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Abstract: The influence of different carbon sources, including anthracite, calcined petroleum coke,
three samples of high-temperature coke, biochar, and a mixture of 50 wt.% biochar and 50 wt.% coke,
on slag foaming behavior was studied. The slag’s composition was set to FeO-CaO-Al2O3-MgO-SiO2,
and the temperature for slag foaming was 1600 ◦C. The effect of the carbon sources was evaluated
using foaming characteristics (foam height, foam volume, relative foaming height, and gas fraction),
X-ray diffraction (XRD), chemical analysis of the slag foams, Mossbauer spectroscopy, observation by
scanning electron microscope (SEM), and energy-dispersive spectroscopy (EDS) mapping. Different
foaming phenomena were found among conventional sources, biochar as a single source, and the
mixture of coke and biochar. Biochar showed the most inferior foaming characteristics compared to
the other studied carbon sources. Nevertheless, the slag foaming process was improved and showed
slag foaming characteristics similar to results obtained using conventional carbon sources when the
mixture of 50 wt.% coke and 50 wt.% biochar was used. The XRD analysis revealed a difference
between the top and bottom of the slag foams. In almost all cases, a maghemite crystalline phase
was detected at the top of the slag foams, indicating oxidation; metallic iron was found at the bottom.
Furthermore, a difference in the slag foam (mixture of coke and biochar) was found in the presence
of such crystalline phases as magnesium iron oxide (Fe2MgO4) and magnetite (Mg0.4Fe2.96O4).
Notwithstanding the carbon source applied, a layer between the foam slag and the crucible wall was
found in many samples. Based on the SEM/EDS and XRD results, it was assumed this layer consists
of gehlenite (Ca2(Al(AlSi)O7) and two spinels: magnesium aluminate (MgAl2O4) and magnesium
iron oxide (Fe2MgO4).

Keywords: electric arc furnace; slag foaming; carbon sources; biochar; steelmaking

1. Introduction

The practice of foaming slag is widely used in electric arc furnace (EAF) operations
to achieve many benefits, including saving electricity, protecting the furnace lining, and
reducing electrode consumption [1–8]. Slag foaming is also interesting for basic oxygen
steelmaking [9–11] and ladle processing [12]. The foaming formation of the slag is influ-
enced by the gas phase, which is determined by the amount of CO/CO2 created, as well as
by the slag phase, which determines the foamability [13–15].

In the interaction between carbon and slag in EAF, the phenomenon of slag foaming
occurs, which involves the trapping of gas bubbles in the slag layer when a carbon-
bearing source interacts with iron oxide in the slag. This gas foams the slag, increasing
its volume depending on parameters such as the type of carbon source used, the FeO
content of the slag, the slag’s basicity, temperature, etc. Reduction reactions and slag
foaming in EAF operations depend not only on the physicochemical properties of the
slag [16] but also on the carbon source. Some technological limits regarding the use of
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carbon sources in EAF include low volatile matters (VM) of 2–7%, low moisture of 1–7%,
a particle size of 0.5–5 mm, and low alkalis [17]. An important factor is the reactivity of
the carbon source, which affects the chemical reactions that create the gas phase. On the
other hand, the ash composition of the carbon-bearing source affects the slag phase and
can change factors such as slag viscosity and surface tension. Changes in basicity and
P2O5 content could be possible.

Several authors [12,18] have experimentally evaluated the phenomenon of slag foam-
ing using conventional carbon sources. The effect of carbon-bearing particles (coke or
coal) on the size and shape of slag foam has been studied. It has been established that
carbon particles have a defoaming effect due to their non-wettability [19–22]. Therefore,
the optimal amount of the FeO and C in the system is required, since excess carbon, instead
of promoting gas-generating reactions, can reduce foam stability. Additionally, studies on
the influence of the type of carbon-bearing source showed that the reduction in FeO and,
therefore, the reaction kinetics depend on the type of carbon source.

Corbari et al. [23] used five different types of carbonaceous material—graphite, bitu-
minous coal, bituminous char, anthracite coal, and anthracite char—to study the foaming
process. The composition of the slag included CaO, SiO2, MgO, and FeO within the range
of 15 to 45 wt.%. This investigation showed that additional gas was released in the form
of VM when using coal. However, VM is less effective than CO released from the slag
foaming reaction. This is because the gas bubbles produced by the reaction were smaller,
resulting in a more stable foam.

Ji et al. [24] used industrial slags of CaO–SiO2–MgO–Al2O3–FeO with 30–40 wt.%
FeO. As a carbon source, anthracite was used. According to the tests, the maximum
carbon addition speed was 10 g of carbon per minute per kilo of slag. If the carbon
amount was higher than this value, an excess of these particles was observed in the
system. Additionally, it was noticed that the quantity of unreacted carbon particles acted
to destabilize the formed foam.

Zhang and Fruehan [20] evaluated the influence of carbonaceous particles, namely,
coke or coal char (with various sizes), in the foaming index when using forced argon
injection at 1500 ◦C. The slag composition in this study used CaO–SiO2–CaF2–Al2O3. In
some cases, the foam formation was suppressed due to the covering of the slag surface
with carbon. Moreover, it was concluded that the bubbles generated by the reaction of
FeO-C, which were small (from 1 to 3 mm), gave a more stable foam than bigger bubbles,
consistent with the conclusions in the paper [23].

Aiming to reduce dependence on fossil fuels and decrease the contribution to green-
house gas (GHG) emissions in EAF steelmaking, various authors have evaluated the slag
foaming phenomenon and the impact on foaming behavior when using non-conventional
carbon sources. Generally, studies focus on biochar use [25–27] and a mixture of biochar
and coke [28]. Further, there are studies on waste plastics and rubber applications [29–31].

Maroufi et al. [32] studied the chemical interaction of EAF slag (Fe2O3-SiO2-Al2O3-
CaO-MgO-MnO) with three different carbon sources: coke, rubber-derived carbon, and a
mixture of coke and rubber-derived carbon at atmospheric pressure at 1550 ◦C. The high
reactivity of rubber-derived carbon led to a rapid interaction with molten slag. However, a
low reduction rate of iron oxide from the slag was observed when using rubber-derived
carbon, which was explained by the initial weak contact between rubber-derived carbon
and molten slag. This led to the conclusion that the interaction between the carbonaceous
material and the slag plays a significant role in the iron oxide reduction from slag.

Yunos et al. [33] investigated the possibility of using biomass in the EAF, namely,
palm shell char, to partially replace coke in a laboratory-scale reactor at 1550 ◦C using the
sessile-drop approach in an argon atmosphere. The slag composition in this study was set
as Fe2O3–CaO–Al2O3–MgO–SiO2–MnO. The test results showed an improved interaction
with EAF slag compared to conventional coke.

Fidalgo et al. [34] studied two biochars obtained from agricultural residues, grape
seed, and pumpkin seed chars for EAF steelmaking. Hard coal and three types of anthracite
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were also used to compare the results. The authors found that biochar could replace coal.
Furthermore, it was noted that the highly volatile matters of biochar are an adequate
stimulation for slag foaming.

Huang et al. [35] studied the interaction between synthetic slag with a composition of
CaO–Fe2O3–Al2O3–MgO–SiO2–MnO and carbon materials obtained from various sources,
including biochar, graphite, coke, and coal obtained from tire pyrolysis at a temperature of
1600 ◦C. Various interfacial phenomena were found between the slag and the investigated
carbonaceous materials. The interaction between the biochar and slag was weak compared
to other carbonaceous materials. The smooth surface of the biochar was claimed to decrease
slag foaming.

The project entitled “Sustainable EAF steel production (GreenEAF)” [13] was devoted
to studying the partial or full substitution of coal and natural gas by charcoal or syngas
produced by the pyrolysis of biomass in EAF steel production. One of the interesting
findings was that the tested charcoal gave only poor foaming results. The most obvious
difference is the variable wettability, which, in the case of charcoal, prevents the reaction
between the FeO in the slag and the carbon and, therefore, the formation of CO bubbles.
The content of the VM in the carbon sources in these tests did not influence the foaming of
the slag.

Echterhof [36] presented a review of the research related to the laboratory- and
industrial-scale investigation of alternative carbon sources to replace the conventional
carbon sources in EAF. The author also revealed that there is still much potential and a
necessity for further research in this area.

This paper aims to analyze and compare slag foaming behavior using partially or
entirely renewable carbon sources; to establish the effect of various carbon sources on
foaming characteristics at 1600 ◦C as well as the composition of the slag foams; and to
show the possibility of using renewable carbon sources for EAF applications to replace
conventional carbon sources either partially or entirely.

2. Materials and Methods

For slag foaming tests, slag with the composition shown in Table 1 was prepared
from a homogeneous mixture of FeO, MgO (≥98%), CaO (≥96%), SiO2 (≥99%), and Al2O3
(≥99%) powders. The slag density and surface tension were calculated according to [37],
and the foaming index was calculated according to [38]. Slag viscosity was determined via
FactSage v.8.2.

Table 1. Target slag composition for slag foaming tests.

FeO,
wt.%

SiO2,
wt.%

Al2O3,
wt.%

MgO,
wt.%

CaO,
wt.% B2 B3 ρ

g/cm3
η

Pa·s
γ

N·m−1
Σ

s

28.0 19.4 9.1 11.9 31.6 1.6 1.1 3.44 0.0382 0.568 0.863

Basicity (B2), CaO/SiO2; basicity (B3), CaO/SiO2 + Al2O3; ρ, density; η, viscosity; γ, surface tension; Σ, foaming
index or average traveling time of the gas in the generated foam.

An alumina crucible (height 99 mm, inner diameter 63 mm, and wall thickness 4 mm)
was filled with ultra-low carbon (ULC) steel of approximately 5 g (Table 2) and 100 g of slag.

Table 2. Chemical composition of ULC steel.

Elements wt.%

C 0.007

Fe 99.6
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The filled alumina crucible was placed in a graphite crucible (height 202 mm, inner
diameter 70.3 mm, and wall thickness 20 mm) and flushed with nitrogen at a rate of
1000 L/h during each test.

The carbon content was calculated stoichiometrically for the required reduction ac-
cording to the equation FeO (slag) + C = Fe (1) + CO [39,40]. The following carbon sources
(Table 3) were used in this study: anthracite (Anth), calcined petroleum coke (CPC), high-
temperature metallurgical coke samples (Coke1, Coke2, and Coke3), and wood biochar
pellets (Bch), which were used with stable grain size from 0.5–1.0 mm to avoid the influence
of particles on the size and behavior of slag foam.

Table 3. Characteristics of carbon sources used for slag foaming.

Characteristics Anth CPC Coke1 Coke2 Coke3 Bch

Proximate analysis (wt.%)

M 5.91 0.75 1.04 0.82 0.78 2.67

VM (db) 3.69 0.44 1.42 0.95 0.74 39.28

VM (daf) 4.12 0.45 1.57 1.03 0.80 41.04

Ash (db) 10.50 0.90 10.88 11.03 11.09 4.29

Elemental analysis (wt.%)

S (db) 0.48 0.62 0.77 0.56 0.59 n.d.

C (db) 82.58 97.01 86.25 86.50 86.55 72.74

H (db) 2.19 0.26 0.29 0.23 0.21 4.62

N (db) 0.97 0.94 1.21 1.15 1.11 0.24

* Others, mainly O (db) 3.28 0.27 0.6 0.53 0.45 18.11

Cfix (db) 85.81 98.66 87.70 88.02 88.17 56.43

Characteristics of microstructural parameter (nm)

Lc 2.08 1.58 1.86 1.56 1.32 0.69
M, moisture; C, carbon; H, hydrogen; N, nitrogen; S, sulfur; db, dry basis; daf, dry ash-free basis;
VM(daf) = VM(db)·100/(100 − ash yield (db,%)); Cfix, wt.% = 100 − (wt.% VM (db) − wt.% Ash (db));
* calculated by difference; n.d., not detected; Lc, crystallite height.

All foaming tests were carried out using an induction high-temperature furnace
MU-900 (Indutherm Erwärmungsanlagen GmbH) (Figure 1).
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When the temperature reached 1600 ◦C, a holding time of 15 min took place. The
height of the molten slag was measured by dipping a molybdenum stick into the molten
slag and then measuring the trace that remained on the stick with a ruler. Afterward,
the carbon source was added, and the molten slag was mixed with a molybdenum stick,
intensifying the carbon–slag reaction until the foam was stable. Due to the difference in
density between the slag and the carbon, the carbon particles covered the surface of the
slag and suppressed the foaming process. Stirring contributed to the penetration of carbon
sources into the molten slag.

The standard time for foaming, regardless of the carbon source, was 6 min, which
proved experimentally adequate for the carbon source to undergo a reaction. After the end
of the test, the alumina crucible was quenched with liquid nitrogen to solidify the foam
structure and prevent the foam from breaking. Each test was repeated four times for each
carbon source.

A further alumina crucible with solidified foam was filled with the hardeners
PUR 145 and SG 141/10 to prepare samples to be cut for examination. The samples
were cut both horizontally and vertically and examined by microscopes.

Based on the foaming height, the volume of slag before (Vslag) and after foaming (Vfoam)
was calculated using Equations (1) and (2):

Vslag =
d2·π

4
·hslag, (1)

Vf oam =
d2·π

4
·h f oam, (2)

where d is the inner diameter of the crucible, cm; hslag is slag height before foaming, cm;
hfoam is slag height after foaming, cm.

Additionally, the slag weight (Table 1), the inner diameter of the alumina crucible,
the slag density (Table 1), and Equation (1) were used to calculate the initial slag height
without foaming.

The relative foaming height ( ∆h
h0
) was calculated by Equation (3):

∆h
h0

=
h f oam − hslag

hslag
, (3)

The foaming height was estimated after the experiments, and the volumetric gas
fraction contained in the foam

(
Xgas

)
was also calculated using Equation (4), according

to [41,42].

Xgas =
h f oam − hslag

h f oam
, (4)

where hfoam is the slag height after foaming, cm; hslag is the slag height before foaming, cm.
Additionally, the relative amount (∆FeO) was calculated using Equation (5):

∆FeO =
FeOslag − FeO f oam

FeOslag
× 100%, (5)

where FeOslag is the amount of FeO in the initial slag composition, wt.%; FeOfoam is the
amount of FeO in the slag composition after foaming, wt.%.

The chemical composition of the solidifying foam structure at the top and bottom of the
crucible was determined by manganometrical titration according to Zimmermann-Reinhard
(Fetot and Fe2+), gravimetrical determination from lithium-tetraborate digestion (SiO2), and
inductive coupled plasma-optical emission spectroscopy from lithium tetraborate digestion
(CaO, Al2O3, MgO).
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X-ray diffraction (XRD) spectra of powdered slag foam samples were obtained using a
Bruker AXS D8 advance diffractometer with a lynxeye detector and a Cu X-ray tube with
Cu Kα radiation.

The magnetic microstructure of the samples and the state of their iron nuclei were
studied using Mossbauer spectroscopy using the MS-1104Em spectrometer. The source of
γ-quanta was the Co57 isotope in the chromium matrix. The natural width of the metal line
α-Fe was 0.21 mm/s. The calibration of the isomeric shifts was carried out relative to α-Fe.
Mossbauer spectra were interpreted using Univem MS analytical software.

Images of samples and mapping were obtained via a scanning electron microscope
SEM FEI Quanta 200Mk2 equipped with an energy-dispersive (EDS) detector, back-scattered
electron (BSE) detector, and a digital microscope Keyence VHX-E20.

3. Results and Discussion

Table 4 shows the calculated characteristics of the slag, namely, the height (hcalc) and
volume (Vcalc), which correspond to 0.93 cm and 29.1 cm3.

Table 4. Calculated slag characteristics.

Calculated Slag Height
hcalc, cm

Calculated Slag Volume
Vcalc, cm3

0.93 29.1

Depending on the different carbon sources used, the foaming behavior of the slag was
evaluated using the foaming characteristics shown in Table 5. It is noteworthy that with
biochar, the height of the slag foam (SF) and the volume of the foam is lower compared with
other carbon sources. Similar foaming behavior in the case of using biochar was noticed
in [35] due to the low wettability of biochar by liquid slag, which prevents the reaction
of carbon with FeO by the formation of a sufficient amount of CO bubbles [13]. Another
reason is that due to the high reactivity of the biochar [43–45], FeO did not have time to
react completely, and a smaller amount of CO was released, as evidenced by the value
of the gas fraction (0.85). Among the carbon sources used, biochar is characterized by its
low density, and therefore, when adding biochar particles, they were covered only on the
surface of the slag foam. At the same time, stirring was difficult, because the biochar burned
out on the slag foam surface very fast. As previously reported by [46], hydrogen in carbon
sources can positively contribute to the FeO reduction reaction in the slag. However, based
on the results presented in Table 5, when using biochar, which has the highest hydrogen
value (4.62 wt.%), the lowest values in the height (6.5 cm) and volume of slag foam were
obtained (201.9 cm3).

It should be noted that when using anthracite with a hydrogen content of 2.19 wt.%,
suitable slag foaming characteristics were obtained (8.7 cm and 272.1 cm3 for foam height
and foam volume, respectively). At the same time, the highest values were obtained when
using coke2 (foam height of 8.9 cm and foam volume of 277.7 cm3), as well as for coke1
(foam height of 8.3 cm and foam volume of 259.9 cm3) and coke3 (foam height of 8.1 cm,
and foam volume of 254.5 cm3).

Using three samples of coke, anthracite, and calcined petroleum coke showed that the
characteristics of the foams are similar.

Meanwhile, using 50 wt.% biochar in the mixture with coke 50 wt.% improved slag
foaming characteristics (height, volume, relative foaming height, and gas fraction) com-
pared to using biochar as a single carbon source for the foaming process. As noted during
the tests, the improvement in these characteristics is due to the fact that 50 wt.% coke
mitigated the drawbacks of using biochar and had a more significant effect on the foaming
process than highly reactive biochar, particles of which burned very fast on the surface of
the slag. Based on the results presented in Table 5, it can be concluded that the mixture of
coke and biochar allows for obtaining foaming characteristics similar to using 100 wt.%
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anthracite and at a level related to other coke samples. This can be explained by the fact
that the change in physicochemical properties within the carbon source mixture, such
as changes in surface area, density, and reactivity, exhibited a noticeable impact on the
foaming mechanism, particularly when compared to individual carbon sources.

There is a statistically significant difference between the values of the height and
the volume of slag foam samples as determined by one-way ANOVA (F value = 20.83,
p = 7.8·10−8; and F value = 20.79, p = 7.9·10−8, respectively).

It is worth noting that the VM from the biochar (41.04 wt.%, daf) could also contribute
to the foaming process, since the VM are released when the biochar is heated and could
contribute to the foaming of the slag. However, the gas from the VM is less efficient than
the gas from the chemical reaction of slag to foam, as previously shown in [12].

In the case of anthracite, this can be explained by the phenomenon of crushing coal
particles in the process of releasing VM, which increased the surface area and, in turn,
increased the rate of CO formation and, consequently, the height and volume of the slag
foam. This phenomenon was also observed in [23]. Of note is that slag foam samples
produced using anthracite as a carbon source show a vaster standard deviation for the
height and volume characteristics of the slag foam compared to other carbon sources
obtained by carbonization.

Notably, the slag is better wetted by a material with a similar chemical composi-
tion [35], and to achieve a good foaming process, it is required that carbon-bearing sources
have relatively low ash content. However, biochar showed the most inferior foaming
characteristics, although it is characterized by the lowest ash content (4.29 wt.%).

Typically, the gas fraction of slag foam is within the range of 0.80–0.95 [3]. The gas
fractions vary between approximately 0.85–0.89, and the relative foaming heights between
∆h/h0 = 5.8–8.4. It has been observed that the lower the value of the gas fraction, the lower
the relative foaming height (Figure 2).
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Figure 2. Relationship between gas fraction values and relative foaming heights, considering all
values obtained after four tests.
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Table 5. Summary results of slag foaming characteristics after four test sets.

Sample
Experimental
Slag Height

Mean hslag, cm
std

Experimental
Slag Volume

Mean Vslag, cm3
Std Foam Height

Mean hfoam, cm std Foam Volume
Mean Vfoam, cm3 Std

Relative Foaming
Height

Mean ∆h/h0

Gas Fraction
Mean Xgas

SF (Anth)

0.95 0.05 30 1.5

8.7 0.8 272.1 23.6 8.2 0.89

SF (CPC) 8.3 0.2 260.5 5.3 7.8 0.88

SF (Coke1) 8.3 0.3 259.9 9.2 7.7 0.89

SF (Coke2) 8.9 0.3 277.7 9.2 8.4 0.89

SF (Coke3) 8.1 0.2 254.5 5.8 7.6 0.88

SF (Bch) 6.5 0.3 201.9 9.0 5.8 0.85

SF (Coke1:Bch
50 wt.%:50 wt.%) 8.7 0.1 271.8 3.9 8.2 0.89

std, standard deviation.
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Figure 3 shows the weight ratio of the carbon source to the slag and the effect on the
foam height ratio. The amount of carbon material for tests was calculated stoichiometrically
based on the amount of fixed carbon for each carbon source. Accordingly, the weight ratio
of biochar to slag is the highest, and the foam height ratio is the lowest.
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However, the result of slag foaming changed with the partial use of biochar 50 wt.%
with coke 50 wt.%, and the values became closer to the use of conventional carbon sources.

Selected examples of slag foams using different carbon sources are shown in
Figure 4a–g. The results presented in Table 5 indicate that the VM and ash composition
of carbon-bearing sources does not significantly contribute to slag foaming. Addition-
ally, for VM, this can be explained by the large gas bubbles that formed, as shown in
Figure 4a–g, which also complicated the process of creating stable foam.

Moreover, the results revealed the importance of the structural characteristics of the
carbon sources used. A relationship was noticed between the XRD structural parameter
crystallite height (Lc) of carbon sources and some slag foaming characteristics (Figure 5a).
An increase in the structural ordering of the carbon material contributed to obtaining better
slag foaming. Furthermore, Figure 5b shows the relationship between fixed carbon and slag
foaming characteristics (slag foam height and slag foam volume), according to which the
foaming process is better at higher values of fixed carbon in carbon sources, which confirms
the conclusion that the higher fixed carbon, the better the slag foaming process [25].

Results of the ANOVA analysis showed the significance of the influence of fixed
carbon content in carbon sources and the slag foaming characteristics of foam height and
foam volume. Additionally, the influence of structural parameter crystallite height on foam
height and foam volume was determined.

Figure 6a,b present the results of the XRD analysis of EAF slag foams obtained using
different carbon sources. XRD analysis allowed for the identification of the following
main crystalline phases at the top of the foams: gehlenite (Ca2(Al(AlSi)O7), wuestite (FeO),
bredigite (Ca1.7Mg0.3SiO4), merwinite (Ca3Mg(SiO4)2), and maghemite (Fe2O3).
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Figure 4. Examples of slag foams using different carbon materials: (a) slag foam obtained using
anthracite; (b) calcined petroleum coke; (c) coke1; (d) biochar; (e) coke2; (f) coke3; and (g) 50 wt.%
coke1: 50 wt.% biochar.
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Figure 5. (a) Relationship between structural parameter crystallite height (Lc) for carbon source and
slag foaming characteristics (foam height and foam volume); (b) relationship between amount of
fixed carbon in carbon sources and slag foaming characteristics (foam height and foam volume).
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Figure 6. XRD patterns of slag foams obtained with different carbon sources: (a) at the top of the
crucible; (b) and at the bottom of the crucible.

A small peak corresponding to the maghemite crystalline phase at the top of the
slag foam can be explained as follows. Despite the fact that the crucible was flashed by
nitrogen during the test, this did not contribute to a complete avoidance of oxidation. The
maghemite crystalline phase was not detected for the lower part of the slag.

The slag foam at the bottom of the crucible indicated the following main crys-
talline phases: gehlenite, wuestite, merwinite, and metallic iron (Fe). Metallic iron
was detected only in the samples from the bottom of the crucible. It should be noted
that using non-conventional carbon sources did not significantly affect the crystalline
phases compared to the presence of crystalline phases in slag foams obtained using
conventional carbon sources.

In the case of slag foam, which was used as a carbon source, a mixture of coke1
and biochar XRD analysis confirmed the following crystalline phases at the top of the
foams: gehlenite, wuestite, merwinite, and metallic iron (similar to other studied samples).
The difference from the previous samples is the presence of such phases as magnesium
iron oxide (Fe2MgO4) and magnetite (Mg0.4Fe2.96O4). The slag foam at the bottom of the
crucible contains gehlenite, wuestite, merwinite, magnesium iron oxide, and metallic iron.
For this sample, no difference was observed between the crystalline phases for the top and
bottom of the crucible.

The presence of magnetite in the top part of the slag foam, as in previous samples
of slag foam where maghemite was found, is explained by the higher valence iron oxide,
probably located in the slag foam region in contact with the air [47].

Due to the reduction in FeO in the slag during experiments, the slag foams’ chemical
composition was analyzed and is presented in Tables 6 and 7. The use of conventional or
non-conventional carbon sources did not significantly affect the chemical composition
of the slag selected at the top of the crucible after foaming. The range composition of
the slag foams is 13.97–20.60 wt.% Fetot; 14.09–18.90 wt.% SiO2; 29.72–33.03 wt.% CaO;
12.45–18.03 wt.% Al2O3; 5.51–9.80 wt.% MgO.

It should be noted that the high content of Al2O3 in the slag foam samples for both
the top and bottom of the crucible can be explained by the presence of impurities from the
alumina crucible.

Table 7 shows the chemical composition of the slag at the bottom of the crucible
after foaming. The range composition of the slag foams is 17.69–34.10 wt.% Fetot;
12.13–17.68 wt.% SiO2; 23.18–31.37 wt.% CaO; 14.16–17.00 wt.% Al2O3; 5.15–10.66 wt.% MgO.
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Table 6. Chemical composition of the slag at the top of the crucible after foaming, wt.%.

Sample Fetot Fe2+ SiO2 CaO Al2O3 MgO B2

SF (Anth) 17.66 15.14 16.73 32.98 17.26 5.51 1.9

SF (CPC) 16.60 16.32 17.67 31.48 18.03 7.21 1.8

SF (Coke1) 16.71 16.37 16.88 30.79 16.95 7.13 1.8

SF (Coke2) 15.49 15.39 18.89 32.96 17.69 7.51 1.7

SF (Coke3) 19.21 18.99 17.05 29.72 17.55 6.90 1.7

SF (Bch) 13.97 11.57 18.90 33.03 17.49 6.88 1.7

SF (Coke1:Bch) 20.60 19.60 14.09 30.00 12.45 9.80 2.1

Table 7. Chemical composition of the slag at the bottom of the crucible after foaming, wt.%.

Sample Fetot Fe2+ SiO2 CaO Al2O3 MgO B2

SF (Anth) 23.72 23.67 15.77 28.89 15.10 6.97 1.8

SF (CPC) 18.92 16.06 15.69 30.90 15.96 6.73 1.9

SF (Coke1) 18.57 16.01 16.20 31.20 17.00 6.44 1.9

SF (Coke2) 17.69 17.14 17.68 31.37 16.99 7.39 1.8

SF (Coke3) 18.76 16.26 15.93 29.89 16.56 6.50 1.9

SF (Bch) 34.10 31.72 12.13 23.18 14.16 5.15 1.9

SF (Coke1:Bch) 21.12 20.00 12.36 28.07 14.64 10.66 2.3

The content of Si, Ca, and Mg oxides does not differ significantly between the samples
from the top and bottom of the crucible and between different carbon sources. The reason
for the decrease in the MgO content in all samples can be explained by the activity of MgO
with some other slag components [48,49].

The decrease in the amount of Fe2+ after the foaming of the slag indicates a reduction
reaction. Notably, high iron content was observed only for the slag foam SF (Bch) sample
taken from the bottom of the crucible. As evidenced by XRD analysis (Figure 6b), metallic
iron was detected at the bottom of each slag foam sample. Thus, the increase in iron content
for SF (Bch) can be explained by the influence of oxidation of the slag foams from Fe to
FeO during tests. When biochar was used, additional gas in the form of VM was released,
contributing to oxidation and eventually decreasing foaming. This is confirmed by the slag
foam height and volume results when using biochar that are given in Table 5.

Slag foaming characteristics were measured and evaluated in a comparison of
changes in Fe (total) content in the slag after tests both for the top and bottom sides of
crucibles, and the results are summarized and plotted in Figure 7a,b. Notably, when
using biochar, the Fe (total) content is the lowest for the upper part of the crucibles, as
are the slag foaming values. At the same time, the Fe (total) content is the highest in the
lower part of the crucibles.

The relative amount of FeO is presented in Table 8. The decrease in FeO content in the
slag foam samples both for the top and bottom of the crucible is irregular and indicates
the presence of a reduction in FeO. Considering the results presented in Tables 5 and 8, it
becomes evident that the incorporation of a coke1 and biochar mixture not only positively
influenced the foaming process, but this also showed a more significant effect on the
reduction in FeO compared to using individual carbon sources.

Figure 8a shows the SEM image of the interface between the foaming slag and the
crucible. The EDS layered image (Figure 8b) shows that between the foamed slag and the
crucible, there is a layer mainly composed of Mg, Al, Ca, Fe, and O. This phenomenon
was observed for many samples under study, unrelated to the type of carbon source in
the experiments.
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Figure 7. (a) Content of Fe (total) and slag foaming characteristics (height and volume) at the top of
the crucibles; (b) content of Fe (total) and slag foaming characteristics (height and volume) at the
bottom of the crucibles.

Table 8. Relative amount of FeO of the slag foam collected at the top and bottom of the crucible.

Sample Relative amount ∆FeOtop, wt.% Relative amount ∆FeObottom, wt.%

SF (Anth) 45.9 15.5

SF (CPC) 41.7 42.6

SF (Coke1) 41.5 42.8

SF (Coke2) 45.0 38.8

SF (Coke3) 32.2 41.9

SF (Bch) 58.7 n.a.

SF (Coke1:Bch) 30.0 28.6
n.a., not available.
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Mg, and Fe, as shown in Figure 9.
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Figure 9. Energy-dispersive spectroscopy (EDS) mapping from scanning electron microscopy of
elements of slag foam, layer between slag foam, and wall of crucible and crucible.

XRD analysis (Figure 10) of the slag foam and the layer between the slag foam and
the wall of crucible identified the presence of the following phases: gehlenite, merwinite,
corundum (Al2O3), and wuestite, as well as two spinels: magnesium aluminate (MgAl2O4)
and magnesium iron oxide (Fe2MgO4). The presence of gehlenite, merwinite, and wuestite
can be attributed to the slag foam, as XRD previously confirmed these phases (Figure 6a,b).
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Figure 10. XRD analysis of slag foam, layer between slag foam and wall of crucible, and crucible.
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The presence of peaks characterizing corundum is substantiated using alumina
crucibles for this study. Based on the results of SEM/EDS, it can be assumed that the
presence of phases such as gehlenite and two spinels refers to the layer between the slag
foam and the crucible and can be explained by the activity of FeO and MgO, as well
as by MgO and Al2O3 in liquid slag [50]. As reported in [19], slag with low basicity B3
and which has high amounts of FeO can be saturated by the spinel phases, including
MgAl2O4 in its composition.

For all studied samples (Figure 11a–g), the Mossbauer spectra represent a doublet
corresponding to the paramagnetic state of metallic iron Fe57 nuclei. The absence of
sextuplet lines in the samples indicates that no magnetically ordered structures are formed
with the participation of iron. The present paramagnetic component corresponds to iron
nuclei in the valence state of Fe2+.

Analysis of Mossbauer spectra revealed that two doublet lines in all cases approx-
imate the paramagnetic component. The obtained values of the isomer shift (IS) and
quadrupole splitting (QS) for the doublet components are in agreement with the param-
eters for crystalline wuestite FeO [51]. Both doublet components have close values of
IS = 1.02 ± 0.05 mms−1 and different values of QS (Table 9).

The value of QS is determined by the symmetry of the close surroundings of the Fe57

nuclei and depends on the magnitude of the elastic deformation of the lattice; namely,
the greater the deformation of the lattice, the higher the value of the QS. The presence of
two doublet components with different quadrupole splitting values in the spectrum can
be explained by the difference in the near environment of the Fe57 nuclei, which are in
crystalline non-equivalent positions.

The non-equivalence of crystal positions of ferrous iron nuclei in the FeO structure
can be related to the structural diversity of positions in the volume of the iron oxide
particle and its surface layer. A higher QS value can reflect a more disordered nuclear en-
vironment of Fe57 than nuclei in the bulk of the particle, for which the near environment
is more ordered [52].

In addition, the difference in the QS values of both components is possible due to
different mechanisms of dense packing of anionic substructures, in particular, by packing
octahedra (Fe(II)O6) connected to each other through faces or vertices [53]. These approaches
correspond to the cubic and rhombohedral phases of FeO that were identified by XRD
analysis (Figure 6a,b) and the presence of other reflexes, respectively, along with the main
maxima for the rhombohedral phase [54].

Mossbauer spectroscopy allows for the detection of differences in Fe57 nuclei’s po-
sitions for the cubic and rhombohedral phases by differentiating IS and QS of different
doublet components. Therefore, the presence of both spectral doublets can be interpreted
by different octahedron packings (Fe(II)O6) in the crystal structure of FeO of the studied
slag foam samples.

Figure 12 shows the values of the quadrupole splitting of both doublets for each of
the samples. A clear tendency of interdependence between the quadrupole splitting of
both doublet components is observed: a decrease in the QS1 first doublet component of the
sample is characterized by an increase in the QS2 second doublet component, respectively.
Moreover, the value of QS1 represents a sequential order for all slag foam samples: Coke3 >
Coke1:Bch > Anth > Bch > Coke2 > Coke1 > CPC. Similarly, the same consecutive order of
values can be shown for QS2, which is increasing for slag foam samples: Coke3 < Coke1:Bch
< Anth < Bch < Coke2 < Coke1 < CPC. Summarizing the dependence between QS1 and
QS2, it can be concluded that the increase in the disorder of the environment of Fe57 nuclei
in one of the non-equivalent positions leads to an ordering of the surroundings of the Fe57

nuclei in another position. Thus, there is a connection between the near-surface region and
the particle volume: an increase in the ordering of the surface region corresponds to more
ordering of the particle volume.
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Figure 11. Mossbauer spectra of the slag foams using different carbon sources: (a) anthracite;
(b) calcined petroleum coke (CPC); (c) coke1; (d) coke2; (e) coke3; and (f) biochar; and (g) 50 wt.%
coke1:50 wt.% biochar.
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Table 9. Mossbauer data on slag foam obtained using different carbon sources.

Sample Component IS, mm·s−1 QS, mm·s−1 H, Tesla Relative
intensity (%) G, mm·s−1 Interpretation

SF (Anth)
Doublet1

(Fe2+) 0.99 0.87 0 76 0.57 Fe(II)O6

Doublet2
(Fe2+) 1.07 0.71 0 24 0.25 Fe(II)O6

SF (CPC)
Doublet1

(Fe2+) 1.02 0.77 0 94 0.46 Fe(II)O6

Doublet2
(Fe2+) 1.22 1.02 0 6 0.17 Fe(II)O6

SF (Coke1)
Doublet1

(Fe2+) 1.01 0.77 0 84 0.47 Fe(II)O6

Doublet2
(Fe2+) 1.17 0.81 0 16 0.24 Fe(II)O6

SF (Coke2)
Doublet1

(Fe2+) 0.95 0.80 0 71 0.49 Fe(II)O6

Doublet2
(Fe2+) 1.12 0.76 0 29 0.29 Fe(II)O6

SF (Coke3)
Doublet1

(Fe2+) 1.02 0.91 0 74 0.46 Fe(II)O6

Doublet2
(Fe2+) 1.06 0.57 0 26 0.25 Fe(II)O6

SF (Bch)
Doublet1

(Fe2+) 1.00 0.81 0 89 0.42 Fe(II)O6

Doublet2
(Fe2+) 1.15 0.74 0 11 0.17 Fe(II)O6

SF
(Coke1:Bch)

Doublet1
(Fe2+) 1.03 0.89 0 78 0.49 Fe(II)O6

Doublet2
(Fe2+) 1.06 0.57 0 22 0.24 Fe(II)O6

IS, isomer shift relative to α-Fe; QS, quadrupole splitting; H, hyperfine magnetic field; G, ground state.
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Figure 12. Quadrupole splitting of both doublets for each of the slag foam samples.
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Figure 13 shows the contribution of the intensities of each doublet component to the
total integrated intensity of the Mossbauer spectra of the samples.
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Figure 13. Integral intensity of each of the doublet components of the slag foam samples.

For all samples, the integrated intensity of the first doublet line is dominant and
varies in the range of 72–94%. For this component, a higher value is observed in most
samples of QS1, reflecting a more significant disorder in the environment around these
Fe57 nuclei. Considering that the contribution of the doublet line intensity is proportional
to the number of Fe57 nuclei and resonance absorption γ-quanta on which it is formed,
it can be interpreted that exactly the first doublet line corresponds to iron nuclei located
in the near-surface region of iron oxide particles. Moreover, they are characterized by
rhombohedral packaging of packages (Fe(II)O6) with the possibility of including defects in
the form of vacancies or implementation atoms. The second doublet line corresponds to
Fe57 nuclei in the volume of iron oxide particles with cubic packing. Exceptions are slag
foam (Coke1 and CPC) samples that are characterized by a more considerable QS value for
the second doublet line.

Moreover, the contribution of the intensity of the second doublet line to the total
integrated intensity is small for both samples and does not exceed 16%. The reason for
this can be related to the low content of the wuestite phase and the small number of
oxygen positions in these samples (Table 10). In this case, due to a lack of oxygen, the
non-equivalent positions of the iron nuclei are not clearly expressed in the sense of forming
a clear boundary near the surface area/volume of the particle. The formation of an oxide
material that is homogeneous in terms of iron positions takes place, which includes regions
with a more defective (disordered) environment, where there are inclusion regions with a
more asymmetric defective environment of iron nuclei and, accordingly, a higher QS value.

Values of IS isomeric shifts of the doublet components of the Mossbauer spectra
analyzed relative to the metallic α-Fe determine the chemical environment of Fe57 nuclei
and their valence state. As mentioned, this made detecting the presence of Fe2+ ions
and formation possible due to the synthesis of FeO oxide phases. The presence of two
doublet lines with averaged values of isomeric shifts IS1 = 1.02 ± 0.05 mms−1 and
IS2 = 1.11 ± 0.11 mms−1 indicates a partially different, although insignificant, chemical
environment of the Fe57 nuclei, which arises as a result of their different surroundings
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in the volume of particles and their surface region. The dynamics of the change in the
isomeric shift for each sample (Figure 14) indicate that for the case of the first doublet
component, a relatively constant value of IS1 is observed, which, according to the
interpretation, corresponds to Fe57 iron nuclei in the volume of iron oxide particles.

Table 10. SEM/EDS analysis results of chemical composition for slag foam obtained using different
carbon sources, wt.%.

Sample O Mg Al Si Ca Fe

SF (Anth) 35.98 4.11 11.67 8.70 21.85 17.70

SF (CPC) 36.30 4.42 8.37 10.57 23.76 16.58

SF (Coke1) 38.80 4.76 10.94 10.71 23.57 11.22

SF (Coke2) 38.63 3.82 8.79 10.32 23.06 15.39

SF (Coke3) 37.38 4.54 9.73 10.10 23.96 14.29

SF (Bch) 37.21 3.17 10.26 9.93 24.12 15.31

SF (Coke1:Bch) 38.18 4.63 9.48 10.77 25.52 11.42
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Figure 14. Magnitudes of isomeric shifts of doublet components of Mossbauer spectra.

The value of the isomeric shifts of the second doublet component IS2 for the samples
forms a series of values that increase linearly for slag foam samples: Coke3 ≤ Coke1:Bch
< Anth < Coke2 < Coke1 < CPC. The same trend was observed for the QS2 quadrupole
moments, associated with increased disordering at the surface regions of iron oxide particles.
Considering the values of the isomeric shifts, it can be assumed that an increase in disorder
in the environment of Fe57 surface nuclei is associated with a growth in defectiveness of the
structure. This causes a change in the chemical environment, particularly a possible change
or delocalization of electrons, which in turn causes a difference in the covalence of chemical
bonds. The exception is the sample SF (Bch), for which a lower value of the isomer shift
IS2 = 1.00 mms−1 was noted. For this sample, the maximum value of the integrated intensity
of the second component of the Mossbauer spectrum (89%) was observed, corresponding
to the defective surface area of iron oxide particles.
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Table 10 depicts the SEM/EDS analysis results of the chemical composition of slag
foams. The elements Mg, Al, Si, Ca, and Fe were detected, previously determined by
chemical analysis.

The investigated slag foam samples were characterized by scanning electron mi-
croscopy (SEM) and energy-dispersive spectroscopy (EDS) mapping from scanning elec-
tron microscopy of elements. The study by EDS mapping of the spatial distribution of
the elements Ca, C, Al, O, Si, Fe, and Mg (Figures 15–21) clearly establishes correlations
between elements, which provides information on the minerals that comprise the slag
foams and confirmed the presence of all the elements identified by XRD (Figure 6a,b) and
chemical analysis (Tables 6 and 7).
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The results of the slag foams’ analysis by SEM/EDS analysis and EDS mapping in
general show no adverse effect detectable on the chemical content of the slag foams when
using biochar fully or partially.

4. Conclusions

The effect of six carbon sources on the foaming process was studied, of which three
were conventional carbon-bearing sources: anthracite, calcined petroleum coke, and three
samples of high-temperature cokes; and two were non-conventional carbon-bearing sources:
biochar and a mixture of 50 wt.% biochar and 50 wt.% coke. Based on the results, the
following conclusions can be drawn:

− Biochar showed the most inferior foaming characteristics due to the following. The
low wettability of biochar by liquid slag prevents the reaction of carbon with FeO. The
high reactivity of the biochar meant that FeO did not have time to react completely,
and a smaller amount of CO was released, as evidenced by the value of the gas fraction
(0.85). The low density meant that when adding biochar particles, they covered only
the surface of slag foam and burned out on the slag foam surface very fast.

− Using the mixture of 50 wt.% coke and 50 wt.% biochar, the slag foaming process was
improved and showed slag foaming characteristics similar to results obtained using
conventional carbon sources. Based on the results obtained, it can be concluded that
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biochar as a single carbon source cannot be recommended for use in slag foaming;
however, when mixed with a conventional source, namely, coke, it showed promising
results in EAF practice. Utilizing a biochar and coke1 mixture led to enhanced foaming
compared to using biochar as the individual carbon source. Additionally, the observed
foaming results obtained from the biochar and coke1 mixture were at a similar level
as those achieved using other coke samples.

− A relationship was noticed between the XRD structural parameter crystallite height
(Lc) of carbon sources and slag foaming characteristics (height and volume of slag
foam). An increase in the structural ordering of the carbon material contributed to
obtaining better slag foaming.

− The chemical composition of all slag foam samples showed no significant influence
from the type of carbon source used. The decrease in the amount of Fe2+ after the
foaming of the slag indicates a reduction reaction. The difference is between the top
and bottom of the slag foam, as revealed by XRD. A maghemite (Fe2O3) and magnetite
(Mg0.4Fe2.96O4) crystalline phase in the top part of the slag foams is explained by
the higher-valence iron oxide, probably located in the slag foam region in contact
with air. At the same time, metallic iron was found at the bottom of all samples.
A difference in the slag foam (mixture of coke and biochar) was found in the pres-
ence of such crystalline phases as magnesium iron oxide (Fe2MgO4) and magnetite
(Mg0.4Fe2.96O4).

− Based on SEM/EDS, it was noticed in many samples that there was a layer between the
slag foam and the crucible wall, irrespective of the type of carbon source used. XRD
analysis identified the following phases: gehlenite, merwinite, corundum (Al2O3), and
wuestite, as well as two spinels: magnesium aluminate (MgAl2O4) and magnesium
iron oxide (Fe2MgO4). It was assumed that the gehlenite and the two spinels could be
attributed to the composition of the layer based on SEM/EDS.

− Mossbauer spectroscopy made it possible to obtain values of the isomer shift (IS) and
quadrupole splitting (QS) for the doublet components that are in agreement with
the parameters for crystalline wuestite (FeO). Through the analysis of interatomic
magnetic interactions and the non-equivalent environment surrounding the nuclei, it
was found that an increase in the disordering of nuclei in surface positions leads to a
higher degree of order within the core of the particles. Additionally, a change in the
chemical environment of the iron nuclei was observed, which was attributed to the
defects present in the surface regions.

The findings of this study provide insight into the different impacts of various carbon
sources, both conventional and non-conventional, on the foaming process. A noteworthy
practical implication derived from the results is the viability of incorporating 50 wt.%
biochar, a renewable carbon source, in combination with conventional carbon sources such
as coke.
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