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Abstract: In underground industries, practitioners frequently employ argots to communicate dis-
creetly and evade surveillance by investigative agencies. Proposing an innovative approach using
word vectors and large language models, we aim to decipher and understand the myriad of argots in
these industries, providing crucial technical support for law enforcement to detect and combat illicit
activities. Specifically, positional differences in semantic space distinguish argots, and pre-trained
language models’ corpora are crucial for interpreting them. Expanding on these concepts, the article
assesses the semantic coherence of word vectors in the semantic space based on the concept of
information entropy. Simultaneously, we devised a labeled argot dataset, MNGG, and developed
an argot recognition framework named CSRMECT, along with an argot interpretation framework
called LLMResolve. These frameworks leverage the MECT model, the large language model, prompt
engineering, and the DBSCAN clustering algorithm. Experimental results demonstrate that the
CSRMECT framework outperforms the current optimal model by 10% in terms of the F1 value for
argot recognition on the MNGG dataset, while the LLMResolve framework achieves a 4% higher ac-
curacy in interpretation compared to the current optimal model.The related experiments undertaken
also indicate a potential correlation between vector information entropy and model performance.

Keywords: argot recognition and interpretation; information entropy; semantic space; MECT model;
transformer architecture; large language model; prompt engineering; DBSCAN

1. Introduction

The 51st Statistical Report on the Development of China’s Internet [1] shows that, in
2022, a total of 845 million netizens participated in the purchase and sale of compliant
items on online platforms, accounting for 79.2% of the total number of netizens. However,
including the dark web and underground forums, illicit transactions persist, posing sig-
nificant challenges to cyber and social security stability in cyberspace [2]. According to
statistics, in its 2.5 years online, the dark web Tor site “Silk Road” amassed 150,000 users
and transactions totaling $1.2 billion [3]. The online trading products of the dark web often
include illegal and irregular items, such as drugs, electronic fraud materials, hacking tools,
and smuggled goods [4]. To avoid scrutiny, industry practitioners often conceal sensitive
content within argots mixed with normal content, enhancing transaction concealment.
Figure 1, illustrates some hidden words and their explanations in the field of drug trading.
In the first example, “宵夜” (midnight snack) refers to “毒品” (drugs), and “猪肉” (pork)
refers to “冰毒” (methamphetamine).
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Figure 1. Examples of usage of argots.

The research on argot recognition and interpretation in combat units has a long history.
Early law enforcement agencies used manual construction of an argot knowledge base to
interpret known argots. For example, the US Drug Enforcement Agency (EDA) intelligence
department developed a set of drug codeword libraries to decipher the collected evidence
and data containing codewords [5]. Ouyang et al. collected and summarized relevant drug
code libraries based on the language characteristics and ethnic customs of the Guangxi
region [6]. Ouyang et al. also used railway property infringement criminals as their target
for obtaining secret language, and summarized a set of railway property infringement
secret language libraries [7]. After summarizing a substantial number of hidden language
samples, previous research findings, and the results of our preliminary experiments, we
have identified the following characteristics of Chinese argots:

1. Chinese argots and the words they refer to (referred to as pronouns) are normal
vocabulary, rather than special characters similar to Morse codes [8].

2. There are inherent connections between Chinese argots and their pronouns, includ-
ing their shape, pronunciation, and meaning, which are relatively loose and often
unknown to outsiders [9].

3. Most pronouns are nouns or verbs, but the part of speech of Chinese argots and
pronouns may not be the same, and verbs and adjectives are often used to refer to
nouns or verbs.

4. If the lexicon of argot words is concealed, and multiple alternative words are provided
for that position, the concealment capability of argot words and the entropy of the set
of alternative words for filling in that position are positively correlated.

As the aforementioned algorithm only recognizes a partial set of argot features, the
various algorithms mentioned earlier are now inadequate for the current scenario of argot
recognition and interpretation, particularly in the task of argot recognition. Therefore, this
paper integrates the concept of semantic space, drawing inspiration from the manifold
assumption in deep learning. Additionally, it combines the notion of vector information
entropy to assess the rationality of word vectors within the semantic space [10].

Specifically, this paper makes the following contributions in the domain of argot
recognition and interpretation:
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1. We constructed a Chinese long text corpus MNGG dataset using an open-source cant
dataset [8] to support research on Chinese argots recognition.

2. A Chinese argots recognition model CSRMECT was proposed based on the MNGG
dataset, MECT4CNER, and DBSCAN clustering algorithms

3. Based on the MNGG dataset, the large language model, and prompt engineering, a
Chinese argot interpretation framework LLMResolve was constructed to carry out
Chinese argot interpretation work.

4. We built a framework for Chinese argot detection, combined with CSRMECT and
LLMResolve, to construct a comprehensive cold start Chinese argot recognition and
interpretation workflow covering all fields.

2. Related Work

In the early stage of NLP research in academia, the field most related to Chinese argot
recognition was called Chinese morphs decoding and resolving. This field focuses on
researching the bypass mechanism of sensitive word detection algorithms. Specifically, in
order to avoid detection by detection algorithms, users often replace a sensitive word with
another word. The replaced word is generally called a reference, and the word used to
replace the reference word is called a morph [11].

In the field of Chinese morph interpretation, Huang et al. [12] conducted groundbreak-
ing research, first proposed the concept of morphs, and constructed a morph dataset through
Weibo. They also designed various algorithms to interpret morphs. Zhang et al. [13] used
Huang et al.’s variant definition algorithm for morph interpretation. Then Zhang et al. [14]
constructed a deep neural network-based interpretation algorithm and first proposed the
concept of resolve candidate words. Sha et al. [15] proposed a framework based on word
embedding for morph resolution. You et al. [16] proposed a variant interpretation method
based on an autoencoder combined with contextual information, and the model perfor-
mance exceeded that for all the aforementioned indicators for morph interpretation. In the
field of Chinese morph extraction, Zhang et al. [13] designed various morph generation
algorithms by analyzing the construction logic of morphs. They attempted to use these
algorithms to generate morphs and used SVM-based detection algorithms for morph ex-
traction, achieving good detection bypass effects. Afterwards, Zhang et al. [14] proposed a
morph recognition algorithm based on SVM- and graph-based semi-supervised learning
approaches. The morph recognition algorithm achieved an F1 value of 83% on the Weibo
dataset designed by Huang et al. [12].

However, there are significant differences between the fields of Chinese argot recog-
nition and interpretation, as well as Chinese morph recognition and interpretation. From
the perspective of the research subject, pronouns in the field of variant recognition only
include sensitive nouns, such as public figures’ names, well-known place names, and
well-known event names. In contrast, the scope of pronouns in argot recognition is broader.
Therefore, compared to variant recognition tasks, both argot recognition and interpretation
tasks become more complex and challenging. Based on these differences, Xu et al. [8] con-
structed a dataset of Chinese cant word-pronoun pairs for cant recognition tasks, providing
evaluation support for future argot recognition tasks.

Compared with the field of Chinese argot recognition, there has been relatively more
progress in the field of English argot recognition. Due to the dynamic and rapidly evolving
nature of cybercrime, argot vocabulary undergoes continuous changes, with additions and
deletions occurring. Additionally, each criminal group may establish its own industry-
specific argot (e.g., drug traffickers) [17]. Consequently, there has been a shift towards
machine learning methods for argot recognition, gradually replacing traditional manual
construction of argot knowledge bases. In 2015, Dhuliawala et al. [18] proposed an English
slang dictionary called SlangNet, aiming to complement WordNet for use in natural lan-
guage processing (NLP) applications. The research team also evaluated the resource using
the Lesk algorithm and the Extended Lesk algorithm. Furthermore, this work showed
how to leverage online crowdsourcing resources to build high-quality language resources.
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In 2016, Wu et al. [19] constructed the slang dataset SlangSD for sentiment analysis of
social media. Greg Durrett et al. [20] focused on the task of product keyword identifica-
tion in online cybercrime forums and studied the effects of different research methods on
product keyword identification through custom datasets. Later in 2018, Yuan et al. [5]
proposed an argot recognition framework, Cantreader, incorporating improved word2vec
and Hypernym identification, achieving commendable results in identifying English argot
words across various forums on the dark web. In the 2020 study, Wilson et al. [21] used the
Urban Dictionary dataset to train a set of word vectors and evaluated them in multiple
slang-related tasks. The set of word vectors achieved significant improvements in specific
tasks. Aravinda et al. [22], integrating language models and knowledge graphs, introduced
a framework for detecting English slang in social media in 2022. Their approach demon-
strated good performance in downstream experimental tasks, such as emotion detection,
hate speech detection, and crime detection.

In summary, the current state of automated argot recognition faces several challenges:

1. Lack of research and datasets specifically focused on argot recognition in the Chinese
language domain.

2. Existing studies on argot recognition are often domain-specific, lacking the development
of a universally applicable framework for argot recognition across diverse domains.

3. Most existing models rely on extensive prior data for training, hindering the generaliza-
tion and cold start capabilities of argot recognition algorithms in unfamiliar domains.

Inspired by the manifold assumption [23], this paper posits that the commendable
performance of numerous deep learning models based on word embeddings indicates that
vectors obtained through word embeddings carry specific semantic meanings within their
high-dimensional space. The lower the entropy of the set of vectors obtained through word
embeddings, the more distinct the semantic meanings conveyed by the word embeddings,
indicating a more effective performance of word embeddings.

Therefore, based on this assumption, to address the aforementioned issues, this pa-
per has preliminarily established the Chinese argot dataset MNGG. Subsequently, the
CSRMECT argot recognition model and the LLMResolve argot interpretation framework
are proposed. Both the model and the framework are designed with a cold start approach,
leveraging extensive knowledge embedded in pretrained texts to achieve generalization in
unfamiliar domains, eliminating the need for domain-specific datasets for training.

3. Chinese Argot Recognition Based on CSRMECT Model
3.1. Entrophy Based Semantic Space

By combining the concept of information entropy from information theory with the
semantic meanings of word vectors in word embeddings, this paper proposes a semantic
space based on information entropy. This space is utilized to assess the semantic coherence
and richness of word vectors.

3.1.1. Vector Embedding and Semantic Space

In a series of papers around the year 2000, Joshua Bengio and others [24] employed
neural probabilistic language models to enable machines to “learn a distributed repre-
sentation for words”, thereby achieving the goal of dimensionality reduction in the word
space. Subsequently, over the following decades, various well-known word-embedding
algorithms emerged, including Word2Vec [25], GloVe [26], and others.

The essence of word embeddings lies in reducing words with rich semantics to vectors
of specific dimensions, where each dimension carries a specific meaning, as shown in
Figure 2.



Entropy 2024, 26, 321 5 of 23

Figure 2. Word embedding example.

3.1.2. Word Vector Semantic Rationality Index Based on Information Entropy

In the task of argot recognition, each sentence is treated as a separate corpus for
word embedding. Consequently, a single word may have multiple word vectors. This
paper posits that when a vocabulary term is used as an argot, its spatial position in the
semantic space should exhibit significant differences compared to its position when used in
regular contexts alongside other non-argot words. Moreover, vectors generated by more ad-
vanced word-embedding algorithms should exhibit more pronounced spatial distribution
characteristics, with vectors of words used in similar contexts converging together.

For example, the Chinese word “打击” has two meanings in English, namely “hit”
and “catastrophe”. In an ideal word-embedding vector result, as shown on the left side
of Figure 3, the vectors for these meanings should be distinct. By contrast, an undesirable
result is depicted on the right side, where the vectors fail to adequately differentiate between
the meanings.

Figure 3. Comparison of word-embedding effects.

It is evident that the higher the entropy of the set of word vectors corresponding
to multiple usages of a word, the poorer the embedding performance of the current
word-embedding algorithm for that specific usage of the word. To measure the entropy
of a set of word vectors, we utilize the following formula based on the definition of
information entropy:

1. Retrieve the set of word vectors Si corresponding to the i-th usage from the word-
embedding result Eword of the word word.

2. Let C =
∑n

j=1 Si
n denote the core vector.

3. Calculate the distance di = ∥Vi − C∥ for each vector Vi in Si to the core vector.
4. Assuming Pi is the probability for the i-th vector, use the normalized exponential of

the distance as the probability: Pi =
exp(−βdi)

∑j exp(−βdj)
, where β is a parameter.

5. Calculate the entropy of the vector set Si as Hi = −∑i Pi log(Pi).
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6. The vector information entropy for the word word in its word embedding is given by

Entropy(word) = ∑n
i=1 Hi

n .

3.2. Enhanced MECT Model

The MECT model, proposed by Wu et al., is a cross-transformer based on multi-
modal embeddings, applied in Chinese named entity recognition tasks [27]. As illustrated
in Figure 4, the MECT model consists primarily of multi-modal embedding layers and
cross-transformer layers. Previous studies have demonstrated the model’s commendable
accuracy in identifying Chinese entities, efficient operational speed, and notable inter-
pretability [28,29]. We will employ the MECT model for the word vector embedding tasks
described above.

Figure 4. MECT workflow.

3.2.1. Multivariate Data Embedding Layer

This layer comprises two main components: lattice embedding and Chinese radical-
level embedding. Lattice embedding is a crucial element of the FLAT model [30], encom-
passing semantic and positional boundary information in the lattice data, comprehensively
considering contextual features in sentences. Taking the sentence “Nanjing Yangtze River
Bridge” as an example, the input situation for lattice embedding is illustrated in Figure 5,
containing the head and tail positions of characters and words.

Figure 5. MECT Lattice Embedding.

Chinese characters are based on ideograms, representing their meanings through the
shapes of objects. For instance, characters with “艹” or “木” as radical components often
represent plants and can effectively recognize raw materials used in the production of
drugs, such as “cannabis” and “ephedra”. Characters with “月” as a radical component
often represent body parts or organs and can adeptly identify euphemisms in the adult
content domain. There are various methods for decomposing Chinese characters, including
radical decomposition (CR), head-tail decomposition (HT), and structural decomposition
(SC), as illustrated in Table 1.
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Table 1. Character structure decomposition table.

Chinese Character CR HT SC

麻(numb) 广(wide) 广林(forest) 广木木(wood)
蠕(worms) 虫(insect) 虫需(need) 虫雨(rain)而(but)
挂(hang) 扌(hand) 扌圭(Gui) 扌土(earth)土
唱(sing) 口(mouth) 口昌(thriving) 口曰(speak)曰

To extract radical-level features of Chinese characters, an improved CNN network is
constructed in this paper. CNN was initially proposed in the LeNet-5 model [31] and was
applied in AlexNet in 2012 [32], achieving significant breakthroughs in the field of image
recognition. Therefore, this paper selects the information-rich structural composition (SC)
as the radical-level feature of Chinese characters and utilizes CNN to extract features of
the characters. The specific process of embedding Chinese characters at the radical level is
as follows:

1. Decompose Chinese characters into radicals (SC) and input them into a CNN network.
2. Embed radicals at the radical level for convolutional operations in the convolutional layer.
3. Utilize max-pooling and fully connected layers to obtain the final embedding vector

for Chinese character radicals.

3.2.2. Cross-Transformer Layer

The MECT model introduces a cross-transformer network [27], as illustrated in
Figure 6. This network employs two transformer encoders, which independently pro-
cess information from lattice embeddings and Chinese radical embeddings. It achieves the
enrichment of Chinese character semantic information by incorporating contextual and
lexical information.

Figure 6. Cross-transformer layer.



Entropy 2024, 26, 321 8 of 23

The inputs QL(QR), KL(KR) , and VL(VR) in the cross-transformer network are
obtained through linear transformations using lattice embeddings or Chinese radical
embeddings, as defined in Equation (1).QL(R),i

KL(R),i
VL(R),i

T

= EL(R),i ·

WL(R),Q
E

WL(R),V

T

(1)

In the context, EL,i and ER,i represent the i-th lattice embedding vector and Chinese
radical embedding vector, respectively. Here, E denotes the unit vector, and W represents
learnable parameters. In the cross-transformer network, the attention calculation formula
is given by:

Att(AR, VL) = So f tmax(AR)VL (2)

Att(AL, VR) = So f tmax(AL)VR (3)

AL(R),ij = ϵ(u)KR(L),j + ϵ(v)R∗
L(R),ij (4)

Wherein, the lower-left corner’s L denotes the values from the lattice embedding side,
and R represents the values from the Chinese radical embedding side. The parameters u
and v in Formula (4) represent learnable attention offset parameters. Here, R∗

ij = Rij · W,

where W is a learnable parameter, and ϵ(x) =
(

QL(R),i + xL(R)

)T
. The calculation of Rij is

as follows:

Rij = ReLU
(

Wr

(
phi−hj

⊕
pti−tj

))
(5)

p(2k)
span = sin

(
span

10000
2k

dmodel

)
(6)

p(2k+1)
span = cos

(
span

10000
2k

dmodel

)
(7)

Among these, Rij represents the computation of the relative distance between positions
i and j, where Wr denotes a learnable parameter, and hi and ti, respectively, signify the
head and tail positions of the Chinese character at position i. The symbol

⊕
signifies a

concatenation operation. In Formulas (6) and (7), the term span corresponds to hi − hj or
ti − tj as defined in [33].

3.2.3. CSRMECT Model

To integrate word vectors considering both the context and Chinese character struc-
ture, this paper proposes the CSRMECT model, building upon the MECT model with
modifications. Specifically, we enhance the MECT model by removing the final CRF layer
and directing the output character vectors from the linear layer into the vector aggregator
module for word vector synthesis. The final output is a context-encoded word vector, as
illustrated in Figure 7. The vector aggregator module takes character vectors as input and
produces word vectors. In this paper, we adopt the default approach for constructing the
vector aggregator module, as depicted in the pseudocode in Algorithm 1.
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Figure 7. CSRMECT model.

Algorithm 1: Vector Aggregator
Data: Character Vectors, VocabularyLabels
Result: Word Vectors

1 WordVectorList = [];
2 foreach Label in VocabularyLabels do
3 CharacterIndices = FindIndices(CharacterVector, Label);
4 CharacterVectorsInWord = GetCharacterVectors(CharacterVector,

CharacterIndices);
5 WordVector = SumCharacterVectors(CharacterVectorsInWord);
6 WordVectorList.append(WordVector);

7 WordVector = SumWordVectors(WordVectorList);
8 return WordVector;

The field of argot recognition has long been plagued by the lack of high-quality
annotated datasets. Through the above changes, the CSRMECT model successfully solved
this problem. Specifically, the training of the CSRMECT model only requires the use of a
normal corpus. The trained CSRMECT model can understand the contextual relationships
in the sentence and output a word vector with contextual semantics for each word.

3.3. DBSCAN Clustering Algorithm

Clustering, one of the primary methods for knowledge discovery in large datasets,
encompasses various prevalent techniques in the field of semantic clustering, including
k-means [34], hierarchical clustering [35], and DBSCAN [36]. The k-means algorithm
exhibits limitations in handling non-spherical clusters and is susceptible to the choice of
initial cluster centers [37], necessitating the pre-specification of the cluster quantity (K
value). Hierarchical clustering, often proceeding in a top-down or bottom-up hierarchical
decomposition due to its simplicity, tends to form cluster chains. In contrast, DBSCAN
possesses the capability to cluster shapes of arbitrary forms, such as linear, concave, ellipti-
cal, without the need for predefined cluster quantities. Additionally, DBSCAN has been
proven effective in handling massive databases [36,38,39]. Consequently, we employ the
DBSCAN algorithm for clustering, aiming to extract argot vocabulary from extensive sets
of word vectors.

The DBSCAN clustering algorithm determines the density of a point by calculating
the number of points within a specified radius. Points with densities exceeding a specified
threshold are grouped into clusters. Given the high dimensionality and sparsity between
word vectors in this research, the Euclidean distance proves inadequate for accurately mea-
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suring the vector similarity. Hence, the cosine distance is chosen for DBSCAN clustering,
with the formula as follows:

D(p, q) = ∑n
i=1(pi × qi)√

∑n
i=1 (pi)

2×∑n
i=1(qi)

2
(8)

In the context where q and p represent arbitrary word vectors, and n denotes the
dimensionality of the word vectors, with pi and qi indicating the values in the i-th dimen-
sion of the word vectors, the workflow of the DBSCAN clustering algorithm is outlined
as follows:

1. Randomly select a word vector q as the object, defining its neighborhood as Eq, and
compute the cosine distance values between it and other word vectors p.

2. If D(p, q) < ε, categorize the word vector p into Eq. If D(p, q) > ε, ignore the word
vector p.

3. Tally the number of word vectors in Eq. If count
(
Eq
)
> minpts, designate Eq as a

cluster and recursively process other word vectors in the same manner. Otherwise,
label the word vector as noise data.

Here, ε represents the scanning radius distance, and minpts stands for the minimum
number of enclosed points. Both are selectable parameters.

3.4. Chinese Argot Recognition Work

The CSRMECT model, tailored to the structural similarities between Chinese argot
vocabulary and reference terms, as well as the contextual disparities with the original
meanings of argot vocabulary, involves a two-stage process. This process incorporates
an enhanced MECT model for the fusion of contextual and Chinese character structural
features in word vector representation and utilizes the DBSCAN clustering algorithm for
the discovery of semantically inconsistent argot vocabulary in the semantic space. The
specific workflow is illustrated in Figure 8.

1. Firstly, normal corpora and argot corpora (dataset containing argots) are amalgamated
into datasets. The CSRMECT model extracts lattice embedding vectors and Chinese
radical-level embedding vectors from sentences, followed by a fusion operation.
Subsequently, through context encoding, word vector representations for each Chinese
vocabulary in the sentence are obtained.

2. All word vectors derived from the processed normal corpus dataset N are mapped to
a high-dimensional space. The DBSCAN clustering algorithm is employed to partition
various clusters, yielding the core cluster vector set N(W) for each vocabulary W in
dataset N.

3. For the argot corpus dataset M, all word vectors are similarly mapped to a high-
dimensional space, resulting in the high-dimensional word vector M(W) for each
vocabulary W in dataset M.

4. In the vocabulary list MList of argot corpus M, the label list is computed as
LM = [Label(Wi)|Wi ∈ MList], where Label(Wi) is determined as follows:

Label(Wi) =

{
1, if ∀q ∈ N(Wi) : D(M(Wi), q) > ε

0, if ∃q ∈ N(Wi) : D(M(Wi), q) ≤ ε

5. At this time, in the list LM, the words marked 1 are argots, and vice versa for
normal words.
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Figure 8. Specific workflow of argot discovery.

It is worth mentioning that in this code word recognition framework, the MECT model
in the above process exists as a natural language deep learning model. This means that
when a better model appears in the future, that model will be able to replace the MECT
model here, allowing the clustering algorithm to obtain better word vectors. We believe
that the rapid development in the field of deep learning will directly promote the progress
of the field of argot recognition through this framework.

4. Argot Interpretation Based on Large Language Models
4.1. Large Language Models

Since the emergence of ChatGPT in 2022 [40], a plethora of research has surfaced
regarding the integration of large language models with various classical machine learning
tasks to enhance their effectiveness. Yang et al. introduced the PICa few-shot prompting
method, applying large language models as knowledge bases in the VQA domain [41].
Building upon PICa, Shao et al. proposed the Prophet few-shot prompting method,
achieving commendable performance in VQA by leveraging answer heuristics to prompt
GPT-3 [42]. OpenAI’s experiments indicate that simply scaling up language models sig-
nificantly improves their performance in NLP tasks, such as knowledge-based QA and
language understanding [40]. Chen et al. constructed the Codex programming assistance
tool based on large language models and prompt engineering, addressing 70.2% of pro-
gramming problems in testing [43]. Sun et al. tested ChatGPT’s retrieval capability with
successful outcomes [44].

Through resource-intensive training, large language models embed a substantial
amount of prior knowledge from the corpus into their parameters. Consequently, large
language models can function as knowledge engines, providing external knowledge to
enhance task performance across various machine learning tasks. For specific domains,
fine-tuning the model with domain-specific texts significantly enhances its understanding
of that domain, thereby improving task performance.

4.2. Argot Interpretation Based on Large Language Models

Building on the aforementioned analysis, this paper employs large language mod-
els for argot interpretation. Specifically, to investigate the feasibility of using large lan-
guage models for argot interpretation, this study leaves argot vocabulary blank in MNGG.
Through the prompt engineering, syntactic information and cue words are conveyed to the
large language model. The vast prior knowledge acquired during the pretraining of the
large language model is utilized for the task of argot interpretation.



Entropy 2024, 26, 321 12 of 23

5. Experimental Process
5.1. Datasets and Parameters
5.1.1. MNGG Argot Recognition Evaluation Dataset

Building upon the achievements of the dogwhistle dataset in the work by Xu et al. [8],
this paper integrates argot corpora to create the MNGG (Mystique Naming Glossary
Gathering) dataset. The task of argot recognition is transformed into a sequence labeling
task for training and testing. From the Insider and Outsider subtasks of the dogwhistle
dataset, the paper extracts pairs of argots and referential terms, resulting in a total of 1684
annotated argot-referential term pairs. Leveraging these argot pairs, the paper utilizes
Chinese text data from THUC News [45] as the base text and replaces referential terms in
the base text with argot words from the pairs. After this replacement operation is completed,
we use the BIO sequence annotation method to mark the argots in the sequence. As shown
in Figure 9, this process produces an annotated argot corpus with contextual information.

Figure 9. Build MNGG dataset.

To facilitate the verification of the training data’s impact on model performance and to
enable rapid testing with reduced data, the MNGG dataset also includes a clipped subset.
This subset, denoted by the .clip file name suffix, represents a 10% extraction from the
complete dataset. The number of corpora in the MNGG dataset is presented in Table 2.

Table 2. Overview of the MNGG dataset.

Dataset Number of
Sentences

Number of Argot
Vocabulary

Average Argot Vocabulary
per Sentence

train.clip.bio 564 1116 1.97
test.clip.bio 338 705 2.09
dev.clip.bio 225 470 2.08

train.bio 5645 11,595 2.05
test.bio 3387 7315 2.15
dev.bio 2258 4751 2.10

5.1.2. Enhanced Base Corpora Utilizing Wikipedia and Large Language Models

In order to obtain clustering results for normal text, facilitating subsequent labeling
of the argot dataset using clustering algorithms, this paper leverages Wikipedia text to
establish a base corpus. Additionally, the paper employs prompt engineering to enhance the
base corpus with a massive text dataset, effectively addressing the presence of vocabulary
beyond the base corpus in the argot dataset. Combined with the CSRMECT model, this
paper generates a substantial collection of high-dimensional word vectors based on words
present in the normal corpus of the base dataset. An overview of the base corpora is
provided in Table 3.
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Table 3. Overview of base corpora.

Base Corpus Number of Entries
(Sentences)

Inclusion Rate in
Argot

Average Occurrence Frequency
of Argot Vocabulary

Wiki 194,749 0.71 103.4
LLM 159,277 0.45 3619.9

Wiki + LLM 354,026 0.99 1685.5

Here, the inclusion rate in argot denotes the ratio of the number of words in the argot
corpus that appear in the base corpus to the total number of words in the argot corpus. By
utilizing large language models and iteratively invoking prompts as illustrated in Figure 10,
this paper cleans and organizes the obtained data to construct the LLM enhancement
corpus, enhancing the inclusion rate of argot vocabulary and the occurrence frequency of
argot terms.

Figure 10. Prompt for LLM enhancement corpus.

5.2. Argot Recognition Experiment
Metric Calculation Based on BIO-Format Sequence Labeling

The BIO annotation scheme is a labeling method introduced and utilized in the field
of named entity recognition (NER), indicating whether words or tokens in the labeled
sequence belong to an entity. It has become a common annotation scheme in the field of
natural language processing. Its design aims to distinguish the beginning (B: Beginning),
interior (I: Inside), and non-entity (O: Outside) parts of an entity.

Calculating metrics for BIO-annotated sequences involves comparing the similarity
between predicted and actual sequences. Specifically, given the predicted and actual
sequences, the ranges of labeled entities in both sequences can be statistically determined.
Subsequently, Precision, Recall, and the F1 are computed to evaluate the effectiveness of
the predicted sequence. These metrics are calculated using the following formulas:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2
Precision × Recall
Precision + Recall

(11)

Here, TP represents the number of correctly predicted positive instances, FP denotes
the number of incorrectly predicted positive instances, and FN stands for the number of
positive instances that were not predicted.

5.3. Experimental Results

In the work by Zhang et al. [14], the SVM classifier, enriched with additional feature
extraction from text, achieved notable recognition rates in the field of argot recognition. This
study replicates the SVM classifier mentioned in the literature, as the classifier is applied
and tested on the MNGG dataset. MNGG transforms the argot recognition experiment
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into a sequence labeling algorithm. Consequently, this paper explores various classical
sequence labeling algorithms, annotates the MNGG dataset using the BIO format, and tests
the algorithmic performance. The comparative effectiveness of these algorithms with the
proposed CSRMECT model is presented in Table 4.

Table 4. Comparison of argot recognition models.

Model F1 Precision Recall

SVM [14] 0.08 0.08 0.08
LGN [46] 0.03 0.78 0.02

Lattice-LSTM [47] 0.15 0.62 0.08
LR-CNN [48] 0.23 0.64 0.14

CSRMECT 0.33 0.35 0.31

5.4. Argot Interpretation Experiment

To investigate the feasibility of using large language models as knowledge engines for
argot interpretation, this study conducted argot interpretation experiments based on the
MNGG dataset, which contains a total of 1684 pairs of argots. GPT-3, GPT-4, and prompt
engineering were employed in the experiments.

The specific experimental procedure is as follows:

1. Split all texts in the MNGG dataset into sentences. Extract sentences containing only
one argot from the split corpus, denoted as the corpus W.

2. For each sentence Wi in the corpus, extract the argot wordi from it. Randomly select
T − 1 words from the argot vocabulary of the MNGG dataset, forming a list of prompt
words Lsti.

3. Utilizing the prompt engineering approach shown in Figure 11, input both syntactic
information and the prompt word list into the large language model, obtaining the
judgment corpus Pi.

4. Tokenize Pi to obtain the tokenized vocabulary set Pi.
5. For similarity measurement, train a word2vec model using the Wiki + LLM base cor-

pus. Let the word vector for the vocabulary X in the word2vec model be
−→
X = word2vec(X).

6. For the i-th sentence Wi and its judgment corpus Pi, if there exists a vocabulary

pi,j ∈ Pi satisfying eps ≤ word2vec(pi,j)·word2vec(wordi)

||word2vec(pi,j)||·||word2vec(wordi)||
, the i-th argot recognition is

considered successful; otherwise, it fails.
7. For all sentences Wi in the corpus W, calculate its accuracy acc = count(Wsuccess)

count(W)
.

Figure 11. Inputting syntactic information and prompt word list into the large language model.

The experimental results are presented in Table 5.
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Table 5. Argot interpretation experiment results.

Model Accuracy

Huang2013 [12] 0.364
Zhang2015 [14] 0.383

Sha2017(Acc@20) [15] 0.870
LLMResolve 0.919

LLMResolve (GPT-4+10 Prompt Words) 0.824
LLMResolve (GPT-4+3 Prompt Words) 0.919

6. Analysis and Discussion
6.1. Discussion on Argot Recognition Experiments

The effectiveness of the CSRMECT model is contingent upon prior conditions, such
as the size of the base corpora and the model parameter settings. This section provides a
discussion of such issues.

6.1.1. Qualitative Analysis of Clustering Results

The CSRMECT model is employed in this study to obtain word vectors. To analyze
the semantic richness of word vectors, the t-SNE dimensionality reduction algorithm [49]
is employed. Quantitative analysis is performed on selected argot and non-argot words
from certain base datasets. The results are illustrated in Figure 12.

Figure 12. Dimensionality reduction visualization.

In Figure 12, the term “客场” (can be translated into opponent’s field, away, etc.)
is employed as an argot in every sentence it appears, whereas the term “自己” (can be
translated into self, oneself, etc.) is a regular word. In the clustering results on the left side
of the figure, the distance between the red points representing argots and the blue points
representing normal words is about 10 to 100. In contrast, the distance between the red
point and the blue point in the picture on the right is about 0.5 to 1. It is evident that there
exists semantic differentiation in the spatial representation between argot and non-argot
words. Through DBSCAN clustering, we can easily identify the vast majority of argots on
the left side.

6.1.2. Analysis of Data Augmentation Effects

As the semantic nature of vocabulary reflects in the relative positioning within the
word vector space, the usage of argot terms in the base corpus directly impacts the effec-
tiveness of argot recognition. When there is a scarcity of argot terms or their usage is overly
uniform, the overall algorithmic process may be compromised. This study employs an
augmentation algorithm based on large language models, enhancing the diversity of argot
term usage in the base corpus to improve evaluation outcomes. The cumulative information
on successive base data augmentation and corresponding algorithmic improvements is
presented in Table 6.
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Table 6. Comparison of base data augmentation information and effects.

Base Corpus Argot Loss F1 P R

Wiki 3145 0.04 0.22 0.02
LLM * 1918 0.27 0.57 0.18
LLM ** 408 0.32 0.36 0.28
LLM *** 152 0.33 0.35 0.31

LLM * denotes augmentation once, LLM ** denotes augmentation twice, and LLM *** denotes augmentation
three times.

6.1.3. Sensitivity Analysis

The DBSCAN clustering algorithm involves two hyperparameters: minpts and ε. Here,
minpts represents the minimum number of points within the same cluster, and ε indicates
the size of the clustering boundary. To explore the model’s sensitivity to hyperparameters,
including ε, and ensure experimental efficiency, word vectors need to be dimensionally
reduced and then subjected to the DBSCAN clustering algorithm. Common dimensionality
reduction algorithms include PCA [50], t-SNE, and others. In this study, a subset of
vocabulary word vectors is selected, and different algorithms are employed to reduce the
vectors to two dimensions for visualization, as depicted in Figure 13.

Figure 13. Comparison of dimensionality reduction algorithms.

In the figure, the number of clusters before dimensionality reduction for the i-th
row data is i. It is observed that the PCA, MDS [51], and lsomap algorithms show sim-
ilar effects, while the t-SNE and UMAP [52] algorithms exhibit comparable effects and
better performance.

Based on the above analysis, the PCA and t-SNE algorithms are selected for exper-
imentation to investigate the model’s sensitivity to hyperparameters ε, dimensionality
reduction algorithms, and reduced dimensions, as shown in Figure 14.
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Figure 14. Sensitivity analysis for ε.

The experimental results indicate that around the optimal ε value, the stability of
the F1-score is high. As ε deviates from the optimum, the F1-score gradually decreases.
Additionally, due to the adoption of dimensionality reduction algorithms, while the model’s
operational efficiency significantly improves, there is a slight reduction in model accuracy.
Furthermore, compared to data augmentation methods, the choice of dimensionality
reduction algorithms and reduced dimensions has a relatively minor impact on the F1-
score.

For the vector aggregator module in CSRMECT, this study explores various imple-
mentation approaches and conducts sensitivity tests, as illustrated in Figure 15.

Figure 15. Sensitivity analysis of vector aggregator.

Here, “Sum” refers to adding multiple word vectors of a single word to form the
word vector, while “Average” refers to summing and averaging multiple word vectors of
a single word to obtain the word vector. In comparison to data augmentation methods,
the modification of the vector aggregator implementation has a minimal impact on the
results. However, it is notable that the model’s performance improves consistently across
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different parameters when using the Average algorithm. Hence, it cannot be ruled out
that a more rational vector aggregator implementation could significantly enhance the
model’s effectiveness.

Another noteworthy observation is that when calculating the rationality of word
vectors under different vector aggregators using the information entropy mentioned earlier,
the set scores obtained with the “Sum” method tend to be higher than those with the
“Average” method, as shown in Table 7. This suggests that more rational word vectors
indeed contribute to the improvement of model performance.

Table 7. Evaluation results of using vector information entropy for different vector aggregators.

Word Average Sum

我们 (we) 2.943 9.643
我 (I) 2.707 10.223

一种 (a kind of) 2.887 8.224
方法 (method) 3.040 6.640

Average entropy value in dataset 2.902 3.455

6.2. Discussion on Argot Vocabulary Interpretation Experiment

To analyze the recognition effectiveness of the LLMResolve framework, and to explore
the strengths and limitations of large language models in the field of argot recognition,
statistical and qualitative analyses are employed to discuss the experimental results.

Statistical Analysis

Different large language models exhibit varying performance; theoretically, utilizing
more advanced models enhances the task of argot interpretation. A comparison is made
between GPT-3.5 and GPT-4, as shown in Table 8.

Table 8. Experimental results of code interpretation under different large language models.

Model Top-k Accuracy

GPT-4 3 0.919
GPT-4 10 0.824
SOTA - 0.919

GPT-3.5 3 0.768
GPT-3.5 5 0.741
GPT-3.5 10 0.648
GPT-3.5 20 0.537
GPT-3.5 30 0.454
GPT-3.5 0 0.133
SOTA - 0.768

The results indicate superior performance using GPT-4 compared to GPT-3.5. Thus,
in LLMResolve, the performance of large language models significantly influences the
accuracy of argot resolution. At the same time, we also found that for large language
models, the performance of LLMResolve is not good when there is no hint word. However,
from a certain perspective, this is also normal because even for humans, achieving this is
very difficult.

POS-tagging is conducted using the jieba tool, with codes corresponding to the mean-
ings detailed in Table 9.
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Table 9. Chinese POS tags and meanings.

POS Tag Meaning Detailed Meaning

n Noun Represents people, things, places, etc.
v Verb Indicates action, state, or behavioral existence.
d Adverb Used to modify verbs, adjectives, other adverbs, etc.
a Adjective Describes the qualities or states of things.

vn Noun-Verb Sometimes represents a mixture of nouns and verbs,
typically used as a noun.

c Conjunction Connects words, such as “and”, “or”, etc.
nr Name Represents personal names.
t Time Word Represents words related to time.

ns Place Name Represents names of places.

Combining the output results of the LLMResolve framework, a statistical analysis is
conducted on the common POS tags, yielding recognition quantities and rates for each
POS, as illustrated in Figure 16.

Figure 16. Argot interpretation effect POS analysis.

The MNGG dataset proposed in this paper, in contrast to the Weibo dataset used in
previous studies [12], differs in that the argot vocabulary in MNGG extends beyond a small
subset of nouns like personal and location names. It encompasses various parts of speech,
including nouns, verbs, adjectives, and adverbs. Analyzing the figure above reveals that
the diversity of parts of speech poses certain challenges for argot interpretation work, with
occasional recognition failures observed for verbs and adverbs. Simultaneously, as the
most frequently occurring nouns (i.e., labeled as n, nr, ns), their recognition rate averages
82.4%, comparatively lower within the spectrum of parts of speech recognition rates.

6.3. Qualitative Analysis

In conjunction with the foregoing, this paper conducts a qualitative analysis on failed
instances of noun disambiguation. Failed samples extracted from the experimental results
are presented in Figure 17.
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Figure 17. Failed examples of argot interpretation in LLMResolve.

Summarizing from the table, the following reasons for disambiguation failure can
be delineated:

1. Insufficient Contextual Information: In the case of Sample 1, the phrase “蠢蠢的钟
摆” (an animated pendulum) employs personification in Chinese rhetoric. Without
ample contextual cues, both large language models and humans struggle to accurately
discern the intended word for this context. For Sample 2, where both “天气” (weather)
and “市场” (market) share the characteristic of change, additional context is essential
for auxiliary reasoning.

2. High Similarity of Prompt Words: Illustrated by Sample 3, the words “鲜红色”
(crimson) and “白色” (white) both represent colors, making it challenging for the
model to distinguish their semantic differences within the sentence.

3. Triggering Safety Mechanism in Large Language Models: When sensitive terms
appear in the prompt engineering, the safety mechanism of large language models
is triggered. Consequently, the model refrains from providing an effective response
and instead elaborates on the reason for refusing to answer. This phenomenon is
particularly prevalent in the context of drug-related or explicit argots.

7. Conclusions

This study introduces, for the first time, the concept of utilizing semantic conflicts
in argot vocabulary for argot recognition. Leveraging the MECT model, we propose the
CSRMECT model for argot recognition and employ LLMResolve for argot interpretation.
The proposed argot recognition and interpretation models surpass previous research efforts.
Extensive experiments in this study provide insightful analyses of the model performance.

In terms of argot recognition, experiments indicate that improving the rationality of
word vectorization methods enhances argot recognition. Furthermore, under the same
vectorization algorithm, the similarity between argots and surrounding sentences also
influences argot recognition effectiveness. Regarding argot interpretation, the outstanding
performance of large language models validates their feasibility as knowledge engines for
argot interpretation. Additionally, experiments demonstrate that more powerful models
offer stronger background knowledge and better argot recognition capabilities.

For the future development of argot recognition models, a primary task is to investigate
more rational word vectorization algorithms to expand the semantic space gap between
argot and general vocabulary, thereby improving recognition rates. As for argot interpreta-
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tion tasks, feasible future research directions include fine-tuning large language models
using known argot repositories and exploring methods to bypass security mechanisms in
large language models to enhance model response rates.
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