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Abstract: Due to the intensification of climate change around the world, the incidence of natural
disasters is increasing year by year, and monitoring, forecasting, and detecting evolution using
satellite imaging technology are important methods for remote sensing. This study aimed to monitor
the occurrence of fire disasters using Sentinel-2 satellite imaging technology to determine the burned-
severity area via classification and to study the recovery process to observe extraordinary natural
phenomena. The study area that was sampled was in the southeastern part of Mongolia, where
most wildfires occur each year, near the Shiliin Bogd Mountain in the natural steppe zone and in
the Bayan-Uul sub-province in the forest-steppe natural zone. The normalized burn ratio (NBR)
method was used to map the area of the fire site and determine the classification of the burned
area. The Normalized Difference Vegetation Index (NDVI) was used to determine the recovery
process in a timely series in the summer from April to October. The results of the burn severity
were demonstrated in the distribution maps from the satellite images, where it can be seen that the
total burned area of the steppe natural zone was 1164.27 km2, of which 757.34 km2 (65.00 percent)
was classified as low, 404.57 km2 (34.70 percent) was moderate-low, and the remaining 2.36 km2

(0.30 percent) was moderate-high, and the total burned area of the forest-steppe natural zone was
588.35 km2, of which 158.75 km2 (26.98 percent) was classified as low, 297.75 km2 (50.61 percent)
was moderate-low, 131.25 km2 (22.31 percent) was moderate-high, and the remaining 0.60 km2

(0.10 percent) was high. Finally, we believe that this research is most helpful for emergency workers,
researchers, and environmental specialists.

Keywords: wildfire; burn severity; vegetation recovery; Sentinel-2; Eastern Mongolia

1. Introduction

Wildfires are natural phenomena that have been occurring for centuries; however, in
recent years their severity and frequency have increased significantly, posing substantial
challenges to ecosystems and human communities [1–4]. Wildfires have emerged as a
global concern due to their destructive potential and wide-ranging consequences. Wildfires
have been increasing over the last few years due to climate change, forming different
natural zones based on location.
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Remote sensing using satellites is the most important method for mapping natural
disasters, including wildfires, floods, storms, and other extreme weather phenomena, as
it acquires pre-disaster and post-disaster data [5]. Remote sensing satellite data are used
for assessing damage and environmental conditions post-disaster and for analyzing risk
estimation and vulnerability pre-disaster.

Understanding and assessing fire severity can be considered a form of wildfire recog-
nition research. It is especially important to reduce, prevent, prepare, and respond to the
damage wildfires cause. The increase in wildfires in recent years is due to climate change.
Wildfires mostly cause damage to human environments, leading to infrastructure and
economic losses, and cause serious damage to vegetation and wild animal environments
while leading to changes in the evolution of nature and ecology patterns [6].

Many studies from the wildfire severity study field were reviewed. The studies
were carried out using different satellite images, including optical [7–10], thermal [11,12],
lidar [13], and synthetic aperture radar (SAR) [11,14,15] satellite images. Most of them used
optical satellite images obtained from MODIS data, Sentinel-2, Landsat series images, and
KOMPSAT-3A [16], which uses Shortwave Infrared (SWIR) bands for the calculation. The
SAR images were from Sentinel-1, ALOS-2 [17], and PALSAR-2 [18]. There was another
interesting paper that evaluated the sensitivity of full-waveform LiDAR data to estimate
the severity of wildfires using a 3D radiative transfer model approach [19]. However, all of
these studies using LiDAR, SAR, and thermal satellite images made estimations with the
optical satellite images by comparing the burned severity area and recovery processes.

This study of post-fire recovery concepts is very important to understand this phe-
nomenon. There are some different approaches to define recovery processes, including
utilizing the strong performance and suitability of the post-fire stability index [20]; random
forest classification models that use the fire severity classes (from the Relativized Burn
Ratio (RBR)) as a dependent variable and 23 multitemporal vegetation indices [21]; post-fire
stream water responses observed in watersheds [22]; multiple factors of a forest’s recovery
rate post-wildfire such as fire severity, tree species characteristics, topography, hydrology,
soil properties, and climate [23]; and a composing study based on a Tasseled Cap linear
regression trend in a post-wildfire study site [24].

Despite extensive research on wildfire severity, there are still gaps in these studies,
especially in Mongolian-specific geographic regions under certain climatic conditions. This
study aims to address this gap by focusing on completing a severity assessment of wildfires
in the Eastern Mongolian region, which is characterized by unique topographical features
and a diverse range of vegetation types. By investigating the relationship between fire
behavior, fuel characteristics, and climatic factors, we seek to enhance the accuracy and
effectiveness of wildfire severity assessments in this region.

Other issues and different phenomena occur in different areas within different natural
zones around the world. We collected and reviewed a few studies from different study areas,
including Siberia, Russia [23,25,26], Indonesia [27], Canada [28,29], Australia [18,30–32],
Spain [33], Portugal [13], the Mediterranean [7,34–37], Turkey [1,4], Greece [2,3],
China [10,38–41], California and Alaska [42–44], the US [45–49], Peru [14], Iran [50], Bo-
livia [51], the Amazon of Brazil [52] and India [53]. The wildfire studies from each country
had their own characteristics. In particular, determination via the mapping of burn severity
with the NDVI in the Turkish study [1] was relevant to our study. The difference was found
just between pre-wildfires and post-wildfires.

Mongolian wildfires have increased due to climate change, which intensively influ-
ences natural disasters and environmental conditions. Many studies have looked into this,
such as by determining the fire history from tree rings for the potential of relationships
between climate change, fire, and land uses [54,55]; the effects of wildfire on runoff gener-
ation processes in mountainous forest areas [56]; wildfire and climate change’s effect on
permafrost degradation [57]; and wildfire risk mapping for protected areas [58]. There are
other wildfire study cases that have been carried out for the Mongolian Plateau, such as a
study that identified drivers and spatial distributions to predict wildfire probability [59],
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one that explored the growing season [60], one that performed an analysis of climate fire
relationships and an evaluation of the spatial change characteristics [61], and one that
analyzed the spatiotemporal wildfire pattern using satellite images [62]. Some researchers
determined the cost effects of monitoring vegetation changes in steppe ecosystems [63].
Most wildfire impact cases occur across borderland areas between Mongolia, Russia, and
China [64,65].

The purpose of this study is to monitor the occurrence of fire disasters as a result of
Sentinel-2 satellite imaging technology by carrying out a classification of the burned area
and determining the recovery process effects in Eastern Mongolia. This study is based
on the recovery effects and processes used in our previous wildfire projects and a few
direct Mongolian papers that have covered different study areas, including forest [66] and
steppe [6] wildfires.

2. Analysis Methods for Wildfire Monitoring

Analysis methods for wildfire monitoring include two steps: determining the spectral
response for satellite images and determining the statistical analysis response. The spectral
response for satellite images is based on the NBR, differenced NBR (dNBR), RBR, and
NDVI indices. The statistical analysis response is based on regression analysis.

2.1. Spectral Response for Satellite Images

It is important to include sensor spectral information in satellite images. Remote-
sensing-based burn severity indices have been developed and used due to their simple
computation and direct applications for image processing. Near-infrared (NIR) and Short-
wave Infrared (SWIR) bands are useful for this study.

Spatial and multitemporal NBR images are estimated as the proportion of the differ-
ence and sum of the NIR and SWIR bands (Band 9 and Band 12 of Sentinel-2, respectively),
which is demonstrated in Equation (1) (Figure 1). The NIR reflectance decreases due to
vegetation loss, and the SWIR reflectance increases due to a reduction in canopy humidity
and shade [67].

NBR =
(NIR − SWIR)
(NIR + SWIR)

(1)
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Figure 1. Healthy plant species reflect more energy in the NIR band, and burned areas reflect
more energy in the SWIR band. This spectral characteristic is useful for detecting burned areas and
vegetation recovery over land. Source: US Forest Service.

The dNBR is estimated by pre-fire and post-fire NBR values (Equation (2)). It considers
the difference between the burned area and the unburned area.

dNBR = NBRpre−fire −NBRpost−fire (2)
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The RBR is a variant of the dNBR that considers the relative amount of pre- to post-fire
change by dividing the dNBR by the pre-fire NBR value. This index was proposed to
remove the bias due to the pre-fire vegetation type and density [68]. Equation (3), which
determines the RBR index, comes from a combination of Equations (1) and (2).

RBR =
(dNBR)

(NBR pre−fire+1 .001)
(3)

Remotely sensed vegetation indices have also been used to analyze post-fire recovery.
The NDVI uses Sentinel-2 imagery to estimate and monitor vegetation recovery and growth
after successive fires.

NDVI =
(NIR − RED)

(NIR + RED)
(4)

The geographical scales (i.e., geometry, pixel size, and projection) of all estimated
variable files should be at the same scale for the next step of determining the statistical
analysis response.

2.2. Statistical Analysis Response

Regression analysis and scatter plots were used for the statistical analysis of responses.
In this case, we tried to determine the phenomenon where the recovery processes are
dependent on the NBR from the start of the wildfire to the end of recovery.

Correlation and regression analyses can be conducted with this statistical method to
obtain the relationship between the indicator factors [69]. Pearson’s correlation coefficient
(r) indicates the correlation between two variables that are determined by

rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(5)

where n is the sample size; xi and yi are the individual sample points indexed with i; and
x = ∑n

i=1 xi (the sample mean), which is analogous for y.
The regression analysis was carried out with linear regression and scatter plot graphs

that used intercept and slope. This demonstrates that scattering distributions change shapes
and locations and describe the phenomena that we want to see. Correlation and regression
analyses were used to determine the relationships between the NBR and NDVI during the
recovery process.

3. Wildfire Case Study
3.1. Study Areas

The first sampled wildfire happened at Shiliin Bogd Mountain on 17–20 April 2021.
This mountain is located in Eastern Mongolia (45◦20′–45◦40′ N and 114◦20′–115◦20′ E;
Figure 2(1)) in the Sukhbaatar province, which is on the border between Mongolia and
China. The burned area was calculated to be 6879.67 km2 at an elevation between 1300
and 1800 m. The average annual temperature of the whole range is 1.5–1.7 ◦C (the mean
maximum is 30 ◦C in July and the mean minimum is −32.5 ◦C in January), and the average
annual precipitation is 200.6 mm. Precipitation follows a bimodal distribution, with maxima
in June–September and November–February. The rainiest months are July and August,
with 150 mm of rain on average, and the snowiest months are December and January, with
40 mm of snow on average. Additionally, the driest periods occur from March to May and
from September to November.
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Figure 2. The sampled burned areas were at Shiliin Bogd Mountain and the sub-provinces of Bayan-
Uul and Bayandun in Eastern Mongolia. Sentinel-2 satellite imagery from 20 April 2021, and 1
May 2020.

The second sampled wildfire happened in the area of the sub-provinces of Bayan-
Uul and Bayandun on 11–28 April 2020. They are located in Northeastern Mongolia
(49◦15′–49◦40′ N and 112◦30′–113◦30′ E; Figure 2(2)) in Dornod province, which is on the
border between Mongolia and Russia. The burned area was calculated to be 588.35 km2

at an elevation between 1100 and 1500 m. The average annual temperature of the whole
range is −1–0.7 ◦C (the mean maximum is 20 ◦C in July and the mean minimum is −22 ◦C
in January), and the average annual precipitation is 250–400 mm. Precipitation follows
a bimodal distribution, with maxima in June–September and November–February. The
rainiest months are July and August, with 300 mm of rain on average, and the snowiest
months are December and January, with 70 mm of snow on average. Additionally, the
driest periods occur from March to May and from September to November.

The first sampled area is made up of old volcano mountains and is on one side of the
steppe natural zone (Figure 3). The second sampled study area is a beautiful wildland that
is on the other side of the Khentii Mountains and contains a forest-steppe natural zone
(experiment views shown in Figure 4). Therefore, these two sampled areas represent two
different natural zones, the forest-steppe and steppe natural zones. This study estimates
the results of imagined wildfires in different places and compares two different kinds of
wildfires in these natural zones.

Wildfires happen in the dry seasons that occur in the spring and fall in the border
zone of Mongolia. There are two kinds of legitimate wildfires in this study. One of these
wildfires occurred on the Russian side. Another one occurred on the Chinese border side
(Figure 2).

In the area where the fire occurred, there is a dense vegetation cover of Stipa krylovi,
Cleistogenes squarrosa, Agropyron cristatum, Caragana microphylla, Stipa krylovi, S. grandis, and
Cleistogenes squarrosa, which are typical of the Mongolian steppe. The experiment view
is presented in Figure 3. In Figure 4, there is a dense vegetation cover of Lanix sibirica,
Pinus sylvestris, Betula plathyphylla, Carex pediformis, C. amgunensis, Iris ruthenica, Lathyrus
humilis, Vicia baicalensis, Stipa baicalensis, Festuca sibirica, Poa attenuata, Filifolium sibiricum,
Adenophora tricuspidate, Arenlaca sibirica, Amygdalus pedunculata, Flifolium sibiricum, Festuca
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lenensis, Shrub-siberian tansy-fescue, in Henti-Ameniaca sibirica, Koeleria mukdenensis, and
Lespedeza, which are typical of the Mongolian Dagur forest steppe [70].
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3.2. Data Collection and Processing

The Sentinel-2 satellite series has continually observed the Earth since 2015 and accu-
mulated an enormous number of time series images. Table 1 demonstrates the characteris-
tics of the Sentinel-2 satellite images.

Table 1. Spectral band characteristics and spatial resolutions of the Sentinel-2A MSI sensor. Source:
ESA, 2015.

Spectral Band Spatial
Resolution (m)

Center Wavelength
(nm)

Band Width
(nm)

B1 Coastal aerosol 60 443 20
B2 Blue 10 494 65
B3 Green 10 560 35
B4 Red 10 665 30
B5 Vegetation red edge 20 704 15
B6 Vegetation red edge 20 740 15
B7 Vegetation red edge 20 781 20
B8 NIR 10 834 115

B8a Narrow NIR or NIR 2 20 864 20
B9 Water vapor 60 944 20

B10 SWIR–Cirrus 60 1375 30
B11 SWIR 1 20 1612 90
B12 SWIR2 20 2185 185
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Sixteen cloud-free Sentinel-2 2A and 2B images were selected for this study, which
were collected from April to September 2020 and 2021 (Table 2), respectively, and were
acquired from ESA Sci-Hub. The Sentinel-2 satellite images were found to have better
information than Landsat-8 images; therefore, Sentinel-2 was selected for image processing.

Table 2. Data collection of Sentinel-2 satellite images.

Date of 1st Sampled Area Date of 2nd Sampled Area

5 April 2021 11 April 2020
20 April 2021 16 April 2020
5 May 2021 23 April 2020
15 May 2021 1 May 2020
19 July 2021 8 May 2020

18 August 2021 20 June 2020
17 September 2021 22 July 2020
27 September 2021 21 August 2020

In addition, a time series of satellite images was used as it can show better data from
April to September of each year for the two sampled areas.

4. Results

The assessment and monitoring results of the wildfire burn severity and recovery pro-
cess in Mongolia are analyzed in this section. Section 4.1 analyzes the defining normalized
burn ratio via spectral bands. Section 4.2 identifies the burned areas in this study sampled
areas; Section 4.3 analyzes the burn severity classification; and Section 4.4 monitors the
recovery processes post-fire.

4.1. Estimation of Normalized Burn Ratio

NBR was estimated based on bands of satellite images that ranged from spring to fall.
The NBR change in the images of the time series is demonstrated in Figure 5, and was
calculated with Equation (1).
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Figure 5. The estimated images of NBR, which are compared using time series, are (a) the first
sampled wildfire area and (b) the second sampled wildfire area.

The red color indicates decreasing NBR values, whereas the green color indicates
increasing values, which represent the higher and lower burned levels, respectively.

The index of the NBR is used to determine the burned area in the next section.
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4.2. Identification of Burned Areas

NBR indices from before and after the wildfires were used to identify burned areas for
the RBR index. In the first study area, satellite images were selected from 5 April 2021, and
20 April 2021. In the second study area, satellite images were selected from 11 April and
1 May 2020, respectively. There were two satellite images which were taken between 11
April and 1 May of 2020; however, because there were some clouds on the images, there
are some difficulties in estimating the results for the dNBR index.

The index of the dNBR was calculated by making lower adjustments to the NBR
before the fire occurred to avoid miscalculation [71]. Figure 6 demonstrates the dNBR
index, which has coefficients that range between−1.37 and 1.19. It uses colored values from
blue to red. Positive values range from yellow to red, which represents the estimation of the
burned area. Negative values range from blue to yellow, which represents the estimation
of the unburned area.
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As shown in Figure 6, the burned area is expected to reach 1164.27 square km in the
first image and 588.35 square km in the second image.

The classification of burn severity is determined in the next section.

4.3. Burn Severity Classification

In the third proposed result, the burn severity is classified using the pre-fire and
post-fire RBR values. This helps provide aid in emergencies and assess the recovery process
post-fire. The burn severity classification used here is based on that suggested by the United
States Geological Survey (USGS), and it is shown in Table 3.

Table 3. Burn severity classification criteria table (USGS).

Severity Level dNBR Range
(Scaled by 103)

dNBR Range
(Not Scaled)

Enhanced regrowth, high (post-fire) −500 to −251 −0.500 to −0.251
Enhanced regrowth, low (post-fire) −250 to −101 −0.250 to −0.101

Unburned −100 to +99 −0.100 to +0.99
Low severity +100 to +269 +0.100 to +0.269

Moderate-low severity +270 to +439 +0.270 to +0.439
Moderate-high severity +440 to +659 +0.440 to +0.659

High severity +660 to +1300 +0.660 to +1.300

After the estimation of the dNBR, the RBR is calculated with Equation (3), which uses
the ratio of dNBR and NBRpre-fire. Then, the raster images of the RBR were reclassified
by values from the dNBR range. This is demonstrated in Table 3. The RBR estimation
raster images are shown in Figure 7. When the RBRs of this study areas are estimated in
Figure 7, a comparison of the difference in the RBR between the forest-steppe and steppe
areas is represented by different colors. The forest-steppe area was burned more than the
steppe area.

The burned total area was divided into areas of 757.34 km2 (low severity—65.00 per-
cent), 404.57 km2 (moderate-low severity—34.70 percent), and 2.36 km2 (moderate-high
severity—0.3 percent) in the first sampled area of the steppe natural zone, as shown
in Figure 7a. The other burned total area was divided into areas of 158.75 km2 (low
severity—26.98 percent), 297.75 km2 (moderate-low severity—50.61 percent), 131.25 km2

(moderate-high severity—22.31 percent), and 0.60 km2 (high severity—0.10 percent) in the
second sampled area of the forest-steppe natural zone, as shown in Figure 7b. The presence
of small points in the map, especially on the left side, shows the estimation of small errors
in the satellite images. It was obtained at 0.07 percent in low severity (total percent was
26.98 percent) and 0.09 percent in moderate-high severity (total percent was 22.31 percent).
However, these points do not cover a large area of land, which is estimated at 0.16 percent
of the total area.

In the results shown in the figures, the forest and mountain areas are burned more
deeply than the steppe area, which depends on wind speed.
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4.4. Recovery Process after Burning

The NDVI was used with the RED and NIR bands of the satellite images to estimate
which time ranges occurred from spring to fall. The NBR change in the images of the time
series is demonstrated in Figure 8 and was calculated using Equation (4).

The red color indicates decreasing NDVI values, whereas the green color indicates
increasing values, which represent the higher and lower vegetation levels, respectively.
Figure 8 demonstrates vegetation cover, which is compared between the two sampled
study areas. The vegetation distribution level of the forest area is higher than that of the
steppe area. In these two images, worse influences on nature after burning are not seen.
The vegetation has recovered to be better than it was before.

In these special phenomena, vegetation grows from spring to autumn as the years pass.
The vegetation dries every autumn for years, and it accumulates on the ground. Therefore,
a wildfire cleans up all of the accumulated and dried vegetation by burning it. The best
result is that nature heals itself, but human settlements are damaged by wildfires. However,
Mongolian wildfires are not like those in Australia, Russia, and the United States, as they
depend on wind speed and burn only the skin of trees. Damage due to burning does not
reach 100 percent (Figure 9).
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In Figure 9, the top two and bottom two photographs were taken on 21 September
2021, and 12 October 2022. The comparison analysis results pre-wildfire (Figure 3) and
post-wildfire (Figure 9) show that the accumulated grass is cleaned up naturally. There is
no difference in vegetation growth in the forest-steppe natural zone in photographs taken
2 years later.

There is a dense vegetation cover of Stipa krylovi, Cleistogenes squarrosa, Artemisia
frigida, Potentilla acaulis, and Leymus chinensis, which are typical of the Mongolian steppe in
post-wildfire recovery. Furthermore, there is a dense vegetation cover of Stipa baicalensis,
Festuca lenensis, Potentilla strigose, Aster alpinus, and Artemisia lacinata, which are typical of
the forest steppe in post-wildfire recovery.
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5. Discussion

First, the RBR of the wildfire severity results and the NDVI of the vegetation recovery
process results were estimated. These indices were carried out during the vegetation
recovery process between the spring and autumn seasons. This means that the recovering
processes and collected data were a time series. RBR and NDVI data were collected at the
same time. Therefore, the relationships between the raster images of the RBR and NDVI
were calculated in Figures 10 and 11 for the separate natural zones, including the sampled
steppe and forest-steppe areas. In this section, we will discuss these relationships, which
have particular natural laws that can be seen in each figure.
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Figure 10 illustrates the scatter plot of the recovery processes of the first sampled
steppe area. The related scattering distributions are shown, which were measured on 5
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April, 20 April, 5 May, 15 May, 19 July, 18 August, 17 September, and 27 September in 2021.
The burn date was 18 April 2021. The coefficients of the intercepts and slopes increased,
which were 0.13, 0.13, 0.15, 0.20, 0.38, 0.37, 0.40, and 0.39 and −0.14, 0.08, −0.12, 0.025, 0.82,
0.77, 0.59, and 0.54, respectively.

In addition, correlation coefficients were calculated and are shown in Figure 10, which
were 0.13, 0.16, 0.16, 0.004, 0.61, 0.54, 0.33, and 0.29. The first three plots have a negative cor-
relation with healthy vegetation cover. The exact burning date plot is shown in Figure 10b,
and its correlation is lower than that of the other plots. Then, it increases until the autumn.
When the last two months’ vegetation becomes yellow-colored in the satellite images, the
correlation decreases. The dates were in September.

Figure 11 illustrates the scatter plot of the recovery processes of the first sampled
forest-steppe area. The related scattering distributions are shown, which were measured on
11 April, 16 April, 23 April, 1 May, 8 May, 20 June, 22 July, and 21 August in 2020. The burn
date started on 15 April and continued to 1 May 2021. The coefficients of the intercepts and
slopes increased, which were 0.23, 0.13, 0.22, 0.21, 0.23, 0.26, 0.38, and 0.41 and 0.47, −0.13,
0.14, 0.087, 0.093, 0.89, 0.74, and 0.62, respectively.

In addition, correlation coefficients were calculated and are shown in Figure 11, which
were 0.24, 0.04, 0.095, 0.043, 0.037, 0.69, 0.90, and 0.74. The second plot has a negative corre-
lation with healthy vegetation cover. The exact burning date plot is shown in Figure 11b,
and its correlation is negative. Then, it increases until the autumn. When the last month’s
vegetation becomes yellow-colored in the satellite images, then the correlation decreases.
The dates were at the end of August.

The plots in each figure demonstrate that the difference between the plots of Figure 10.
is represented by lighter scattering than in the plots of Figure 11. This means that the
forest-steppe natural zone experienced more severe damage due to fire than the steppe
natural zone. Both recovered 100 percent by the end of the summer season.

Mongolian wildfires are increasingly caused by factors related to climate change.
However, wildfires in natural zones show interesting phenomena. Site selection was
demonstrated in two different natural zones, including forest-steppe and steppe areas.
The wildfire severity of the forest-steppe zone was higher than the wildfire severity of the
steppe zone. The wildfires in the steppe area were influenced by winds. The winds in this
area are stronger than the winds in forest-stepped areas. Therefore, wildfires in the steppe
burn at a low intensity.

In the recovery process, there are no effects on the sites with vegetation growing. The
quality of vegetation cover grew back better than it was before the wildfire. However, the
cover percentage is lighter than before the wildfire. Only tree bark and skin are affected by
wildfire in forest-steppe areas. Therefore, wildfire damage is estimated to be low after the
recovery process. However, if there was human property affected by the wildfire, damages
would increase. Wildfires are not very harmful in Mongolia.

6. Conclusions

Finally, this research provides wildfire knowledge regarding the use of Sentinel-
2 satellite images in the estimation of burn severity and recovery processes in Eastern
Mongolia. We conclude that this research has innovated and successfully obtained new
findings in the area of Mongolian wildfire research. The findings allow us to determine
damage phenomena and pre-wildfire and post-wildfire differences. This research shows
that wildfires do not have a large effect in Mongolia. Furthermore, this research is useful
and fundamental for future wildfire studies. Future research will be based on these findings
and will continue this wildfire study.
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