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Abstract: The Hailar River is an important river in the Inner Mongolia Autonomous Region, China.
It plays an extremely important role in maintaining the ecological balance of the region. However,
in recent decades, the Hailar River and its surrounding areas have been developed at a high rate
and its wetland resources have faced various threats. In this study, vegetation changes in the Hailar
River wetlands were analyzed using remote sensing data from the Landsat TM (1987, 2001, and 2010)
and Landsat OLI-TIRS (2019) satellites. A vegetation change model was developed using Matlab
software to assess vegetation changes in the area. There were significant changes in the wetland
vegetation of the lower Hailar River study site between 1987 and 2019. There was an increase in open
sand habitat with a sparse vegetation area of 1.08 km2, a decrease in grassland area of 13.17 km2,
and an increase in the forest area of 15.91 km2. The spatial distribution of the normalized difference
vegetation index (NDVI) varied across the study site and was high overall. The vegetation types
varied with distance from the river. There are two possible explanations for positive and negative
vegetation change trends. In areas where the water supply is sufficient and relatively stable, the
cover of forest vegetation was gradually increasing and the herbaceous plant community is gradually
evolving into a scrub woodland plant community. In areas where the water supply is lacking, there
are changes in the sense of a decrease of forest vegetation and an increase of open sand habitat with
sparse vegetation. Therefore, this study suggests that the existing wetlands should be protected, used
wisely, and developed rationally to provide sustainable resources for the next generation.

Keywords: Hailar River; remote sensing; river floodplain wetlands; vegetation index; vegetation
changes

1. Introduction

River floodplain wetlands are valuable natural resources for human beings. They have
the functions of regulating regional ecological conditions and environments and provide
irreplaceable direct and indirect services to humans [1–3]. In recent years, rivers and river
floodplain wetlands around the world have undergone change [4–7]. These changes greatly
affect terrestrial and aquatic environments, such as by altering wildlife ecosystems and
threatening regional sustainable development [8,9]. Therefore, the study of vegetation
changes in river-floodplain wetlands is key to their conservation and the management and
planning of wetland resources.

There are wetlands on both sides of the main section of the Hailar River, which are
key to reducing ecological risks and building ecological patterns in the river basin. They
are critical ecological corridors linking the elements of the river basin’s ecosystem. These
ecological corridors are extremely important areas linking the water-containing ecological
functions of the Greater Khingan Range and are also ecological security maintenance areas
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for biodiversity protection, climate regulation, and food and water supplies [9]. They are
of great importance to regional wind control and sand fixation, vegetation restoration, and
the construction of ecological communities comprising mountains, water, forests, lakes,
and grasslands, which cover the whole watershed and its elements.

In recent years, remote sensing technology has developed rapidly, allowing researchers
to gain its advantages of cost- and time-savings for the monitoring of wetland vegetation.
This has made it possible to monitor long-term vegetation changes in river-floodplain
wetlands [10,11]. The use of remote sensing (RS) and geographic information system (GIS)
techniques to study vegetation changes along river floodplain wetlands is an ongoing
focus of research on regional and global scales. This includes monitoring of land cover
classification, vegetation changes, water use, and species diversity [11].

More than 100 vegetation indices are currently in use, especially the normalized
difference vegetation index (NDVI), which is the most commonly applied indicator in
environmental and climate change studies [12]. The NDVI is normalized by the relation-
ship between the near-infrared (NIR) reflectance of a given remotely sensed image and
the red band (RED) [13]. Many researchers have used NDVI to assess crop cover [13],
vegetation [13], and agricultural drought [14]. Vegetation indices are simple measurement
parameters used for environmental resource management and provide information that
is useful for assessing the Earth’s plant cover and crop growth at the pixel level based
on satellite images [15]. These methods provide different ideas for the study of wetland
vegetation around rivers. However, few studies have been conducted on river-floodplain
wetlands in the lower section of the Hailar River [16,17]. This study focuses on vegetation
changes at the pixel level in river-floodplain wetlands in this region.

This study takes the downstream section of the Hailar River in the Inner Mongolia
Autonomous Region, China, as the research object. Remote sensing images are used to
explore vegetation changes in the river floodplain wetlands on both sides of the river.
This study hopes to achieve the following main objectives: (1) To quantitatively assess
vegetation changes and the spatial distribution of river-floodplain wetlands in the lower
section of the Hailar River over the past 30 years; (2) to explore vegetation changes in the
river floodplain wetlands, and; (3) to identify areas with significant vegetation changes in
order to inform decision-makers and, thus, improve sustainable wetland planning policies.

2. Materials and Methods
2.1. Study Site

The Hailar River is located in Hulunbeier City, Inner Mongolia Autonomous Region,
China (Figure 1). It originates at the western foot of the Greater Khingan Range in the
territory of Urqihan Town, Yakeshi City, and is the upstream section of the Erguna River.
It flows in an east-west direction (Figure 1) at a location of approximately 49.12◦ N and
119.39◦ E. The wetlands and swamps of the river are widespread, so that water can readily
diffuse and seep during high water levels, resulting in a lower runoff volume downstream
than upstream. The tributaries on the west bank are densely packed and the river network
is dendritic in structure. The banks of the main streams and tributaries are covered with
pristine forests and secondary forests with well-developed vegetation and strong water-
supporting effects and form the main flow-producing area of the Hailar River.

The vegetation cover on both sides of the main stream of the Hailar River is relatively
high and plant growth is vigorous. The vegetation type is mainly scrub, mixed scrub, and
natural pasture, with relatively few trees. The scrub vegetation is mainly marsh willow
(Salix rosmarinifolia L. var brachypoda (Traktv. Et Mey) Y. L. Chou), yellow willow (Salix
gordejevii Y. L. Chang et Skv.), and brome (Caragana sinica (Buc’hoz) Rehder). The forests
include coniferous forests (Larix gmelinii (Rupr.) Kuzen, Pinus sylvestris var. mongolica Litv.)
and mixed coniferous and broad-leaf forests (Larix gmelinii (Rupr.) Kuzen, Betula platyphylla
Suk., Picea asperata Mast.).
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Figure 1. Location of the study site.

2.1.1. Data Sources

Current remote sensing satellite data provide diverse data options for the extraction
of forest vegetation information. Considering the large area of the study site, Landsat
5 TM/8 OLI-TIRS 1T level images for this study were acquired from NASA (Table 1). The
images cover the whole study site with the rank number 123,026 and were acquired in the
summer growing period (July–August) of 1987–2019. Only images with <2% cloud were
used. In this study, image data were acquired on 24 July 1987, 15 August 2001, 23 July 2010,
and 16 July 2019, based on the key phenological periods of forest and grassland vegetation.
Landsat provides medium- and high-resolution earth observations, which greatly reduces
the data cost of large-scale remote sensing monitoring of forests and improves its timeliness.
Data on the dominant tree species were obtained from the Hailar Regional Forestry Bureau.

Table 1. Landsat5 TM/8 OLI data situation.

Satellite Band Nominal Spectral
Location Satellite Band Nominal Spectral

Location

Landsat5
TM

1 Blue

Landsat8
OLI

1 Costal/Aerosol
2 Green 2 Blue
3 Red 3 Green
4 Near IR 4 Red
5 SWIR-1 5 Near IR
6 LWIR 6 SWIR-1
7 SWIR 7 SWIR-2

8 Panchromatic
9 Costal/Aerosol
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2.1.2. Primary Data Processing

Radiance was calculated using the Radiometric Calibration tool (Radiometric Cal-
ibration) in ENVI 5.3, using an MTL.txt metadata file as input data. The output data
was set to BIL format by line band. The output data type was set to floating-point data,
the scale factor was automatically set to 0.1 and, to obtain the atmospherically corrected
reflectance product, the radiation file was entered into the One-Angle Atmospheric Analy-
sis of Hyperline-of-Sight (FLAASH) atmospheric calibration module. The Atmospheric
Correction Module (ACM) of FLAASH in ENVI 5.3 was used, which automatically enters
the appropriate correction parameters from the radiometric images. Other parameters (e.g.,
date, time-of-flight, and ground elevation) must be entered manually. We set the atmo-
spheric model to Temperate and the Aerosol model to Rural, while the Aerosol retrieval
was automatically set to 2-band K-T (Kaufman-Tanley method). The input parameters
varied from scene to scene. The values of all reflectance products ranged between 0 and
1, and all of the obtained reflectance products were geometrically refined. The selected
10 alignment points were evenly distributed within the image experiment area and the
errors were all less than 1. The normalized vegetation index was then calculated by the
waveform calculation tool.

2.2. Methods
2.2.1. NDVI Vegetation Index

The NDVI was selected from the vegetation extraction model of remote sensing
images. The NDVI is sensitive to the chlorophyll content of leaves and can be obtained
using Equation (1) [18].

NDVI = (NIR − RED)/(NIR + RED) (1)

NIR is the reflection value of the near-infrared band, RED is the reflection value
of the red light band. Many researchers have used the NDVI for vegetation change
monitoring (e.g., [19,20]). Through their studies, it was found that changes in NDVI can
reflect vegetation changes.

The NDVI values were transformed into the range of (−1 to +1) so that the best
classification features could be obtained by the best differentiation threshold. Tables 2 and 3
show the most common NDVI differentiation thresholds and corresponding categories
according to the Remote Sensing Phenology Foundation [21] and [22]. According to the
findings of [11,23,24], when extracting vegetation changes for a wetland study site, a
uniform NDVI extraction threshold should be used. It has been shown that different NDVI
vegetation extraction thresholds can be used for all classification extracted images.

Table 2. Base classification of normalized difference vegetation index (NDVI) values according to
remotely sensed phenology [22].

NDVI Range Class

≤0.1 Low NDVI
0.2–0.5 Mid NDVI
0.6–0.9 High NDVI

Table 3. NDVI values according to [22].

NDVI Range Class

0–0.1 Barren areas of rocks, sand or snow
0.2–0.3 Shrubs and grasslands
0.6–0.8 Temperate woodland and tropical rainforest

Close to 0 Open sand habitat with sparse vegetation
Negative value Water
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2.2.2. Vegetation Classification

In this study, the NDVI was used to show the distribution status of wetland vegetation.
The NDVI values were extracted from four time series of Landsat images and classified
using an iso-clustering unsupervised classification technique. The results were then used
to compare the changes in wetland categories across the four time points of remote sens-
ing images. The NDVI was reclassified into five categories: dense forest, sparse forest,
grassland, open sand habitat with sparse vegetation, and no vegetation.

Vector data from a survey of the dominant tree species in forest land in 2016 were
obtained from the Hailar District Forestry Bureau and combined with NDVI data extracted
from the 2016 Landsat summer vegetation growth bloom period. By calculating the
NDVI of the dominant tree species in the area of interest, NDVI classes were calculated
as dominant tree species NDVI = 0.4–1, grassland= 0.2–0.4, and open sand habitat with
sparse vegetation = 0.1–0.2, as shown in Figure 2. Combined with the NDVI classification
thresholds provided by [22], this study classified NDVI into three categories as shown in
Table 4: open sand habitat with sparse vegetation, grassland, and forest. The dominant
tree species within sparse and dense forests in the study site had similar compositions and
were dominated by Populus L., Salix Rosmarinifolia L. var brachypoda (Traktv. Et Mey) Y. L.
Chou, Salix gordejevii Y. L. Chang et Skv. Therefore, in this study, sparse forests with NDVI
values of 0.4–0.6 and dense forests with NDVI values of 0.6–1 were combined into one
category; i.e., forests. The dominant vegetation types within different NDVI classification
thresholds are shown in Table 4. This classification allows the assessment of changes that
have occurred in wetland vegetation over the past three decades.

Iso-clustering unsupervised classification is a multivariate spatial analysis tool used
to classify raster bands. The minimum number of classes is two and there is no maximum
number of clusters, but the minimum class size should be 10 times larger than the number
of layers in the input raster band [25]. The generated classes were grouped and manually
recoded using the Reclassification Spatial Analyzer tool in ArcMap software.
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Figure 2. The vector diagram of dominant tree species in 2016 and the NDVI of the corresponding
year ((A) Survey data of typical tree species in 2016 provided by the forestry department; (B) NDVI
distribution of typical tree species in 2016 calculated based on the survey data provided by the
forestry department).

Table 4. NDVI classification.

NDVI Class Vegetation Description

0.6–1 Dense woodland

Populus L., Salix Rosmarinifolia L. var brachypoda (Traktv. Et
Mey) Y. L. Chou, Salix gordejevii Y. L. Chang et Skv.,

Caragana sinica (Buc’hoz) Rehder, Pinus sylvestris var.
mongolica Litv., mixed forests, etc.

0.4–0.6 Sparse woodland Populus L., Salix Rosmarinifolia L. var brachypoda (Traktv. Et
Mey) Y. L. Chou, Salix gordejevii Y. L. Chang et Skv.

0.2–0.4 Grassland Filifolium sibiricum (L.) Kitam., Stipa baicalensis Roshev.,
Leymus chinensis (Trin.) Tzvel., Potentilla chinensis Ser., etc.

0.1–0.2 Open sand habitat
with sparse vegetation Soil covered with sparse weeds

−1–0.1 No vegetation Water

2.2.3. Change Detection

Digital change detection is a method of assessing differences in vegetation in different
time periods. It has the ability to quantify temporal effects using multispectral image data.
There are several methods for accomplishing digital change detection by comparing two or
more images of a study site from different periods. Examples are inter-pixel comparison
and classification comparison [26]. In this study, three change scenes based on 2019 data in
relation to 1987, 2001, and 2010 data were compared using a classification method (the time
of data acquisition for this study started in 1987, and the summer 2001 image was chosen
as representative because there were no suitable classification images from the summer of
2000). In this study, a spatial model was developed based on Matlab for the analysis and
comparison of NDVI change. The modeling process is shown in the flowchart in Figure 3.

Landsat images cannot distinguish between different types of grassland and forest
vegetation. In the four time points analyzed in this study (1987, 2001, 2010, 2019), the
rainfall in the lower Hailar region was not sufficient to flood the swampy wetlands. There-
fore, swampy wetlands are counted among the grassland vegetation types in this study.
Meanwhile, the different types of forest vegetation were classified. There are expanding
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sandy areas on both sides of the Hailar River [27], namely, the Hailar Sands. Through field
research of the sandy places surrounding the study site, the open sand habitat with sparse
vegetation in this study was considered to include sandy areas without any vegetation or
with sparse vegetation.
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3. Results
3.1. Accuracy Verification

Table 5 shows the overall classification accuracy assessment and kappa statistics for
the NDVI results for 1987, 2001, 2010, and 2019.

Vegetation cover change detection based on the NDVI vegetation index is applicable to
most wetlands with >40% vegetation cover [28]. Comparison of past and present Landsat
images helps to understand the latest status of wetlands, which can provide a basis for
environmental decision-making and management.

Table 5. Accuracy assessment and kappa statistics of multi-temporal data from NDVI classification
images.

Time
NDVI

Classification Accuracy Kappa Statistic

1987 92.10% 0.884
2001 91.50% 0.875
2010 93.50% 0.812
2019 91.00% 0.911
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3.2. Vegetation Change and Spatial Distribution

This study mapped the vegetation cover status of wetlands in the lower Hailar River
section in 1987, 2001, 2010, and 2019 to analyze the patterns of change that have occurred
over the past three decades. Figure 4 shows the NDVI classification maps for the summer
vegetation growth spurt at four time points in 1987, 2001, 2010, and 2019. Table 6 shows
the areas of bare soil, grassland, and forest in the study site (in km2 and as percentages of
the total area, based on NDVI).
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Table 6. Areas of the study site (km2 and percentages) based on NDVI classes.

Code Class
1987 2001 2010 2019

Km2 % km2 % km2 % km2 %

1 Open sand habitat with
sparse vegetation 4.96 1.57 4.22 1.34 11.32 3.58 6.04 1.91

2 Grassland 55.79 17.66 70.85 22.42 82.98 26.26 42.62 13.49
3 Forest 255.21 80.77 244.30 77.32 221.65 70.15 271.12 85.81

Total 315.95 100 319.37 100 315.96 100 319.78 100

The detailed vegetation status of the wetlands in the upper section of the Hailar
River is shown below. The total area of all categories shows fluctuating changes in the
wetland area during the study period. Over the past 30 years, vegetation cover (grassland,
woodland) accounted for about 311.13 km2 or 97.91% of the total land cover of the entire
study site.

Open sand habitat with sparse vegetation: During the study period, open sand habitat
with sparse vegetation in the study site decreased, then increased, and then decreased
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again. In 1987, the area of open sand habitat with sparse vegetation was 4.96 km2 (1.57%);
by 2019, its coverage increased to 6.04 km2 (1.91%), an increase of 1.08 km2 at an average
rate of 0.033 km2 (0.34%) per year. At the four time points, the largest area of open sand
habitat with sparse vegetation occurred in the summer of 2010 and was 11.32 km2.

Grassland: During the study period, this category showed a more significant change
than the other two. Grassland change can be divided into two intervals: an increase
followed by a decrease. Between 1987 and 2010, the total area of the grassland category
increased from 55.79 km2 (17.66%) in 1987 to 82.65 km2 (26.26%) in 2010, a total increase
of 27.19 km2 over this time period at an average rate of 1.24 km2 per year. Between 2010
and 2019, the grassland area decreased from 82.98 km2 to 42.62 km2, a total decrease of
40.36 km2 at an average rate of 4.04 km2 per year. The total decrease in grassland area
during 1987–2019 was 13.17 km2.

Forest: During the study period, this category showed a clearly opposite trend to that
of grassland. Forest change can likewise be divided into two intervals of change: a decrease
followed by an increase. Between 1987 and 2010, the total area of forest decreased from
255.21 km2 (80.77%) in 1987 to 221.65 km2 (70.15%) in 2010, a total decrease of 33.56 km2 at
an average rate of 1.53 km2 per year. Between 2010 and 2019, the forest area increased from
221.65 km2 to 271.12 km2, a total increase of 49.47 km2 at an average rate of 4.95 km2 per
year. There was an overall increase in the area of forest of 15.91 km2 from 1987–2019.

3.3. Vegetation Change Inspection

Vegetation changes in the different NDVI categories were determined relative to the
state in summer 2019; hence, for the periods 1987–2019, 2001–2019, and 2010–2019.

As shown in Figure 5 and Table 7, from 1987–2019, the total open sand habitat with
sparse vegetation area converted to vegetation (forest and grassland) was 39.3 km2. At the
same time, the area converted from vegetation to open sand habitat with sparse vegetation
was 39.76 km2; so, in this time period, the area of open sand habitat with sparse vegetation
increased by 0.46 km2. From 2001–2019, the total open sand habitat with sparse vegetation
area converted to vegetation (forest and grassland) was 27.07 km2. Meanwhile, the area
of vegetation converted to an open sand habitat with sparse vegetation was 37.15 km2.
So, in this time period, the area of open sand habitat with sparse vegetation increased by
10.08 km2. From 2010–2019, the total area of open sand habitat with sparse vegetation
converted to vegetation (forest and grassland) was 86.56 km2; meanwhile, the area of
vegetation converted to open sand habitat with sparse vegetation was 24.94 km2. Within
this time period, the area of bare soil decreased by 61.65 km2 and, in the three time periods,
a large area of grassland was converted to forest and a small area of forest was converted
to grassland.

Table 7. Changes in the area occurring in the three time periods.

Code Change Type
1987–2019 2001–2019 2010–2019

Area
(km2) (%) Area

(km2) (%) Area
(km2) (%)

12 Open sand habitat with sparse
vegetation to Grassland 16.8 2.69 17.99 2.65 48.92 6.22

13 Open sand habitat with sparse
vegetation to Forest 22.5 3.6 9.08 1.34 37.64 4.79

21 Grassland to Open sand habitat
with sparse vegetation 17.43 2.79 18.27 2.69 15.28 1.94

23 Grassland to Forest 345.49 55.28 448.83 66.05 563.63 71.68

31 Forest to Open sand habitat with
sparse vegetation 22.33 3.57 18.88 2.78 9.63 1.22

32 Forest to Grassland 200.46 32.07 166.52 24.5 111.16 14.14
Total 625.01 100 679.57 100 786.25 100
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4. Discussion
4.1. Vegetation Change Digital Model Evaluation

Remote sensing technology provides an accurate, rapid, and cost-effective method for
wetland change detection [11]. Various digital methods can be used to detect changes by
comparing two or more images of a study site from different periods, such as pixel-to-pixel
comparison before and after vegetation change [26]. The classification change detection
method is one of the most appropriate and commonly used change detection techniques.
This technique can easily provide a change matrix from which transfers between one
vegetation type and another can be visualized. This method identifies areas of change as
pixel-by-pixel differences between categories after obtaining a classification image [29]. This
can clearly show areas of change as well as transformation categories. The model proposed
in this study estimates the process of vegetation change by studying different periods.

In this long-term study, based on Landsat data of the summer growth season in 2019,
we detected change at three time points in 1987, 2001, and 2010. We generated a digital
spatial model of vegetation change through Matlab programming and used it to detect
changes in an NDVI map. The model proposed in this study has certain advantages in
quantifying vegetation change in the floodplain wetlands. This evaluation method based
on remote sensing imagery and Matlab modeling has good operability and detection
accuracy. It is not only suitable for research on vegetation diversity in submerged areas
but also provides a valuable reference for river management decision-makers pursuing
wetland protection and other aspects.

4.2. Reasons for the Differences in the Spatial Distribution of Vegetation

The degree of connection between the main channel of a river and a riverine wetland
will affect riverine wetland vegetation [30]. It was found that, in the natural state, the
composition and structure of plant communities, and their changes, are closely related to
flooding occurrence [31].

The overall high NDVI values observed near riverbanks indicate that most of the
vegetation near these locations benefits from water recharge from the Hailar River. The
fertile silt left after periodic flooding also improves the nutrient content of the soil on
both banks, and water vapor improves the surrounding microclimate, thus forming a
high-biomass plant belt along the riverbanks. Even plants of sandy open sand habitat
with sparse vegetation (Caragana microphylla Lam, Cleistogenes squarrosa (Trin.) Keng, etc.)
form high biomass and high canopy closure plant communities near riverbanks, which
greatly weaken the mobility of sand dunes. In the horizontal direction, the vegetation type
varied with distance from the riverbank. In Figure 6, the riverbank vegetation types, in the
direction from the river to the habitats more distant from the river, are forest (Populus L.,
Salix Rosmarinifolia L. var brachypoda (Traktv. Et Mey) Y. L. Chou, Salix gordejevii Y. L.
Chang et Skv., Caragana sinica (Buc’hoz) Rehder, Pinus sylvestris var. mongolica Litv., mixed
forests, etc.), grassland mixed with forest, and grassland. As shown in Table 4, the NDVI
thresholds for grassland are lower than those of forest, so the NDVI tends to decrease
with distance from the riverbanks. Due to the special environment of riverine wetland
systems, wetland vegetation development is associated with the river. The results show
that the direct impact of the river on the vegetation on both sides of the river decreases with
distance. If river runoff decreases and flood cycles become longer, it will adversely affect the
wetland forest and riverine meadow ecosystems that depend on periodic flooding, leading
to degradation of wetland forest areas, reductions in near-riparian wetland grassland areas,
and degradation of wetland grassland systems [32,33].
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4.3. Vegetation Change Process and Its Influences

Figure 7 shows the changes in NDVI categories occurring in the three time periods
1987–2019, 2001–2019, and 2010–2019. Figure 7A shows that of the first three transformation
categories, the changes occurring between 2010–2019 are obvious, while the conversion
of forest to open sand habitat with sparse vegetation and grassland changed significantly
between 1987–2019. Figure 7B shows that within the three time periods, among the six
transformation categories, the conversion of grassland to forest changed most significantly,
followed by conversion of forest to grassland, indicating that more pronounced vegetation
changes occurred within the three time periods.

Vegetation change in floodplain wetlands is affected by many man-made and natural
factors, such as water supply, rainfall, and runoff [34–36]. The environment in the study
site of the lower Hailar River is complex and diverse with a variety of ecosystems, such as
swampy wetlands, river meadows, scrub, and forest. This area is a transition area between
the river system and the surrounding environment and is an important ecological transition
zone in this watershed, which is the most active part of the ecosystem in terms of energy and
material transfer, and transformation [37,38] and is very sensitive to external changes. These
ecosystems are more dependent on runoff recharge from the Hailar River and periodic flood
recharge, and their vegetation trends have both positive and negative possibilities. In areas
with sufficient and stable water recharge, the vegetation gradually develops for the better,
herbaceous plant communities gradually evolve into scrub woodland plant communities,
bare soil areas remain stable, and biodiversity continues to grow. For areas lacking in water
recharge, the speed of land desertification may exceed the speed of vegetation recovery,
due to the influence of the adjacent.

Hulunbuir Sandy Land, thus forming a vicious cycle and leading to reverse ecosystem
changes, such as vegetation changes to open sand habitat with sparse vegetation.
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Human activities also affect vegetation changes. In this study, statistics of the Hailar
Region for 1987, 1995, and 2019 were collected from Statistical Yearbooks. Table 8 shows
that when regional GDP increases at a relatively fast rate (more than 10 times that of the
previous period), the population growth rate slows down, the growth rate of industrial
production slows down, the growth rate of food production declines, and the growth rate
of arable land increases by 266.99%. The increase in population and economic output leads
to an increase in the scale of industrial and domestic water consumption in the river basin,
resulting in an increase in the intensity of water resources development. These human
development activities interact with the surrounding ecosystems and have become the main
driving force in land expansion, agricultural intensification, and water resource exploitation
in the Hailar area, and have profound impacts on the vegetation of floodplain wetlands.

In recent years, Chinese national and local governments have issued a series of
wetland vegetation protection projects. For example, in 2003, the Chinese government
approved the 2002–2030 National Wetland Protection Plan, which aims to restore natural
wetlands and establish nature reserves [39]. In 2011, Russia and China adopted the Russia-
China Amur River Basin Transboundary Protection Zone Development Strategy to 2020,
which announced that the protection of wetlands would be a top priority [40]. Through a
series of human interventions, wetlands have been restored and their vegetation protected.
Therefore, in order to protect and restore wetland ecosystems, it is still necessary to
sustainably manage natural wetlands [39].

This research suggests that in the process of rapid urbanization, industrialization, and
agricultural modernization, human beings should take greater responsibility for protecting
well-developed wetlands and prevent their degradation. This requires, for example, better
management of farmland irrigation, wetland development, and water resources.
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Table 8. Social and economic indicators reflecting human activity in the Hailar River area in 1987, 1995, and 2019.

Indicator 1987 1995 2019 1987–1995 Rate
of Change (%)

1996–2019 Rate
of Change (%)

Gross regional product (10,000s of yuan) 289,664 994,286 11,930,295 243.25 1099.89

Population (10,000s) 12.5 22.21 28.74 77.68 29.40

Total industrial output (10,000s of yuan) 24,652 80,986 109,068.1 228.52 34.68

Output of main foodstuffs (tons) 8720 44,778 87,456 413.51 95.31

Cultivated land area (km2) 188 242.13 888.6 28.79 266.99

5. Conclusions

Remote sensing technology provides an accurate, fast, and economical method of
vegetation change detection. It solves the difficulty and time-consuming implementation
of traditional techniques. In this study, vegetation classification maps were produced by
an unsupervised classification tool and comparative calculations of change in coverage of
vegetation classes were conducted. A vegetation change detection model based on Matlab
was used to analyze the changes between different categories. The main conclusions are:

(1) The wetlands in the lower Hailar River study site underwent significant changes
in vegetation between 1987 and 2019. Open sand habitat with sparse vegetation
areas increased by 1.08 km2; grassland areas decreased by 13.17 km2 and forest areas
increased by 15.91 km2.

(2) The spatial distribution of NDVI values differed across the study site. The NDVI was
high overall and the vegetation types varied with distance from the riverbank. NDVI
tended to decrease with distance from the riverbanks and the main vegetation types
were, from near to far, forest (Populus L., Salix Rosmarinifolia L. var brachypoda (Traktv.
Et Mey) Y. L. Chou, Salix gordejevii Y. L. Chang et Skv., Caragana sinica (Buc’hoz)
Rehder, Pinus sylvestris var. mongolica Litv., mixed forests, etc.), grassland mixed
with forest, and grassland.

(3) The ecological environment of the lower Hailar River study site is complex and
diverse. It contains a variety of ecosystems such as swampy wetland, river meadow,
scrub, and woodland. All of these ecosystems are dependent on runoff recharge from
the Hailar River and periodic flood recharge. There are two possibilities for positive
and negative vegetation change trends. In areas where the water supply is sufficient
and relatively stable, the cover of forest vegetation was gradually increasing and the
herbaceous plant community gradually evolves to scrub woodland. In areas where
the water supply is lacking, there are changes in sense of decrease of forest vegetation
and increase of open sand habitat with sparse vegetation.

(4) This study suggests that in the process of rapid urbanization, industrialization, and
agricultural modernization, humans should take greater responsibility for protecting
well-developed wetlands and, at the same time, better manage farmland irrigation,
wetland development, and water resources.
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