES)
or Unsteady Reynolds-averaged Navier–Stokes (URANS) methods. In the past, LES and
Direct Numerical Simulation (DNS) have been used in numerical modeling to capture the
dynamic features of the flame close to the LBO. Furthermore, the flow features have been
studied extensively [43]. As a result, several articles published use numerical simulations to
investigate the LBO phenomena. The main strength of numerical simulation is the capacity
to construct complicated flow fields, both non-reactive and reactive. Nearly all studies
using numerical models have revealed that the flow field is volatile close to the LBO [44].

Figure 8. Development of LBO prediction techniques.

Although there have been many advancements in modeling techniques over the
last several decades, two main frameworks have arisen depending on the degree of
characterization of the underlying flow: the Reynolds-averaged Navier–Stokes (RANS)
approach and the recent Large Eddy Simulation (LES) method, as shown in Table 2. The
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RANS approach is still a popular method for LBO prediction and is preferred to the LES
in some studies due to its low computational cost and complexity, due to the disregard of
the time resolution, as documented by Ahmed and Yong [35]. The authors predicted the
LBO using the primary zone’s flow structure. Then, the data were simulated using RANS
simulation and compared with experimental data. The result showed high efficiency in
predicting LBO. Later, Akhtar et al. [5] used a combination of a flame-generated-manifold
(FGM) model and Reynolds-Averaged Navier–Stokes (RANS) turbulence modeling to
explore a turbulent premixed single jet flame at an enhanced preheating temperature
and pressure. They discovered that the flame location depended on the input velocity
or turbulence and could compute LBO limits with a ±20% uncertainty compared to
the experimental blowout velocity. Nevertheless, RANS is less accurate than LES and
considered a non-universal approach [45].

On the other hand, the LES technique has emerged as the go-to numerical tool for
combustion applications because of its efficacy in describing turbulent physical processes.
In addition, the LES framework may take advantage of the exponential growth of
computation speed by steadily amplifying the range of physical length and time scales
that are directly resolved rather than modeled. This is where LES comes in handy as it
provides a smooth transition to model-free DNS [46]. As a result, the discipline of turbulent
combustion has majorly chosen the LES method, leading to impressive developments in
a number of subfields [47,48]. It have been used in a number of studies, such as those of
Ihme and Pitsch [49], Garmory and Mastorakos [50], Ayache et al. [51], and Hasti et al. [52],
to predict the LBO successfully.

Furthermore, some studies suggested using the chemical reduction technique to
reduce the computation time, especially by utilizing the FGM model with the LES model
as documented by Nassini et al. [53]. The authors investigated the flame behavior and
fragmentation of the flame using the FGM model based on an expanded turbulent flame
closure (TFC) technique and the LES simulation. The two tested operating conditions
deviated from the computed equivalence ratio by ±5% and ±10% from the experimental
LBO point. Similarly, Schwagerus et al. [54] used FGM with LES simulation to reduce
computation time. The authors focused on observing flame shape changes close to LBO
by decreasing the fuel/air equivalence ratios Φ with constant inlet velocity, as shown in
Figure 9. Secondly, by increasing the inlet velocity with a constant fuel/air equivalence
ratios Φ as shown in Figure 10, the result showed a conical flame under unstable conditions
and the flame extended near LBO. The LBO occurs after reducing the equivalence ratios Φ
and increasing the inlet velocity. The results of the proposed approach were very close to
the experimental findings.

Figure 9. The simulation of flame shape elongation near LBO with the reduction of Φ at constant
inlet velocity [54].
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Figure 10. The simulation of flame shape elongation near LBO with increased inlet velocity and
constant Φ [54].

The combustion process is highly complex as it includes the turbulent chemistry
interaction and the turbulent dynamics, making it challenging for the numerical simulation,
specifically for the CFD simulation, to accurately predict the LBO, especially in the actual
gas turbines [55]. Therefore, few models have been used that produce a different outcome of
the prediction accuracy of LBO. Such models include the reduced chemical kinetic model [56],
the commonly used FGM [57], and the G-equation model, which is a flame-tracking-
based technique [58].

Table 2. Numerical simulation models.

Author Method Tools Strength Weakness

Ahmed and Yong [35]

Using the flow
structure in the primary

zone as indicator of
LBO

RANS

Provide better
generalizability to be

used in wider range of
combustors

Not robust enough due
to the long process

Akhtar et al. [5]

Using the relationship
of the flame location

and the input velocity
as LBO indicator

FGM and RANS
Provide better accuracy
than the semi-empirical

models to 16%

High uncertainty of
20%

Nassini et al. [53]

Studying the flame
behavior as LBO

indicator using the
FGM based on the TFC

technique

FGM and LES Improved the
uncertainty to 5%

Computationally
expensive

Schwagerus et al. [54]

Using the FGM and
LES to flame shape
while changing the

inlet velocity

FGM and LES Strong observation of
flame shape

Not validated in higher
pressure conditions

Kaluri et al. [59]

Using the temperature
measurement in real

time by using the
RT-CRN

CRN
Shows deep view of the
chemical reaction near

LBO

Long calculation time is
required



Energies 2022, 15, 8343 11 of 21

Additionally, other studies used the simulation method to predict the LBO away from
the LES and RANS as documented by Maran et al. [60]. The authors used simulations
for various intake pressures and V-gutter angles. A simplified approach was used for
predicting the LBO for an afterburner combustor by using the recirculation zone’s average
gas temperature (AGT). The prediction was successful and showed ±10% uncertainty
compared to the experimental values. Similarly, V and R [61] tested the influence of
combustor inlet air ratio (CIAR) on the LBO of a micro gas turbine of a swirl stabilized
can-type combustor. The author used the 2D simulation method on FLUENT software by
using the average exit gas temperature (AEGT) as the parameter. The result showed that
the LBO limit increases with the decrease of inlet air velocity and significantly decreases
with low inlet air velocity and reduction in CIAR, matching accuracy with the experimental
findings with a deviation of ±6.23%. The chemical reactor network (CRN) simulation has
been utilized as well for LBO prediction as seen in Kaluri et al. [59] and Gupta et al. [62].
The authors used a real-time model to predict the event of LBO by using temperature
measurements in real time using the real-time chemical reactor network (RT-CRN). The
input is the measured temperature and mass flow rate of fuel/air. The result showed
that near LBO, a maximum concentration of hydroxy OH radicals was downstream. The
difference in the concentration of OH radicals in the flame zone and recirculation zone
indicates near LBO. However, the CRN approach was not easy to implement.

When compared to the semi-empirical model, the simulation technique for LBO
prediction employing CFD technologies such as large eddy simulation (LES) and Reynolds-
averaged Navier–Stokes equations (RANS) exhibited superior accuracy in terms of prediction.
In addition to this, the simulation approach is not influenced in any way by the construction
of the combustor, which means that it may be utilized for a wider variety of applications [63].
In addition, computational fluid dynamics (CFD) have demonstrated a new and more
in-depth perspective on the basic activity that takes place in the case of a lean blowout.
Such technologies as LES simulation allowed researchers to analyze the flame features
approaching lean blowout with finer resolution. It was also utilized as a predictor of
LBO, and it revealed a realistic depiction of the distribution of the fuel in the injector side
as well [64,65]. Even with the existence of data-driven techniques, the employment of
numerical approaches has been a focus of research in the field of combustion and more
especially in the field of lean blowout inquiry.

On the other hand, the numerical/simulation technique is still somewhat expensive,
and it is growing more difficult with a rise in the computing expenditures. For instance, a
multi-dimensional simulation model in CFD modeling, which can offer a deeper
understanding, is quite complicated [66]. As a result of these challenges with the simulation
technique, the researchers decided to utilize a more straightforward type of simulation
such as RANS in order to stay away from complexity and high cost. Even after that,
the more sophisticated simulation, such as DNS, did not demonstrate any convergence
in the correctness of the simulation model, and it was determined that it was not fit for
use [67–69]. To put it simply, the modeling approach has to be improved more since it
is still difficult to precisely reproduce the lean blowout and the eddies, both of which
contribute significantly to the extension of the flame [70–73]. As of right now, the LES
simulation approach is not appropriate for real combustors at high Reynold numbers since
they become computationally complex, and they are only applicable to flames found in
laboratories [35]. In conclusion, the existing numerical prediction methods were unable to
achieve the degree of precision required for the design of an aircraft engine [33]. The best
uncertainty that may be attained is not lower than 6% , as well as it is still insufficient to be
utilized in the industry for a real gas turbine [74,75].

Hybrid Method

The hybrid prediction methods can be achieved by combining the semi-empirical
models and numerical simulation. The semi-empirical model is used to determine several
important flow field characteristics. At the same time, the numerical simulation is used for
a precise flow field in the combustor. Therefore, the hybrid approaches have the potential
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to optimize the benefits of both of the preceding two strategies. Several hybrid approaches
have been suggested and implemented, which can be divided into two: the semi-empirical
based hybrid and the numerical based hybrid. As shown in Table 3, Rizk and Mongia [76,77]
pioneered the use of multi-dimensional methods in conjunction with semi-empirical models
to forecast aero-engine combustor LBO. Given the FV model’s superior performance, a
hybrid technique combining the FV model with numerical simulation might be possible to
achieve high prediction accuracy while maintaining a high degree of generality. Another
work by Hu et al. [78] combined the FV model with the numerical simulation. The
parameters in the FV were estimated using the simulation non-reacting flow. The proposed
method was validated in 11 different combustors with an average uncertainty of ±16%
from the experimental flame volume as shown in Figure 11. Another attempt by the same
authors [78–80] was to improve Lefebvre’s model by using a hybrid approach with CFD
simulation to predict the LBO. The result showed an average of ±15% uncertainty to the
experimental values.

Similarly, a more recent work of a hybrid method based on FV to predict the LBO
was documented by Sun et al. [44]. The authors used the threshold value of the flame
temperature with the FV. They tested it on 15 different types of combustors, and the results
showed better accuracy than previous work with the uncertainty of ±10% compared to the
experimental results. Lately, Hu et al. [42] proposed a Fuel Iterative Approximation (FIA)
approach based on the FV model. There LBO prediction results were consistent with the
experimental values.

The hybrid method is a promising approach and could maximize the advantages
since they combine the benefits of both models. The simplicity and robustness of the
semi-empirical model and the better accuracy of the numerical model are where the
inadequacies in the earlier model can be compensated. The hybrid method could have
a wider range of applications while producing higher accuracy than a single method.
However, more validation is needed for such a method [81]. Despite this, the hybrid
model is still limited in its applicability due to its inability to be employed in a variety of
combustor configurations. It is necessary to do more validation and further development
on the operational circumstances, particularly the semi-empirical-based hybrid model. The
relatively high level of uncertainty, which can range anywhere from 5% to 15% with such a
model, is the primary downside.

Figure 11. Comparison of FV simulation and experimental results [42].
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Table 3. Summary of the hybrid techniques.

Author Method Tools Strength Weakness

Rizk and Mongia [77]

By combining the flow
field of the simulation

with the semi-empirical
model of fuel data

3D combustor code
It can predict LBO,

emission and
performance

Limited to one
combustor

configuration

Hu et al. [78]

Estimating the
parameters of FV from

the simulation of
non-reacting flow

CPU

Provide better accuracy
than the semi-empirical

model at 16%
uncertainty

Computationally and
timely expensive

Sun et al. [44]

Using the threshold of
flame in the simulation
as the parameter of the

FV

CFD and Fluent Improved the
uncertainty to 10%

Computationally
expensive

2.3. Experimental Method

The experimental method in this review paper refers to the use of the laboratory-scale
combustor to study the LBO. As it is mimicking the lean premixed gas turbine, the flame
characteristics are the most frequently used LBO prediction parameter in most setups, as
shown in the summary in Table 4, especially in the laboratory-scale combustors. A variety of
methods were performed for LBO prediction, such as using sensors, the statistical approach,
image processing using a camera or the observational method. The sensor method is mainly
used for exhaust temperature detection, as documented by Rieker et al. [82], using a diode
absorption sensor. However, the most recent sensor used for LBO prediction is the ion
current sensor. It is simple, cheap, and easy to maintain [83]. Many experiments through
the last decades with various combustors have shown that an ion current sensor with
a central electrode may be installed simply in a combustor chamber without significant
modification. Ion current signals may be used as a quick and reliable indication of flame
conditions and essential operating parameters. The ion current sensor was used successfully
to predict the LBO when mounted in a suitable position, as documented by Li et al. [84],
Wollgarten et al. [85] and Chang et al. [86]. Nevertheless, ion current sensors provide weak
ion current signals easily interfered with by other electronic devices and are difficult to
gather by the acquisition system. Additionally, the weak signals would significantly limit
the sensor’s accuracy and reliability for flame detection [83].

Many authors used the statistical approach by collecting experimental data and
used an artificial intelligence (AI) technique for the LBO prediction. One of the studies
documented by De et al. [87]. The authors utilized the CH* chemiluminescence data that
were obtained experimentally with statistical analysis using the recurrence quantification
analysis (RQA). The findings suggested that RQA could accurately predict LBO by recording
the transition to LBO. However, the authors determined that adopting statistical approaches
such as RQA required significant processing time. Later, the same authors [88] employed
different statistical methods to determine the heat release rate variability while witnessing
the flame transition toward LBO. The findings indicated that frequency analysis based on
the heat release rate was appropriate for early LBO prediction and could be applied in
an actual combustor. Then, recently, ref. [89] described the use of flame color to identify
combustion while reaching lean blowout. The study used the RGB colors to create an
anomaly measure and observed the relation with LBO. The findings indicated that the
anomaly measure of the RGB successfully predicted LBO.

Furthermore, different studies analyzed the flame color by using the camera for image
collections of the flame near LBO. For example, Chaudhari et al. [90] have developed a
unique approach for detecting LBOs based on flame colors. They utilized a commercial
CCD camera to determine the ratio of red to blue intensities in the flame picture as the
LBO indicator. The experiment showed that using the ratio of red and blue is suitable for
LBO detection. They were followed by the investigation of [91]. The authors confirmed
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the result of the previous experiment by using a similar technique of observing the
red and blue color and image processing tools. Consequently, Bhattacharya et al. [92]
attempted an online prediction of LBO successfully by collecting the heat release data
and RGB images of the flame colors at near LBO conditions. Another experiment of
flame color in addition to chemiluminescence was used to forecast LBOs, as De et al. [93]
demonstrated. Two approaches were employed to capture the flame colors: a spectrometer
and a charged-coupled device camera (CCD) to examine the flame’s red, green, and blue
hues. The observation was made during the shift from stability to LBO-like behavior. The
findings indicated that the approaches were effective at predicting LBO, particularly when
combined with a spectrometer. Although the CCD camera was capable of producing a
comparable forecast, it was less precise than the spectrometer.

Additionally, different methods have been used lately, as shown in Bhattacharya
et al. [94]. The authors used a frequency-based fast Fourier transform (FFT) technique
in time series. The experiment successfully detected the thermoacoustic instability and
the change of the combustor from stability to LBO. However, the proposed method
requires deep knowledge of the combustor’s acoustic mode. Furthermore, in recent years,
CH* chemiluminescence image processing techniques have been widely employed to
characterize the heat release and local equivalence ratio of stabilized flames [95]. OH*
chemiluminescence is a common technique for capturing the flame shape [96]. Mondal
et al. [15] relied on the CH* chemiluminescence. They investigated an alternative prediction
approach for the lean blowout by using the AI technique of hidden Markov modeling
(HMM) technique to observe the change in chemiluminescence data over time using a time
series. The research mainly focused on the transition of the combustor from stable to LBO
and near LBO to stable and effectively predicted LBO. Nevertheless, chemiluminescence
emissions are susceptible to other species’ influence [97]. Lastly, an interesting study by
Kirubakaran and Bhatt [98] by using a laboratory-scale combustor of a micro gas turbine.
The authors used inlet velocity in a range of 1.70 to 11 m/s to study its effect on the LBO.
The result shows that inlet velocity could be used to predict the LBO in a statistical approach
and showed that inlet velocity significantly affects combustion.

Table 4. The top experimental techniques summary.

Author Method Tools Strength Weakness

Rieker et al. [82]
Using the exhaust
temperature as an
indicator of LBO

Diode laser-based
absorption sensor

It can detect the
fluctuation and instability

in temperature

Such sensor has a critical
heat problem

Li et al. [84], Wollgarten et
al. [85], Chang et al. [86]

Detecting the frequency
fluctuation to prediction

the LBO
Ion current sensor Does not require

significant modification
The frequency signal can

be easily interfered

De et al. [87], Mondal
et al. [15]

Using the collected data of
the CH* in a statistical
analysis to predict LBO

AI (RQA) (HMM)
Non-intrusive and

provide strong
performance

Requires significant
processing time

De et al. [88] Using the heat release rate
as LBO indicator Frequency analysis

Non-intrusive statistical
method with high

accuracy

Cant be used with changes
in fuel flow

Chaudhari et al. [90] De et
al. [93]

By using a CCD camera to
collect images and use

RGB colors intensity as the
LBO indication

CCD camera Low-cost tools The CCD camera provides
low-precision images

Bhattacharya et al. [94]

Using the frequency
fluctuation in the

combustion as LBO
indicator

FFT Provide high accuracy
prediction

Requires deep knowledge
of acoustic mode

The experimental method using a laboratory combustor was very useful in understanding
the operation of the gas turbines and the lean blowout. The prediction of LBO in such a setup
could produce high accuracy of an average of 91%. Nonetheless, laboratory-scale combustion
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is a simplified combustor and demonstrates only a basic and restricted representation of an
industrial gas turbine.

2.4. Date-Driven Method

Historically, modern science and engineering have relied on semi-empirical-based
models that are often developed to improve complicated systems’ design stages. The
primary benefit of employing semi-empirical models is that they are based on simplified
mathematical equations and adequately explain the topic under consideration. Unfortunately,
these models need significant engineering work to construct, and in certain circumstances,
reliable models are impossible to acquire owing to the system’s complicated or unknown
physical and chemical reactions [18]. On the other side, the recent exponential expansion
of data enables the creation and dissemination of novel techniques that are entirely
data-driven [99–101]. These data-driven models may be constructed more simply by
gathering measurements taken over the system’s operational range and then learning or
embedding the connection between the sensor measurements into the model architecture
using mathematical approaches.

Additionally, the data-driven approach has been widely used in various fields, especially
for performance enhancement and fault prediction. In the area of gas turbines, the
data-driven approach has been used exponentially for fault detection, such as detecting
the fault in the gas turbine engine sensors as demonstrated by Naderi and Khorasani [102],
Pourbabaee et al. [103], Navi et al. [104], and Cartocci et al. [105]. Similarly, it was used
for aircraft engine health prediction, as demonstrated by Bathaie and Khorasani [106],
Liu [107] and Liu et el. [108]. It was also used to predict gas turbine system degradation
over time by Olsson et al. [109] and Sanaye et al. [110]. The previous studies show the
data-driven technique’s robust performance and high-accuracy fault prediction. Regarding
LBO prediction, the fully data-driven approach is a promising technique to achieve the
highest performance and accuracy. Multiple indicators could be used to accurately predict
the LBO, such as the fuel/air ratio, sudden drop in load, and flame temperature, which are
essential parameters found in most historical data in the LPM gas turbines.

Nevertheless, only one study in the literature utilizes the data-driven methods using
a real data set from an industrial gas turbine to predict the LBO. The reason could be
the sensitivity and confidentiality of the recorded data from the gas turbine industry as
it is a very competitive market. However, the study includes a physical parameter in
hybrid with the data-driven approach to predict the LBO. The work was documented by
Iannitelli et al. [18]. The authors used a data-driven approach to classify the lean blowout
event. The data were collected from a GE dry low NOx (DLN) gas turbine based on the
premixed technology and processed to develop a prediction model using different hybrid
AI techniques and a physical parameter to compare their accuracy. First, one method used
the principal component analysis (PCA) with the linear regression (LR), then with the
decision tree (DT) and lastly with a physical parameter using a threshold. The result shows
the high accuracy of the AI techniques of an average of 99.7% in predicting the LBO. The
study concluded that the hybrid of data-driven and physical models could produce very
high accuracy.

The fully data-driven method outperforms all the previously discussed techniques
and significantly improves LBO prediction accuracy as shown in the comparison in
Tables 5 and 6.

The impact of such a technique’s great accuracy in forecasting and early detecting
the LBO might make a huge difference in the aircraft’s safety and engine performance.
Furthermore, component damage, financial loss, and a rise in CO emissions caused by
incomplete combustion in a heavy-duty LPM gas turbine could be prevented or mitigated.
However, the peculiarity of these data-driven models is that they are correct only in the
learnt space, which means that if the system’s operation changes drastically, the model is
compelled to extrapolate. The result might be no longer accurate. Additionally, more work
is needed to validate the robustness of the data-driven approach and expose the challenges
and the difficulty of such a method in the LBO prediction.
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Table 5. Comparison of the LBO prediction techniques.

Prediction Method Usages Advantages Disadvantages Accuracy

Semi-empirical

• Predict the LBO
limit for combustor
design.

• Predict the LBO
in heavy-duty gas
turbine.

• Economical
approach.

• Robustness and
simplicity.

• Very high
uncertainty
for different
combustors.

• It does not offer
deep modeling of
combustion.

30% to 50% uncertainties

Numerical Simulation

• Lean blowout limit
for combustion
design.

• Observe fuel flow
and the flame
characteristic.

• Provide a visual
understanding of
LBO event.

• Better accuracy
than semi-empirical
model.

• Gives a deeper
understanding of
the combustion
process

• Costly.
• Computationally

complex.
• Insufficient to

present an actual
combustion.

10% to 15% uncertainty

Hybrid

• Study the LBO using
the semi-empirical
input and
the numerical
simulation.

• Study the flow
of fuel and flame
characteristics.

• Combine the
simplicity and
robustness of the
semi-empirical
model with the
accuracy of the
numerical model.

• Achieve better
accuracy than both
previous models

• Incapability to
perform well with
new combustors
configuration.

• Improvement is
desired to achieve
better accuracy.

5% to 15% uncertainty

Table 6. Comparison of the LBO prediction techniques.

Prediction Method Usages Advantages Disadvantages Accuracy

Experimental
• To study the flame

characteristics.
• To predict the LBO.

• More relatable to the
actual gas turbine.

• Added more
parameters that
affect the LBO.

• Very costly approach
to building
a laboratory
combustor.

• Weak and limited
representation of the
actual gas turbine.

Accuracy of 91% in
predicting the lean

blowout

Data-driven

• To predict the faults
in gas turbines
including LBO.

• To predict the
emission in gas
turbines.

• An accurate
representation
of the actual gas
turbine.

• Produced
significantly high
prediction accuracy
above 99%.

• Have not been
explored extensively
for LBO prediction.

• Historical datasets
are not easily
available.

Prediction accuracy above
99%

3. Recent Trends and Possible Future Work

All the LBO prediction techniques are still being researched for more developments
and improvements. Each technique could serve a crucial part in gas turbine design,
performance and fault reduction.

• The LES simulation is a powerful tool and has been extensively used to study the
chemistry and dynamics of the combustion near LBO. With the increase of computational
power, a 3D simulation could give deeper information on the combustion system.

• As of today, the existence of strong mathematical/simulation software such as MATLAB
and Scilab allowed the improvement of a complex mathematical and physical representation
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of a gas turbine which integrates multiple parameters that can be adjusted for the
testing of gas turbine performance and LBO limit. Such software could be used in a
hybrid approach such as by using the Rowen’s model in simulation to be used for
LBO limits.

• The data-driven approach could make a significant improvement in the LPM combustors.
LBO limits prediction at the design stages and in the early detection of a variety of
faults, including the LBO during the operation. However, the data-driven model is a
promising technique in all fields, especially in engineering, machinery, automotive,
and power generation fields for faults and performance prediction. In fact, the model
has been successfully used in gas turbines to predict faults in sensors, blades, and
combustion health and performance.

• The hybrid of multiple models, such as using historical data from an actual gas
turbine to develop a powerful numerical simulation, could significantly impact the
combustion field by forecasting and predicting the faults beforehand, preventing
sudden accidents.

4. Conclusions

The lean blowout is the most important consideration when using a lean premixed gas
turbine for combustion. Years of study have shown encouraging results in LBO prediction
systems. In terms of approach, we may divide the LBO predictions into five categories:
starting from the semi-empirical model, numerical simulation, hybrid, experimental, and
lastly, the data-driven model. The semi-empirical model was the first to be used in the
design stages to predict the LBO limits. The pioneer model was Lefebvre’s LBO model,
which could be used for eight different combustors with about ±30% uncertainty. Due to
the lack of depth in the semi-empirical model, the numerical simulation was suggested,
leveraging the significant development in computation power. The numerical simulation
exceeded the semi-empirical model on a specific gas turbine with ±10% uncertainty, but
further testing is needed on different combustion engines. Later, combustors scientists
suggested the hybrid method of both models to predict the LBO and achieved similar
uncertainty of ±10%. The experimental model based on the laboratory-scale combustor
came into existence with the effort to analyze the LBO events and the flame characteristics.
Nevertheless, because the gas turbine is so complicated, all the previous methods show it
in a simple way without associating the whole gas turbine parameters, which might be the
reason behind their inability to achieve a satisfactory accuracy to be used in the gas turbine
industry. On the other hand, the data-driven method using a historical dataset of an actual
gas turbine demonstrated greater accuracy and replication of the industrial gas turbine.
Additionally, with the utilization of the AI techniques, there was a significant increase
in LBO prediction with a 99.7% accuracy. Such accuracy would make a major difference
in the combustion industry to avoid or mitigate the consequences of the LBO such as
components damages, financial loss and increase of CO emissions. However, because of
the confidentiality and sensitivity of the data collected from the industries, very few studies
utilized the model for LBO prediction. Therefore, additional analysis on the method is
necessary to attain robust prediction accuracy on various lean premixed combustors.
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