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Abstract: The establishment of an Acacia mangium plantation often alters physicochemical character-
istics and nutrient concentrations of soils. We aimed to evaluate the invasive potential of A. mangium
forest on the soil in Ayer Hitam Forest Reserve, Peninsular, Malaysia. To achieve the mentioned
target, four different regions, namely, the open ground region (OG), Acacia mangium region (AM),
transition region (TZ), and native forest region (NF), were selected and each of the regions was
divided into six plots. Composite samples were randomly taken from subplots at 0–15 cm depth
(topsoil) and 15–30 cm depth (subsoil). Some physicochemical properties such as soil moisture
and texture, textural classification, bulk density and particle density, pH, electric conductivity (EC),
exchangeable bases (EB) (Ca, Mg and K), cation exchange capacity (CEC), organic matter (OM), total
nitrogen (TN), and available phosphorous (Av. P) were analyzed. The results of our study showed
that the soil of the AM region, which was clay loam, contained clay (51%), silt (32%), and sand (16%).
The chemical analysis of topsoil showed significant differences in terms of OM%, exchangeable-
Ca, Mg, K (molc kg−1), N (%), gravitational water content (GWC), and Avail. P between all four
regions. Additionally, the highest pH and OM of topsoil were seen in the AM region with 4.5%
and 4.33%, respectively. In the subsoil, there were significant differences (p ≤ 0.01) in terms of EC
(ds/m), OM (%), Exchangeable- Ca, Mg and K (cmolc kg−1), GWC, available phosphorus, and N (%)
between all four regions. The highest GWC, N (%), and Ca (cmolc kg−1) were observed in the AM
region with 16.00, 0.14%, and 0.64 cmolc kg−1, respectively. These results showed that A. mangium
changed some soil characteristics due to its invasion potential. In summary, A. mangium showed
high adaptability on degraded forest land and high ability to accumulate the soil physicochemical
properties to enhance its growth.

Keywords: Acacia mangium; physicochemical characteristics; soil; degraded local forests; Peninsular
Malaysia; Ayer Hitam Forest Reserve

1. Introduction

Tropical rainforests are known as the richest, most multi-functional, and complex natu-
ral ecosystem in the world [1]. These luxuriant forests have prevailed at an unprecedented
level of detail and accuracy by anthropogenic activities such as commercial plantations,
shifting cultivation, and timber extraction [2], leading to the degradation, fragmentation,
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and conversion of forestlands [3]. Degradation in the rainforest is defined as the reduction
in the forestland capacity in terms of producing goods and services [4] due to the occur-
rence of different chemical reactions and physical processes [5]. Chemical degradation
decreases the potential of soil fertility, while physical degradation increases the possibility
of soil erosion and compaction [6]. To preserve the rainforest ecosystem, rehabilitation
becomes an attractive task, avoiding or suppressing the degradation impact on vegetation
stock, ecosystem structure, and soil nutrients [7]. Therefore, the cultivation of high-quality
exotic species or indigenous trees has been considered as a successful rehabilitation strategy
for degraded forestlands [8] (Figure 1).
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Fisher et al. [9].

Over the past several decades, investigations have emphasized the negative impact of
invasive alien plant species (IAPS) on the environmental quality, ecosystem services, local
biodiversity, and human health [10]. It has been reported that more than one-fifth of the
Earth’s surface has been threatened by biotic invaders [11]. So far, different mechanisms,
including empty niche (EN), novel weapon (NWH), and enemy release (ERH), have been
proposed to describe the invasion of IAPS in the host ecosystem [10]. A growing amount
of research has suggested that alien invasive plants increase nutrient pools and fluxes in
the host ecosystems [12–15]. Additionally, soil properties such as pH, organic matter, and
exchangeable bases have been changed when a plant species was replaced by introducing
alien invasive trees in the host ecosystem [16].

The genus Acacia (family Fabaceae) comprises more than 1350 tree and shrub species
and has been adapted in about one-third of land areas [17]. Cultivation of Acacia species
has been recommended for different ecosystems due to the availability of enough nutrients
in the environments, enhancement of nutrient cycling mechanisms, and boosting microbial
activity [18,19]. However, Acacia species can change native climatic niches, affecting the
storage and release of carbon and nitrogen [20]. Reportedly, invasion by Acacia dealbata
changes microbial structure, nutrient pools, and the diversity of microorganisms in the
soil [21]. Furthermore, it has been observed that the modification of soil properties by
invasive A. dealbata promotes seedling of the native tree at the early stage of growth [22]. In
addition, it has been reported that invasions by Australian Acacias influenced the structure
and diversity of rhizobial communities in soil [23]. In addition to the above reports, a
decrease in the plant diversity and an extensive development in the woodlands dominated
by the invasion of Acacia saligna have been recorded in the host ecosystem [24].
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Acacia mangium has been widely cultivated in many parts of the world. The impor-
tance of this species has been reported in agricultural, agroforestry, and forestry ecosys-
tems [25,26]. For example, the cultivation of A. mangium in commercial monoculture
plantations or mixed with other crops enhances soil fertility [27,28], stimulates productivity,
promotes the growth of other crops [26,29,30], and interacts with microorganisms of the
host ecosystem [31,32]. The ability of A. mangium to fix nitrogen may lead to soil acidifica-
tion due to the accumulation of base cations in the biomass, which has been complemented
by the exudation of H+ from roots [30]. Therefore, the nitrate anions level is high in soils
under nitrogen-fixing trees. Interestingly, in the presence of A. mangium, which has been
known as an N-fixing species (NFS), forest productivity, crop yields, and soil N status
rise on N-limited sites [33]. The diversity, distribution, and abundance of A. mangium
have highly interacted with the physicochemical properties of the host soil [30,34,35]. The
A. mangium tree associates with diazotrophic bacteria (Rhizobia), influencing the higher
N availability in the soil [36]. Reportedly, A. mangium plantation increased pH, total N
concentration, and available P in the soil [37]. It is worth noting that the influence of
invasive species on soil properties as well as microorganism structure and function may
not always remain constant or accumulate throughout the invasion [38].

The tropical rainforest of Malaysia is one of the most luxuriant and complex habitats
in the world, which preserves the wealth of flora and fauna [39]. Notwithstanding the
spectral features of forestland in Malaysia, many forest areas have been converted for
urban and industrial settlement purposes and agricultural production [40,41]. Report-
edly, the rehabilitation processes of degraded forests in the tropical regions of Malaysia,
especially in Peninsular Malaysia, have been successfully applied with the plantation of
A. mangium [35,42], Azadirachta excelsa, Pinus caribaea, and Khaya ivorensis [2]. Although the
history of Acacia plantation in Malaysia goes back to 1932, when Acacia auriculiformis was
introduced to the Forest Research Institute Malaysia (FRIM), the seeds of A. mangium were
introduced to Sabah state in 1966 [43]. In 1976, A. mangium’s first commercial plantation
was reported in Sabah. However, in 1978, due to the severe timber crisis caused by natural
disasters, the authorities in Peninsular Malaysia selected A. mangium as the primary species
for the Compensatory Plantation Programme in 1978 [44]. Interestingly, recent pattern
analysis of Acacia plantation has confirmed the development of A. mangium plantation in
Malaysia [45].

Notwithstanding the above literature regarding the interaction of soil with NFS trees
and the importance of Acacia species in the rehabilitation programs, not very much is
known about the impact of exotic A. mangium on soil properties. To this end, the present
investigation was conducted to quantify and interpret the physicochemical adjustment of
the soil under four different canopies in the A. mangium region, the native forest region,
and the transition region between the A. mangium and the native forest. This study would
lead to a better understanding of the effect of A. mangium canopy on the host ecosystem
in Ayer Hitam Forest Reserve situated in Puchong, Selangor, which is one of the states in
Peninsular Malaysia.

2. Materials and Methods
2.1. The Study Site Description
2.1.1. Geographical Distribution of the Study Site

The study site was in the Ayer Hitam Forest Reserve (longitude of 101◦30′ E–101◦46′

E and latitude of 2◦56′ N–3◦16′ N), Puchong experimental farm, Universiti Putra Malaysia
(UPM), Serdang, Selangor (Figure 2). The Ayer Hitam Forest Reserve (AHFR) site lies in a
lowland tropical rain forest. It comprises steep slopes, in which its highest peak reaches
approximately 645 m above sea level [46–48]. The forest was logged over in 1906 with
4270.7 ha; however, the forest area has been decreased up to 72% (the current area is
approximately 1176 ha) [48].
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2.1.2. Climate Condition of the Study Site

Peninsular Malaysia has a tropical climate, influenced by the monsoon regime with
an extensive seasonal reversal of the wind regime [50,51]. The major monsoon regimes
are (1) the northeast monsoon (winter monsoon) and (2) the southwest monsoon (summer
monsoon). The northeast monsoon usually occurs between November to March, while
the Southwest monsoon occurs between late May and September. The transition from
the southwest to the northeast monsoon season takes place in October [52,53]. Peninsular
Malaysia has a constant mean annual temperature, light winds, and high humidity all
year round. The study site, Puchong, Selangor, is characterized by a tropical climate with
a mean annual temperature and precipitation of 38 ◦C and 2000 mm, respectively [54]
(Figure 3). There is a slight variation of about 2 ◦C in the average monthly temperature of
the study site. However, the daily variation in the temperature is about 10 ◦C [55].

2.1.3. Physiographical and Vegetation of the Study Site

The forest reserve has been severely degraded and encroached due to road construc-
tion, logging activities, and agriculture and housing projects [56,57]. AHFR is a secondary
disturbed lowland dipterocarp forest with a history of logging activities. It has been placed
under the purview of Universiti Putra Malaysia (UPM) [55]. AHFR lies within the Kenny
Hill geological formation, which is located to the south of Kuala Lumpur [55]. This forma-
tion consists of a series of interceded mudstones, shales, and sandstones [58]. The site has
an uneven landscape with an elevation between 15 and 200 m above sea level (ASL) and a
mean slope of 10–20%. The AHFR site is a steep land, with an amalgamation of Durian,
Serdang, and Kedah soil series, with metamorphic and sedimentary rocks as their parent
material [58]. The forest is in the late stage of regeneration that is dominated by a high
density of small and medium-size trees, with the forest floor densely covered by seedlings,
saplings, herbs, climbers, creepers, palms, and ferns [59]. The forest contains one of the
rarest species of small plants and herbs [46,60]. The A. mangium trees are located on the
edge of native trees, most likely planted as windbreakers but diffused within the native
trees.
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2.2. Data Collection
2.2.1. Soil Sampling, Preparation, and Analysis

In March 2018, soils were sampled from four places in the study area. A single transect
line was established about 500 m apart, running in a north-south direction from the open
ground region and passing through the Acacia trees region to the native tree area. A total of
twelve pairs of 20 m × 20 m plots were set up along the line transects with plots 1–6 set up
at the open ground region (OG), plots 7–12 at the A. mangium region (AM), plots 13–18 at
the transition region (TZ) which lies between the A. mangium region and the native forest
region, and plots 19–24 at the native forest region (NF) (Figure 4).
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Figure 4. Schematic diagram of plot placement in this study.

Each plot (20 m× 20 m) was sub-divided into four 10 m× 10 m sub-plots (96 subplots
in total). Composite samples were obtained by mixing well individual soil cores taken
within each subplot, at 0–15 cm depth (topsoil) and 15–30 cm depth (subsoil) using a soil
auger, and bulked together to form a homogeneous sample. A total of 48 representative soil
samples were then used for analysis in the study of four regions as described in Table 1. The
soil samples were kept in well-labelled sampling bags and transported to a laboratory for
analysis. All analyses were performed in triplicate using calibrated equipment. The quality
of the analysis and the analytical accuracy was considered through sampling, sample size,
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transportation methods, and the selection of a specialized and accredited laboratory for
soil analysis.

Table 1. Description of plot placement.

Study Site Name Region Code Plots Study Site Altitude

The Acacia mangium region AM 7–12 3◦00′18.2′′ N, 101◦38′51.2′′ E, elevation 100 m
The native forest region NF 19–24 3◦00′22′′ N, 101◦38′49.1′′ E, elevation 100 m
The open ground region OG 1–6 3◦00′19′′ N, 101◦38′54′′ E, elevation 100 m

The transition region TZ 13–18 3◦00′20′′ N, 101◦38′ 50.3′′ E, elevation 100 m

2.2.2. Physical Properties of Soil

Determination of soil moisture content was quantified using the oven-dry method
by calculating the amount of mass lost by a 2-gm soil sample after it was dried at 105 ◦C
for 24 h [40,61]. Soil texture was determined using the pipette method calculating for
sand, silt, and clay properties using a textural triangle as described by The et al. [62]. The
textural classification was based on the USDA soil texture triangle of size classes as: clay
(<0.002 mm), silt (0.002–0.05 mm), and sand (0.05–2.0 mm) [63]. Bulk density and particle
density were determined according to the procedure described by Gupta et al. [64] for
soil samples.

2.2.3. Chemical Properties of Soil

The soil samples were air-dried at room temperature (21–27 ◦C) for 1 week, ground
and passed through a 2 mm sieve to remove gravel and debris, and analyzed at the Soil
Laboratory of the Faculty of Agriculture, Universiti Putra Malaysia (UPM). The physico-
chemical analyses of the soil samples were conducted at the Department Soil Laboratory
of the Faculty of Agriculture following standard laboratory procedures. Soil chemical
properties have been selected, taken (topsoil) and (subsoil) from the study regions for
analysis of pH, electric conductivity (EC), exchangeable bases (EB) (Ca, Mg and K), cation
exchange capacity (CEC), organic matter (OM), total nitrogen (TN), and available phos-
phorous (Av. P). pH was measured using a digital pH meter (Systronics 335) at a ratio of
1:2.5 soil-to-water suspension [65]. Electrical conductivity (EC) was measured using the EC
meter (Systronics 335) in solution at a ratio of soil to water (1:5) [65]. Exchangeable cations
were extracted using the leaching method by ammonium acetate (1 M) buffered at pH 7 [42].
The concentrations of Magnesium (Mg) and Calcium (Ca) in the solutions were determined
by the atomic absorption spectrophotometer (AAS), and K was determined by a flame
photometer [66]. Total nitrogen was determined using a LECO CR412 carbon analyzer
(LECO, Corporation, St. Joseph, MI, USA) [67]. Available phosphorus was analyzed using
an auto-analyzer by following the method described by Bray and Kurtz [42].

2.3. Statistical Analysis

All data collected were subjected to statistical analyses using SAS version 9.3 (SAS
Institute, Inc., Cary, NC, USA). The difference in soil properties was determined using
one-way ANOVA and comparison among the significant means was done using Duncan’s
multiple comparisons at p ≤ 0.01.

3. Results and Discussion

As mentioned earlier, we implemented the experiment in four different regions,
namely, OG, AM, TZ, and NF (Figure 4). Each specific region showed its unique charac-
teristics, which could be taken into account for the qualitative observations. For example,
the OG region was bare land without trees. In the NF region, there were 27 tree species
from 25 genera and 17 families, where Endospermum diadenum dominated, followed by
Balakata baccata, Macaranga gigantean, Santiria tomentosa, Shorea macroptera, Xylopia fusca,
Canarium pseudosumatranum, Knema hookeriana, Antidesma cuspidatum, and Adina polycephala.
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Furthermore, a total of 16 tree species from 13 genera and 11 families were reported in the
TZ region, wherein the most dominant tree species were Endospermum diadenum, followed
by Acacia mangium, Macaranga gigantean, and Rinorea anguifera. In the AM region, the most
dominated tree species was A. mangium, followed by Cinnamomum iners, and Endospermum
diadenum, while the least dominant was the Rinorea anguifera.

3.1. The Physicochemical Properties of Soils
3.1.1. Physical Properties of Soil

The results of ANOVA and Duncan’s multiple comparison tests showed no significant
differences in the soil texture among the four regions (Table 2). However, the results showed
significant differences in the depth of the organic matter among the regions (Table 2). Clay
soils are characteristic of an environment with a predominance of abundant rainfall and
high temperature, which causes rapid weathering and degradation of soil material; this is
the prevalent weather condition in the areas of the humid tropics such as Malaysia [68].
The clayey nature of the soil with a fair amount of loam makes it suitable for plantation
activities, as the soil structure is not overly compact. This enables easy root penetration
with a balanced ratio of air and water occurring within the soil [69]. Due to the clay nature
of the soil and the high amount of sand in the soil, the site can be said to be dominated by
coarse-grained rocks. These rocks include sandstone and/or clastic rocks, similar to the
soils with well-drained structures. When the soil has more clay or a lesser amount of sand
and loam, becomes tacky with a decreased water movement [70,71].

Table 2. Particle-size distribution of the soils in the regions under study.

Regions Clay (%) Silt (%) Sand (%) Textural Class Depth of Organic Matter (cm)

AM 50.88 a ± 1.4 33.16 a ± 1.5 15.98 a ± 1.2 Clay Loam 3.47 a

NF 53.36 a ± 0.8 32.30 a ± 1.5 14.34 b ± 1.2 Clay Loam 7.03 a

OG 50.62 a ± 2.4 32.1 a ± 1.5 17.28 a ± 1.2 Clay Loam 1.5 c

TZ 52.53 a ± 1.1 33.1 a ± 1.5 17.53 a ± 1.2 Clay Loam 5.11 b

AM = Acacia mangium region, TZ = Transition region, OG = Open ground region, NF = Native Forest region. Different letters indicate
significant differences between arsenic concentrations according to Duncan’s multiple comparison test (p ≤ 0.01).

3.1.2. The Chemical Properties of Topsoil (0–15 cm Depth)

The available phosphorus amount was significant at the level of p ≤ 0.05 between
all of the different regions. Furthermore, the highest exchangeable calcium, magnesium,
and potassium were reported in OG, TZ, and TZ regions with 0.60, 0.42, and 0.26 cmolc
kg−1, respectively (Figure 5A). Additionally, the lowest exchangeable calcium, magnesium,
and potassium were seen in the NF, NF, and AM regions with 0.54, 0.33, and 0.22 cmolc
kg−1, respectively (Figure 5A). The results of the electrical conductivity tests showed
that the highest and lowest EC were observed in the NF and OG regions, with 0.14 and
0.10 ds/m, respectively. On the other hand, the highest and lowest organic matter were
reported in the AM and OG regions, with 4.33% and 2.81%, respectively (Figure 5B). The
highest and lowest soil pH were reported in the AM and OG regions, with 4.5% and 4.38%,
respectively (Figure 5B). Reportedly, the highest total nitrogen, gravitational water content
(GWC) and available phosphorus were observed in the AM (0.16%), OG (18.29), and
NF (14.65 mg kg−1) regions, respectively (Figure 5A,B). Finally, the lowest total nitrogen,
GWC, and available phosphorus were observed in the OG (0.09%), TZ (17.49), and OG
(12.72 mg kg−1) regions, respectively (Figure 5A,B).
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The organic layer in the topsoil of the forest has been quite high, and this is mostly
attributed to debris from dead plants and/or fallen leaves on the soil surface. The clayey
soils tend to have more organic matter content than coarse soils [72]. A higher organic
layer in the native forest region was thought to be due to a decrease in the decomposition
rate of shrubs and leaves. This may happen as a result of low temperature and abundant
moisture caused by shading in the native forest region. This finding was consistent with
the observation of Matali et al. [73], who stated that the occurrence of shading in Heath
Forest decreased the decomposition rate of herbs and shrubs, and increased organic layer
depth in native regions. On the other hand, reducing the organic layer depth in the Acacia
region was reported as a typical feature of soil under the canopy of invasive plants. The
accelerated rate of decomposition, resulting from exposure of surrounding leaf litters to
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high temperatures, could be due to a reduction in trees and shrubs [74]. Also, Acacia
has been known to decompose rapidly, and this could be due to its high foliar nitrogen,
which increases the activities of microbial biomass responsible for decomposition in the
soil [75,76]. Despite the relationship between the organic layer and the organic matter
content, we could not establish differences in the organic matter content of the Acacia region,
the native forest region, and the transition region. This may arise due to the thickness
and fibrous nature of the leaf layers, which slows decomposition, hence the similarity in
organic matter content of the plots [77,78].

3.1.3. The Chemical Properties of Subsoil (15–30 cm Depth)

The results of the electrical conductivity tests showed that the highest and lowest
EC were observed in the OG and NF regions, with 0.11 and 0.09 ds/m, respectively
(Figure 6A). Furthermore, the highest exchangeable calcium, magnesium, and potassium
were reported in the AM, TZ, and NF regions, with 0.64, 0.43, and 0.30 cmolc kg−1,
respectively (Figure 6A). Additionally, the lowest exchangeable calcium, magnesium, and
potassium were seen in the NF, AM, and AM regions, with 0.52, 0.30, and 0.21 cmolc kg−1,
respectively (Figure 6A). Besides, the highest and lowest organic matter were reported in
the NZ and OG regions, with 4.22% and 2.14%, respectively (Figure 6B). The highest and
lowest soil pH were reported in the TZ and AM regions, with 4.59% and 4.20%, respectively
(Figure 6B). Reportedly, the highest total nitrogen, gravitational water content (GWC), and
available phosphorus were observed in the AM (0.14%), NF (16.00), and NF (14.82 mg kg−1)
regions, respectively. Finally, the lowest total nitrogen, GWC, and available phosphorus
were observed in the OG (0.09%), TZ (12.70), and AM (14.20 mg kg−1) regions, respectively
(Figure 6A,B). An acidic pH in the A. mangium plantation was probably due to high rates
of nitrification from the A. mangium litter decomposition. It showed that the protons
were released to exchange with nitrate uptake by the N-fixing legumes, thus causing soil
acidification [79]. The high production of ammonium from plant material decomposition
causes soil acid neutralization [12]. The reduction in microbial activities could increase the
organic matter and cause soil acidity [80,81]. The higher mean concentration of nitrogen
(N) in the Acacia region, unlike in the other regions, was probably due to a reduction in the
organic matter decomposition of soil [82,83]. Also, the higher amount of N in the Acacia
plantation region was due to the nitrogen-fixing capability of Acacia [84,85]. A. mangium
can fix atmospheric N due to a symbiotic association with bacteria present in its root
nodules; thus, it could produce N-rich leaves, compared to other tropical leguminous
trees [85,86]. This phenomenon leads to extensive deposition of N rich litters, which
increases the concentration of nitrogen in the soil under A. mangium canopy [15,85]. This
claim was supported by Vijayanathan et al. [87], who found a higher level of total N in the
soil during the second rotation of a 0–6-month-old A. mangium plantation in Peninsular,
Malaysia, compared to a mixed dipterocarp forest.

3.1.4. Comparison of the Physicochemical Properties of Top- and Sub-Soil in the
Four Regions

The ANOVA and Duncan’s multiple comparison tests showed significant differences
in the level of p ≤ 0.01 for available phosphorus and organic matter, as well as p ≤ 0.05 for
cation exchange capacity between top- and sub-soil in the A. mangium region (Table 3A).
Additionally, the ANOVA and Duncan’s multiple comparison tests of the top- and sub-soil
were significant (p ≤ 0.01) in terms of gravimetric water content and cation exchange
capacity in the native forest region (NF) (Table 3B). On the other hand, significant differ-
ences (p ≤ 0.01) were observed in terms of cation exchange capacity as well as available
phosphorus between top- and sub-soil in the open ground region (OG) (Table 3C). Finally,
the ANOVA and Duncan’s multiple comparison tests also showed significant differences
in the level of p ≤ 0.01 for available phosphorus and p ≤ 0.05 for cation exchange capacity
and total nitrogen between top- as well as sub-soil in the transition region (TZ) (Table 3D).
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Figure 6. Measurements of (A) electrical conductivity (EC), total nitrogen (N), exchangeable calcium, exchangeable
magnesium, and exchangeable potassium, and (B) gravitational water content, available phosphorus, pH, and organic
matter of subsoil (15–30 cm depth) in Ayam Hiter forest of Malaysia across four different regions. Note: AM = Acacia
mangium region, TZ = Transition region, OG = Open ground region, NF = Native Forest region. Distinct letters imply
significant distinctions between arsenic concentrations following Duncan’s multiple comparison test (p ≤ 0.01).
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Table 3. ANOVA results of physio-chemical characteristics of top- and sub-soil in the four regions of study.

A A. mangium Region (AM) B Native Forest Region (NF)

S.O.V df GWC pH EC OM N P K Ca Mg GWC pH EC OM N P K Ca

Regions 1 3.5 ns 0.1 ns 0.0004 * 0.5 ** 0.0006 ns 0.7 ** 0.0001 ns 0.005 ns 0.002 ns 17.3 ** 0.03 ns 0.003 ** 0.02 ns 0.00001
ns 0.04 ns 0.003 ns 0.0006 ns

Replicate 2 7.9 ns 0.008 ns 0.00001
ns 0.0006 ns 0.0001 ns 0.12 ns 0.0006 ns 0.001 ns 0.005 ns 2.1 ns 0.11 ns 0.00006 0.002 ns 0.00002

ns 0.8 ns 0.006 ns 0.00015 ns

Error 2 1.5 0.01 0.00001 0.0005 0.00045 0.01 0.0002 0.0003 0.004 0.06 0.08 0.00006 0.001 0.0000001 0.45 0.004 0.0006
Total 5 - - - - - - - - - - - - - - - - -

C.V. - 7.4 2.9 4.01 0.56 14.1 0.97 6.57 3.06 21.07 1.5 6.5 6.9 1.06 0.8979 4.58 23.56 4.8

C Open Ground Region (OG) D Transition Region (TZ)

S.O.V df GWC pH EC OM N P K Ca Mg GWC pH EC OM N P K Ca

Regions 1 12.5 ns 0.03 ns 0.0001 ** 0.002 ns 0.00006
ns 4.08 ** 0.0001 ns 0.002 ns 0.0006 ns 11.7 ns 0.043 ns 0.001 * 0.01 ns 0.001 * 1.53 ** 0.000001 ns 0.0001 ns

Replicate 2 0.03 ns 0.006 ns 0.00006
ns 0.0002 ns 0.00001

ns 0.03 ns 0.0002 ns 0.004 ns 0.00005
ns 0.48 ns 0.006 ns 0.00006

ns 0.001 ns 0.00005
ns 0.001 ns 0.0006 ns 0.0009 ns

Error 2 1.7 0.002 0.000001 0.0008 0.00001 0.006 0.0002 0.006 0.0006 0.66 0.003 0.00006 0.003 0.00005 0.006 0.0002 0.0006

Total 5 - - - - - - - - - - - - - - - - -

C.V. - 7.8 1.1 0.754 1.3 4.7 0.58 6.01 13.4 6.3 5.06 1.28 6.9 1.34 6.73 0.63 5.43 4.35

S.O.V, source of variation. ** and *, significant at the 0.01 and 0.05 probability levels, respectively. ns, non-significant. GWC = gravimetric water content, pH = potential of hydrogen, EC = cation exchange
capacity, OM = organic matter, N = total nitrogen, P = available phosphorus, K = exchangeable potassium, Ca = exchangeable calcium, and Mg = exchangeable magnesium subsoil and topsoil of four regions of
A. mangium region (AM) and Native Forest Region (NF).
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Compared to the subsoil, the EC level was higher in the topsoil of the AM, NF, and
TZ regions, with 0.11, 0.14, and 0.13 ds/m, respectively. However, the EC level was
higher in the topsoil of the OG region, with 0.11 ds/m, compared to topsoil with 0.1 ds/m
(Figure 7A). The percentage of total N was higher in the topsoil of the AM and TZ regions
and was lower in the topsoil of OG. Additionally, there were no significant differences
between the N percentage in the top and subsoil of the NF area (Figure 7A). The soil of AM
had the highest concentrations of total N at both topsoil and subsoil depths, with a mean
between 0.16 and 0.14, respectively; the OG region had the lowest mean, between 0.09
and 0.08. The results of our observation showed significant differences between AM and
other regions in terms of total N concentrations for both subsoil and topsoil (Figure 7A).
Our data showed that the exchangeable K amount was higher in the topsoil of the AM
region, compared to the subsoil. However, the exchangeable K rate was higher in the
subsoil of the other three regions, compared to the topsoil (Figure 7A). Additionally, the
exchangeable Ca rate was higher in the topsoil of the AM and OG regions (Figure 7A).
Compared to the subsoil, the exchangeable Mg rate of topsoil was higher in the AM and TZ
regions (Figure 7A). Our observations also showed that the mean of GWC was significantly
higher in the topsoil of all four regions (between 17.50 and 18.29), compared to the subsoil
(between 14.70 and 16.00) (Figure 7B). Reportedly, GWC could be influenced by some other
soil characteristics such as depth of organic layer, soil structure, and texture. These physical
characteristics of soil may lead to retaining water, preventing filtration, and surfacing
runoff [88,89]. Thus, a higher level of organic layer depth may increase the soil pores
and increases water infiltration. Our results in the open ground region also confirmed
the correlation of GWC with organic layer depth and organic matter content. In addition
to the above results, our observation showed that the level of pH was slightly different
between soils (topsoil and subsoil) in all the studied regions (Figure 7B). The higher rate of
exchangeable K could be due to the high mobility of K in the soil–plant system, which can
leach to deeper soil layers [90,91]. Our results were in parallel with Yamashita et al. [33],
who found that there was a non-significant difference in the exchangeable K of the soil
between an A. mangium plantation, a secondary forest, and Imperata grassland. Similarly,
Matali et al. [73] stated no significant difference in the amount of exchangeable K in the
soil under the canopy of Acacia in Brunei.

The establishment of forests containing invasive plants such as A. mangium will reduce
the availability of shrubs and tree layers, which will be expose the leaf litter layer to high
temperatures [92]. For this reason, the leaf litters breakdown will be rapidly increased and
the decomposition rate will be accelerated [93,94]. Reportedly, a high rate of decomposition
has been observed in Acacia leaf litter and the high rate of foliar N may cause the high
N accumulation [85] and the high microbial activity in the soil [95]. Acacia is considered
to be an N2 fixer plant that is able to increase the N or NH4

+ pool in the soil. This could
happen due to the higher production of litter by Acacia, which leads to returning of N into
the soil and increasing the amount of inorganic N. For example, it has been reported that
A. longifolia transfers large quantities of N to the soil and, simultaneously, uptakes a higher
amount of P. This cycle creates an N/P imbalance in the ecosystem. Additionally, Acacia
progressively and substantially changes C storage in invaded soils [96]. In parallel with
the above literature, our results showed a higher accumulation of N and a lower amount
of P in AM region (in both soil depths), compared to other regions. In addition, the leaf
structures in other regions of our study were tougher and thicker than the leaves in the
AM region. This may cause the high-speed uptake of N from soil to plant biomass due to
the need for plants to protect their long-lived leaves [97].
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At acidic pH soil, P ions react with iron (Fe) and Aluminum (Al) to form less soluble
compounds (Fe-P and Al-P compound) [98]. Therefore, low available P in soils could
be due to sequestration of P in the Acacia biomass [73] and could form the acidic pH
soils under the canopy of Acacia in different ecosystems [99]. Nonetheless, Castro–Díez
et al. [20] reported no significant differences in organic matter and pH after the invasion of
Acacia in the host ecosystem. Additionally, Marchante et al. [100] and Rascger et al. [101]
observed a significant increment in the litter, pH, C/N ratio, and amount of N and C in
ecosystems that were invaded by A. longifolia. Katagiri et al. [102] reported that the soil
acidification in the invaded region was due to a decrease in exchangeable bases or cation
concentrations. The alteration in chemical ions could be due to the leaching of nutrients
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or translocation of base cations from soil to plant biomass. The results of our study also
confirmed the lower level of exchangeable Mg and K in the AM region (in both top- and
sub-soils) compared to other regions. However, the level of exchangeable Ca was higher in
the AM region, compared to other regions. In contrast with our results, Moran et al. [82]
reported that the concentration of Ca was lower in the Acacia region, compared to other
regions, and suggested that this may happen due to the fast-growing potential of Acacia
resulting in higher nutrients absorption. With regards to the above-mentioned observation
and assumptions, we propose that a reduction in Ca level could be influenced by the
high rate of nutrients leaching or returning nutrients in the soil of AM region. Generally
speaking, the above results might show the drastic influence of the ecosystem condition
and the importance of plant–soil interaction in the invaded regions.

Availability of water in the soil is another vital parameter influencing the growth and
development of trees; thus, the lack of enough water may limit forest growth. Acacia is
considered a high water-consuming tree, and their invasion may lead to a reduction in
the water availability of the host ecosystem and an increase in the rate of evapotranspira-
tion [103]. In our experiment, the level of GWCs was higher in the topsoil of NF and OG
regions. This might be due to the root development of tree and weed plants into subsoil in
the NF and OG regions. Additionally, it can be said that Acacia absorbed the available water
in the top-soil easily. At the same time, GWC was higher in the subsoil of the AM region,
compared to other regions. This may happen due to the high competition of different
tree species in other regions, compared to the AM region. Our results might confirm that
the water consumption could be alternatively observed as a community-level mechanism
rather than an individual Acacia strategy in the ecosystem [104].

Acacia species has distinct advantages for improving the fertility of the soil in forestry,
agroforestry and agriculture in regions with nutrient-deficient soils and for the restoration
of degraded lands and ecosystems. Nevertheless, there is a dearth of research on the
ecology of this species in regions whereby there is a lack of understanding pertaining to
the range. Despite the several documented advantages of A. mangium in forestry, agro-
forestry, and agriculture, there is growing concern that owing to its invasive characteristics,
A. mangium can have a profound adverse influence on human wellbeing, biodiversity, and
soil. Commercial forestry plantations are usually set up in expansive open areas that are
highly vulnerable to invasions by exotic trees [105,106]. A. mangium may find it easy to
invade degraded and disturbed forests, particularly those which have experienced fire
or drought and may threaten biodiversity [106]. Perhaps one of the reasons for invasion
and the wide cultivation of the Acacia species outside their native range is their usage in
large commercial plantations over decades without a prior consideration for associated
risks of invasiveness [107]. Acacia species have become invasive with attendant adverse
effects. Invasions and the presence effect usually manifest after many years following
extensive cultivation. This phenomenon has been seen in some places in Asia, promi-
nently in Vietnam and Malaysia [105,107]. As far as we know, invasions of A. mangium
occurred recently, and no detailed evaluation has been conducted to study the influence
of these invasions on biodiversity. Acacia causes variations in the functional diversity of
microorganisms in the soils (fungi and root fungi) that hinder the growth of native tree
species while restoring degraded lands [108]. As for the types of effects attributed to other
invasive Australian Acacias in several regions across the globe, Acacias possess a wide range
of effects on ecosystems which increase with time and disturbance, and often change the
function of the ecosystem, subsequently reducing and altering the delivery of ecosystem
services [13].

4. Conclusions

This study revealed that Acacia mangium can improve some physical and chemical
properties of degraded secondary forest soils in Air Hitam Forest Reserve in Puchong,
Malaysia. A. mangium has a very high nitrogen-fixing capacity because of its symbiotic
connection with nodule-forming bacteria, resulting in seedlings with more nitrogen-rich
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leaves than native tropical trees. Hence, this phenomenon led to the extensive deposi-
tion of nitrogen-rich litters increasing the concentration of nitrogen in the soil under the
A. mangium region. Therefore, A. mangium’s capacity to fix nitrogen may contribute to soil
acidification because base cations accumulate in its biomass. Although the concentrations
of exchangeable calcium (Ca), magnesium (Mg), and available phosphorus (P) in the soil of
the A. mangium region were not significantly different from those measured in other regions,
the pH was the most influential soil variable associated with the Acacia. In summary, this
study presented a positive case for biological invasion, which may be utilised to better
understand the ecological impact of A. mangium invasion in secondary forest degraded
regions through A. mangium’s ability to improve the condition of the degraded soils and
restore nutrient cycling in degraded systems to enhance its growth.
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