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Abstract: Otoliths are paired calcified structures in the inner ear of teleosts that function in hearing and
balance. In this study, the use of otolith morphometrics and shape analysis were explored to delineate
the redfin species under the genus Decapterus from the Sulu Sea, Philippines, namely, Decapterus kurroides,
D. smithvanizi, and D. tabl. Results showed that the mean otolith shapes are unique within species
(p < 0.001). The otolith size-related (OW—otolith weight, OL—otolith length, OH—otolith height,
OA—otolith area, and OP—otolith perimeter) and shape-related (RE—rectangularity, SQ—squareness,
EL—ellipticity, RO—roundness, AR—aspect ratio, FF—form factor, CO—compactness, and
CI—circularity) morphometric indices also showed significant variations (p < 0.001) among the
three species. Distinct regions differentiating D. kurroides from the other two species were seen along
the dorsal margin of the otoliths, which was supported by its significantly higher values for OH
(size-related index) and RO (shape-related index). In addition, the morphometric indices showed
significant variations (p < 0.001), except for RE. Furthermore, it was revealed that the size-related in-
dices were able to separate D. kurroides from the other two species, which turned out to be indifferent.
The results provided relevant data on the use of otoliths as an additional confirmatory tool in species
delineation of the identified redfin species, and, therefore, offer opportunities of applying the same
method in delineation and, eventually, identification of species from other genera, especially those
that closely resemble each other.

Keywords: Decapterus kurroides; Decapterus smithvanizi; Decapterus tabl; small pelagics; species delin-
eation; taxonomy

1. Introduction

Otoliths are structures that can be found in the inner ear of Teleost fishes that mainly
function in hearing and balance [1]. These are made of calcium carbonate and contain small
amounts of proteinaceous matter [2]. As the fish grows, new calcium carbonate layers
deposit onto the otolith surface. Otoliths are important in studies on fish populations and
stocks by being valuable natural tags because of their continuous growth and metabolic
inertness. Information that the otolith contains can be used to indicate ecosystem range,
spatial distribution, and stock structure of fish species [3]. Otolith shape and chemistry,
on the other hand, are among the methods used in stock delineation. They can be simple
to technical, quantitative, and sophisticated. Some examples include catch data, mark-
recapture experiments and molecular methods [4,5], parasite incidence [6,7], scale and
otolith microchemistry, stable isotopes, shape, microstructure [8–11], and life history [12].
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Otoliths can have unique shapes that correspond to species [13,14] but intraspecific
variations may exist [15,16]. Some studies also showed directional (ear-side) and ontoge-
netic asymmetry in the same species [17–22]. Fish with different life histories often show
differences in otolith morphology as a collective result of genetics and environment [23]. In
addition, otolith shapes may vary geographically relative to environmental factors as well
as fish growth [22,24–26]. Berg et al. [27] highlighted the strong effects of genetic factors,
while some underlined the effects of environmental parameters, such as temperature, depth,
salinity, substrate, and feeding conditions [28–31]. Genetically-induced changes become
more pronounced since the environment alters otolith growth rate, which then modifies
the shape of the otolith [25,27,32].

The archipelagic waters of the Philippines are home to a wide variety of marine re-
sources that serve as a viable source of food and livelihood in the form of multi-scale,
multi-gear, and open access multispecies exploitation. This supports about 70% of Fil-
ipinos that live in coastal areas [33]. Among the most harvested resources (in volume)
are small pelagic fishes that make up the top numbers in annual municipal and com-
mercial capture fisheries production (see PSA [34]). One of the most important small
pelagic fishes in the country are the Decapterus species., locally known as “galunggong”
or roundscads. This group is characterized by a single finlet posterior to both the second
dorsal and anal fins and lack scutes on the anterior curved part of the lateral line [35].
There are currently 11 valid species listed under the genus [35,36]. The redfin Decapterus
group, which was clustered by Kimura et al. [35], includes Decapterus akaadsi Abe, 1958;
D. kurroides Bleeker, 1855; D. smithvanizi Kimura, Katahira and Kuriiwa, 2013; and D. tabl
Berry, 1968. The different species of redfin Decapterus were all reported in the Philippines:
D. kurroides by Kimura et al. [35]; D. tabl by Narido et al. [37], Kimura [38], and Motomura
et al. [39]; D. akaadsi by Smith-Vaniz et al. [40]; and the most recent report, D. smithvanizi,
by Delloro et al. [41] in Panay Island, Philippines. The redfin group is collectively known
as “pula-ikog”, most particularly in Panay Island. At present, studies on the redfin group
are very few and almost limited to records of existence and taxonomic descriptions. These
studies mostly relied on the use of morphometrics, meristics, and genetic differentiation.
Visually, there can be very little and very intricate differences among the three recorded
species (D. kurroides, D. smithvanizi, and D. tabl). Some of the most prominent descriptors
listed by Delloro et al. [41] include the deeper body of D. kurroides, compared to the slender
D. smithvanizi and D. tabl, which is also shown in Figure 1. Furthermore, the length of the
pectoral fin is shorter in D. tabl than in D. smithvanizi.

Due to the strong resemblance of D. kurroides, D. smithvanizi, and D. tabl with each
other, the three redfin Decapterus species are categorized as one by fishers (even hired
enumerators) from Panay Island, Philippines, in fish landings and markets. For this reason,
they are being reported as a single species or generalized as “galunggong” or roundscads in
fisheries assessments and landed catch enumeration that form local and national fisheries
statistics. To address this issue, the morphometrics and shape of the right sagittal otoliths
were investigated by creating a valid representation of the mean otolith morphometric
observations and shape outlines. Otolith size and shape relationships with fish length
were also examined. The purpose of this study was to investigate the main hypothesis that
the three redfin Decapterus species from the Sulu Sea, Philippines, may be identified and
distinguished from one another using otoliths.
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Figure 1. Representative images of the three redfin Decapterus species used in this study: (A) 
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Miagao, and Guimbal (see Figure 2). Samples were from the adjacent Sulu Sea, which is 
the most prominent fishing ground in the area. This information was based on 
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Figure 1. Representative images of the three redfin Decapterus species used in this study:
(A) Decapterus kurroides; (B) D. smithvanizi; (C) D. tabl. Photos by E.S.D.J.

2. Materials and Methods
2.1. Sample Collection

Non-live fresh samples of Decapterus kurroides, D. smithvanizi, and D. tabl were pur-
chased from fish markets in the province of Iloilo, Philippines, namely, San Joaquin, Miagao,
and Guimbal (see Figure 2). Samples were from the adjacent Sulu Sea, which is the most
prominent fishing ground in the area. This information was based on preliminary surveys
conducted on fishers that operate commercial fishing vessels from the landing sites. A total
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of 82 redfin specimens were collected from February to July 2021. Upon transport to the
laboratory, the standard length (SL) and total length (TL) were measured to the nearest
0.1 cm using a digital caliper (Mitutoyo ABSOLUTE Series 500), while the total weight
(BW) was taken in 0.1 g using a digital weighing scale. Species identification followed
Motomura et al. [39] and Delloro et al. [41]. The D. kurroides samples had TL ranging from
15.2 to 27.3 cm. For D. smithvanizi and D. tabl, the samples’ TL range were 13.9–21.8 cm and
18.3–25.4 cm, respectively. These results are summarized in Table 1.
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fish samples were collected.

Table 1. Summary of length and weight of redfin Decapterus from the Sulu Sea used in this study.

Species N Mean Body Weight
(g) ± SD

Mean Total Length
(cm) ± SD

Decapterus kurroides 32 115.853 ± 85.14 20.222 ± 4.90
Decapterus smithvanizi 34 59.682 ± 19.11 17.844 ± 1.86

Decapterus tabl 16 100.925 ± 29.42 21.863 ± 2.22

2.2. Otolith Extraction and Storage

Consistent with the methods in Barnuevo et al. [16], the sagittal otoliths were extracted
from the samples, first, by locating the otic capsule in the post-ventral portion of the neuro-
cranium. A shallow incision was created in the middle portion of the otic capsule, which
eventually gently broke, and the sagittal otoliths were exposed and extracted using fine
forceps. The collected otoliths were pre-cleaned with distilled water, submerged in bleach
for 20 to 30 s to remove remaining blood and muscle debris, and immersed in absolute
ethanol until air-dried. The samples were stored in 2.5 mL Eppendorf microcentrifuge
tubes. The weights of individual otoliths (OW) were measured using a Shimadzu ATX224
analytical balance (Shimadzu Corporation, Kyoto, Japan; precision: 0.1 mg).

2.3. Sample Imaging

Each otolith used in this study was photographed using an Olympus SZ61 stereomi-
croscope (Evident Corporation, Tokyo, Japan) with an XCAM 1080PHB c-mount camera
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(ToupTek Photonics, Hangzhou, China). The samples were laid on the non-sulcus side.
Imaging was guided with a ruler for calibration and reference for the proceeding mea-
surements. A total of 32, 34, and 16 right otoliths were imaged, representing D. kurroides,
D. smithvanizi, and D. tabl, respectively.

2.4. Otolith Morphometry

Five indices related to otolith size were obtained: otolith weight (OW), otolith length
(OL), otolith height (OH), otolith area (OA), and otolith perimeter (OP), which were mea-
sured in ImageJ (NIH, USA). Furthermore, eight shape indices were calculated: rectan-
gularity (RE), squareness (SQ), ellipticity (EL), roundness (RO), aspect ratio (AR), form
factor (FF), compactness (CO), and circularity (CI) using the equations provided by Osman
et al. [42].

2.5. Otolith Shape Analysis

To visualize the differences in the otolith shape of three identified redfin species,
images were subjected to shape analysis using the ShapeR 0.1–5 package [43] in Rstudio
version 4.1.1 [44] to generate Wavelet coefficients. Additional packages used were Vegan
2.6–4 [45] and ggplot2 3.3.3 [46] for creating high resolution plots. Due to the difficulties
encountered in detecting the outlines from raw otolith images, even when increasing the
“detect.outline” threshold (0.1–0.5), the otolith images were converted into black and white
using an image editing software (see Figure 3). This added step increased the detectability
of the otolith outlines (at threshold = 0.1–0.2), as the possible effects of glares on the otolith
surface were eliminated.

2.6. Data Analyses

A cross-correlation analysis between fish length and raw measured data on otolith size
indices was performed in jamovi version 2.3.18 [47] using the “Regression” module to show
the relationships between fish size and the descriptors and between each other. Since we
observed that the otolith morphometric indices are highly correlated with fish total length,
we perceived the need to remove the allometric influence to the indices. Without allometry
correction, it would be difficult to say that the morphometric and shape differences in
otoliths are indeed interspecific differences within the Decapterus group rather than just
differences implicated by collecting different sizes of fish.

To remove allometric influence and enable unbiased statistical observations, the otolith
size indices were scaled up with the TL of fish using linear regressions [48,49]. The slope (b)
from the linear regressions were calculated and were used to remove allometric influence on
data. The formula Ms = Mo(x/x)b followed Deepa et al. [50] (based on original equation
by Lleonart et al. [51]), where Ms is the allometry-corrected measurement; Mo is the original
otolith size parameter; x is the mean size parameter for all specimens; x is the size parameter
of each specimen; and b is the slope of the regression between logMo and log(x) [45,51,52].
The equation was applied to both size-related and shape-related indices. The resulting
values were used in the proceeding analyses.

The allometry-corrected data were tested using the Shapiro–Wilk test for normality.
Results have shown that the data is not normally distributed (p < 0.001). Hence, to compare
the differences in the allometry-corrected morphometric measurements of the otoliths
between species as well as the OL/TL and OH/OL proportions, non-parametric analy-
sis of variance (Kruskal–Wallis) was performed in jamovi using the “ANOVA” module.
Along with the Kruskal–Wallis test was Dwass–Steel–Critchlow–Fligner (DSCF) pairwise
comparison for the post-hoc test. Furthermore, to characterize and visualize the influences
and differentiation of each species based on allometry-corrected otolith morphometric
measurements by the dimension reduction procedure, a principal component analysis
(PCA) was performed in RStudio version 4.1.1.

The mean shape of the otoliths from the three redfin species under the genus Decapterus
were obtained using the ShapeR and Vegan packages in RStudio using the “detect.outline”
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function and were plotted using the Wavelet coefficients. To further characterize the differ-
ences in mean otolith shapes between the three redfin species, an ANOVA-like permutation
test (function in ShapeR) was also ran for both smoothed and non-smoothed outlines. To
further support these results, a constrained ordination (Canonical Analysis of Principal
Coordinates) was performed using the Wavelet coefficients, which were visualized using
the ggplot2 package.
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D. smithvanizi—21.8 cm TL (C,D), and D. tabl—22.6 cm TL (E,F). The crossmap (lower-left) indicates
the position of the otoliths: anterior (A); ventral (V); dorsal (D); posterior (P). Scale bar: 1 mm.

3. Results
3.1. Otolith Morphometry

The group descriptives showed that D. kurroides had heavier (OW = 0.63 ± 0.06 mg),
longer (OL = 5.41 ± 0.17 mm), and taller (OH = 2.44 ± 0.10 mm) otoliths that covered
larger OA (8.30 ± 0.46 mm2) and OP (13.96 ± 0.56 mm) compared to the other two species.
The mean values of OW, OL, OH, OA, and OP for D. smithvanizi were 0.31 ± 0.03 mg,
4.53 ± 0.21 mm, 1.92 ± 0.07 mm, 5.54 ± 0.29 mm2, and 11.87 ± 0.58 mm, respectively. For D.
tabl, mean values were 0.39 ± 0.07 mg, 4.10 ± 0.71 mm, 1.73 ± 0.29 mm,
4.53 ± 1.41 mm2, and 11.10 ± 2.11 mm for OW, OL, OH, OA, and OP, respectively. In terms
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of the shape-related indices, D. kurroides had the highest mean values for RO (0.36 ± 0.02)
and FF (0.54 ± 0.03), indicating that its otoliths are significantly rounder and more irregular
compared to the other two species (p < 0.001). The highest mean values were also observed
for RE (0.64 ± 0.02) and SQ (3.99 ± 0.42) in D. smithvanizi, which corresponds to greater
variation in length and width with respect to OA. Finally, relative to the other two species,
D. tabl otoliths were more elliptic (0.41 ± 0.01) to circular (0.66 ± 0.38), more compact
(27.68 ± 3.14), and had higher AR (2.37 ± 0.07).

The summary of the calculated proportions of OL/TL and OH/OL are presented in
Table 2. In D. kurroides, OL/TL was 2.68 ± 0.11% (mean ± SD), while, in D. smithvanizi and
D. tabl, OL/TL were 2.52 ± 0.12% and 1.88 ± 0.44%, respectively. For OH/OL, values were
45.46 ± 3.34% in D. kurroides, 46.6 ± 2.40% in D. smithvanizi, and 42.29 ± 1.53% in D. tabl.
The Kruskal–Wallis test and DSCF pairwise comparison has further shown that the OL/TL
proportions between species were significantly different (p < 0.001), while, for OH/OL, the
proportions were indifferent (p > 0.05) between D. smithvanizi and D. tabl.

Table 2. Summary table of Kruskal–Wallis and DSCF pairwise comparison tests for the calculated
proportions of OL/TL and OH/OL in the three redfin Decapterus species from the Sulu Sea.

OL/TL X2 df W

Decapterus kurroides Decapterus smithvanizi
53.0

2 −6.82 ***
Decapterus kurroides Decapterus tabl 2 −7.92 ***

Decapterus smithvanizi Decapterus tabl 2 −7.91 ***

OH/OL

Decapterus kurroides Decapterus smithvanizi
18.8

2 −5.262 ***
Decapterus kurroides Decapterus tabl 2 −5.042 **

Decapterus smithvanizi Decapterus tabl 2 −0.676
Note: ** = p < 0.01, *** = p < 0.001.

The Kruskal–Wallis test has also revealed that the allometry-corrected morphometric
indices were generally distinct within species (p < 0.001), except for RE (p > 0.05). Post-hoc
tests have further shown significant differences (p < 0.05) between in the indices between
D. kurroides and D. smithvanizi, except for RE (p > 0.05, Table 3). The same was observed for
the comparison between D. kurroides and D. tabl. Finally, between D. smithvanizi and D. tabl,
OL, OP, RE, EL, RO, and AR were indifferent (p > 0.05)

Prior to the PCA, a Kaiser–Meyer–Olkin (KMO) test within the PCA of the “Factor”
module in jamovi was performed. The overall result was a value of 0.74, which is classified
as “middling” and was therefore accepted as an adequate sampling of the variables. Moving
on, the results of the PCA showed that the PC2, which comprised the size- and shape-
related indices (except for RE), explained 53.7% of the variation in the otoliths. The PC2,
on the other hand, which included the size-related indices, OL, OA, OP, and all the shape-
related indices (except SQ), explained the additional 21.9% of the variation. Together, they
explained 75.6% of the variation in the otoliths of the three redfin Decapterus species.

Figure 4 shows the groupings of the three redfin Decapterus species based on the
morphometric indices of their otoliths. The D. kurroides cluster was situated along the
positive region of the PC1, while D. smithvanizi and D. tabl were along the negative region of
the same axis. The biplot further shows how the variables in the PC1 were able to separate
D. kurroides from the other two species as evidenced by its distance to the overlapping
cluster, indicating otolith variables from D. smithvanizi and D. tabl. The PC2, conversely,
has shown that there is little to no difference between D. kurroides, D. smithvanizi, and D.
tabl. The differences in the values of size- and shape-related indices can also be seen in the
directions of the vectors that represent variable loadings. From this data, we infer that the
size-related indices, OW, OL, OH, OA, and OP can separate D. kurroides from the other two
species. For the shape-related indices, D. smithvanizi and D. tabl shared similar values for
EL, AR, and CO and, hence, cannot be used as indicators of their distinction. Moreover, RE,
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RO, and FF did not belong to any of the clusters. Hence, they cannot be used to separate
the three redfin Decapterus species.

Table 3. Summary table for Kruskal–Wallis test using the size- and shape-related morphometric.
Indices from the three redfin Decapterus species from the Sulu Sea, Philippines.

X2 df ε2

Size-related indices

OW 65.75 *** 2 0.81
OL 56.35 *** 2 0.70
OH 60.67 *** 2 0.75
OA 60.96 *** 2 0.75
OP 52.61 *** 2 0.65

Shape-related indices

RE 3.36 2 0.04
SQ 58.83 *** 2 0.73
EL 26.99 *** 2 0.33
RO 18.60 *** 2 0.23
AR 25.70 *** 2 0.32
FF 33.39 *** 2 0.41
CO 33.39 *** 2 0.41
CI 63.26 *** 2 0.78

Note: *** = p < 0.001.
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3.2. Otolith Shape Analysis

Overall, the otoliths had lanceolated shapes whose outlines were virtually identical
(see Figure 5), but wavelet coefficients have shown statistically significant differences
(p < 0.001) in the mean shapes of the otoliths and that the coefficients were able to separate
the species from each other (Figure 6). Major variations between species were seen on how
pronounced the antirostrum were in Figure 5, and it was well-defined in Decapterus tabl
(also shown in Figure 3). In addition, the posterior margin of D. kurroides otoliths appeared
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to be more rounded than the other two species. Furthermore, the degree of dentation along
the dorsal margin was less in D. kurroides.
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Figure 6. Plot showing mean otolith shapes of the three redfin Decapterus species from Sulu Sea,
Philippines, using canonical analysis of principal coordinates (CAP) with the wavelet coefficients.
Labels represent species and the mean canonical values, while surrounding points denote each
individual fish of the same species (red—DK, green—DS, blue—DT). DK—Decapterus kurroides;
DS—D. smithvanizi; DT—D. tabl. Lines surrounding the labels are the standard deviations
(mean ± SD) in both CAP1 and CAP2.

Regions of marked differences among the three species are highlighted using the mean
and standard deviation as well as intraclass correlations. These were evident along the
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regions 0–20◦, 55–80◦ (postrostrum to ventral), 130–230◦, 230–270◦ (rostrum to dorsal), and
270–340◦, which are also evident in Figures 3 and 5.

4. Discussion

This study explored the use of otolith shape and morphometric indices as tools to
delineate the redfin Decapterus species from the Sulu Sea, Philippines, namely, Decapterus
kurroides, D. smithvanizi, and D. tabl. The results have shown that the otoliths of the three
redfin Decapterus species varied. The largest variation was caused by the size-related
morphometric indices, OW, OL, OH, OA, and OP, which separated Decapterus kurroides
from the overlapping D. smithvanizi and D. tabl. This divergence was also clear along
the rostrum, dorsal margin, and postrostrum of the generated otolith outlines (Figure 5),
which was supported by its significantly higher values for OH (size-related index) and
RO (shape-related index) compared to the other two species. The shape of the rostrum
and postrostrum has also shown an evident divergence by D. kurroides from the other two
species, which also had comparable values for mean ellipticity (D. kurroides = 0.378 ± 0.02;
D. smithvanizi = 0.404 ± 0.02; D. tabl = 0.406 ± 0.01), meaning the D. kurroides otoliths are
less elliptic or less oblong in shape.

The observed morphometric and shape differences between the otoliths of the three
redfin Decapterus used in this study support the specificity of otolith shape to species [13,14].
Otoliths are known to exhibit inter- and intraspecific variations due to environmental and
genetic factors. Among these, according to Sadighzadeh et al. [53], genetic differences
should have the greatest influence in otolith morphology. The results from this study
suggest a greater genetic difference of D. kurroides from the other two species.

While D. kurroides, D. smithvanizi, and D. tabl reside in a homologous basin and are
commonly integrated in fish catch, their vertical distribution is different. A report from
Smith-Vaniz [54] indicated that D. kurroides dwell within 150–300 m depths, while D. tabl
was reported to reach depths of 7–550 m [55], usually 150–220 m [56]. Both species are
within the epipelagic to mesopelagic zone. There is currently no data indicating the depth
range of D. smithvanizi. In FishBase, it is listed as demersal, but it can be assumed to be
up to 200 m or along the neritic region, as they are also captured with purse seines, ring
nets, and handlines along with D. kurroides and D. tabl in nearshore areas. The interspecific
differences in the otoliths of the three redfin Decapterus species used in this study reflects
the differences in their depth range and distribution. Deeper waters equate to higher
water pressures. According to Tuset et al. [57] and Bani et al. [58], fish that live in greater
depths are expected to have larger otoliths. On the contrary, Correia et al. [59] reported
that changing hydrostatic pressure does not affect otolith development in early Oreochromis
niloticus (Linnaeus, 1758) juveniles under constant temperature and salinity.

Food and nutrient quality and availability are also among the factors that influence
fish growth and, hence, otolith development [17,31,60–62]. The consequences of these
will be seen in variations in the shape and morphology of otoliths. The shared common
habitat among the three redfin species of Decapterus suggests that available prey items and
nutrients may be congruent. However, studies on their food preferences will provide more
a concrete basis to support this hypothesis.

In this study, we have provided additional inputs on the diversity of structures that
can be used to delineate species that closely resemble each other, such as the redfin species.
These species are harvested in various parts of the country but are treated as one species in
fisheries statistics reports. One of the possible reasons is that the visual differences between
the species are very minimal, especially in lower size-length classes. It is for the same
reason that fishers do not segregate them in catches even until it reaches the market, because
sorting would add up to the time consumed before the catches reach the target markets and
consumers. However, this poses threats on the populations of these species. Roundscads,
in general, are among the commercially important small pelagic fish in the Philippines and
are among the top commodities in the annual volume of fisheries production. However, as
in other species, data on the dynamics of these species’ populations are scarce, so there is
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no basis for implementation of management interventions, such as catch size and volume
limits. It is also important to note that, among the three redfin species investigated, D. tabl
is the least frequently caught; hence the low number of samples collected for this study.
Treating the redfin group as a single species means that we may be fishing down fish
populations while unconsciously depleting one or more of these species. Since fisheries
statistics treat them as one, there is no data that could support or prove that the former
statement may have taken place in the past.

This study corroborated the results of previous works and has shown the potential
of using otolith shape and morphometric analyses in giving data on markers that can
separate the redfin species of the genus Decapterus. This was specifically effective for
separating D. kurroides from the other two species. For D. smithvanizi and D. tabl, the otoliths
differed in shape but not with size- and shape-related morphometric indices. The fact that
shape analysis has shown a high visual similarity between the D. smithvanizi and D. tabl
otoliths shows the current limitations of the interspecific variability that otolith shape and
morphometrics can reveal. It might be that, for these two species, genetics will be the most
effective separator. However, the addition of more variables in morphometric analyses,
such as microstructures, can be explored to investigate the most intricate differences that
will enable separation of these two redfin species. For now, this methodology has shown to
be very effective for the delineation of phenotypic stocks, such as in Barnuevo et al. [16].
The application of the same method in other genera will further refine the current methods
and will help prove its effectiveness in delineating cryptic fish species or species that have
very low variability in appearance. Studies on the biology, ecology, and dynamics of the
populations of redfin Decapterus species should be explored. These will be important in
giving a deeper understanding of the interspecific variations that exist within the group,
such as the morphometrics and shape of the otoliths.

5. Conclusions

The major findings in this study were: (1) morphometric indices (size- and shape-
related) have shown positive statistical relationships with fish length; (2) size- and shape-
related indices were significantly different between species; (3) size-related indices sep-
arated Decapterus kurroides from the other two species, which were seen to overlap; and
(4) otolith shape analysis was effective in separating the redfin species of Decapterus from the
Sulu Sea and identified regions of marked differences in the otolith outline. Therefore, this
study shows that, while progress in fish taxonomy is veering towards molecular methods,
otoliths still serve as cheap alternatives that can provide significant phenotypic data that
can be used to separate species and populations. Otoliths present relevant biological fish
data with less investment in time and financial resources compared to molecular methods,
which will be the ultimate confirmatory method. Future studies on the otoliths of the same
group should consider integrating intraspecific variations that may occur in these species
(e.g., ear-side effects, influences of sex, life history, etc.). Moreover, starting studies on the
redfin Decapterus species’ biology, ecology, and population dynamics will be helpful in
explaining these differences.
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