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Abstract: Kapur (Dryobalanops aromatica) is an important dipterocarp species currently classified as
vulnerable by the IUCN Red List Threatened Species. Science-based conservation and restoration
efforts are needed, which can be supported by new genomic data generated from new technologies,
including MinION Oxford Nanopore Technology (ONT). ONT allows affordable long-read DNA
sequencing, but this technology is still rarely applied to native Indonesian forest trees. Therefore,
this study aimed to generate whole genome datasets through ONT and use part of these data
to construct the draft of the chloroplast genome and analyze the universal DNA barcode-based
genetic relationships for D. aromatica. The method included DNA isolation, library preparation,
sequencing, bioinformatics analysis, and phylogenetic tree construction. Results showed that the
DNA sequencing of D. aromatica resulted in 1.55 Gb of long-read DNA sequences from which a partial
chloroplast genome (148,856 bp) was successfully constructed. The genetic relationship was analyzed
using two selected DNA barcodes (rbcL and matK), and its combination showed that species of the
genus Dryobalanops had a close relationship as indicated by adjacent branches between species. The
phylogenetic tree of matK and the combination of the matK and rbcL genes showed that D. aromatica
was closely related to Dryobalanops rappa, whereas the rbcL gene showed group separation between
D. aromatica and D. rappa. Therefore, a combination of the matK and rbcL genes is recommended for
future use in the phylogenetic or phylogenomic analysis of D. aromatica.
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1. Introduction

Dipterocarpaceae is an ecologically and economically important tree family widely
used for timber and non-timber forest products. The non-timber forest products of Diptero-
carpaceae, such as resin, sap, and camphor, have high economical values [1]. Dryobalanops
aromatica, an important species from this family that produces camphor, is native to In-
donesia and is distributed in North Sumatra, Riau Islands, and Borneo (West Kalimantan,
Sabah, and Sawarak) [2]. Biologically, D. aromatica tree can reach a height of 65 m with
a clear-bole height of 30–40 m and an average diameter at breast height of 70 cm when
fully mature [3,4], living at an altitude of <500 m above sea level [5]. The camphor of
D. aromatica contains a borneol compound [6] that can be utilized in the form of crystals
and resins as a material for preparing perfumes and various medicine [7]. In China, it is
used as an antiseptic, anti-inflammatory, analgesic, and as an additive for sanitary napkins
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(bio panty) to reduce pain during menstruation [8]. A recent study has found that borneol
in D. aromatica can be used in diseases of the nervous system [9]. Borneol can dilute the
blood in the human brain blood vessels and exert cerebral protective effects. A review [10]
concluded that borneol has potential in preventing the enlargement of infarction, making it
a neuroprotective agent against cerebral ischemia. At present, populations of D. aromatica
are declining because the crystals obtained from the stems of D. aromatica have a higher
market price than oil, leading to uncontrolled harvesting methods [11]. As a result, Kapur
(D. aromatica) has been categorized as vulnerable in the 2018 IUCN (International Union
for Conservation of Nature and Natural Resources) Red List of Threatened Species [12].
Therefore, a concerted effort is needed to increase the population of D. aromatica through
tree regeneration, which could be aligned with ecosystem restoration programs promoted
by the United Nations [13].

Tree regeneration and genetic resource conservation experiments require a science-
based genetic conservation strategy to provide complete genomic data and information on
target species [14,15]. Genomic tools are indispensable because the current molecular meth-
ods for forest trees still have DNA fragments and limited DNA sequence analysis. Nowa-
days, DNA sequencing technologies rapidly evolve and have entered third-generation
sequencing through long-read sequencing analysis. Recent technological developments
can support the sequencing process with portable and economic devices, such as MinION
sequencer from Oxford nanopore Technologies (ONT). This nanopore technology has the
advantage of being able to sequence large eukaryotic genomes and minimize the presence
of fragments that cause gaps between DNA strand assemblies [16]. This technology will
also aid in chloroplast genome research. The chloroplast genome is characterized by having
a circular structure and containing a pair of long inverted repeats that can add several
errors to sequencing results by using short-read sequencing technologies [17]. Meanwhile,
long-read sequencing can capture entire structural variants or repetitive segments in a
single DNA read [18]. The utilization of long-read DNA sequencing technology will benefit
the construction of the plant genome, which consists of repetitive DNA sequences and
single-copy gene sequences.

With the advent of ONT, many native tropical trees, especially those with high eco-
nomic potentials such as D. aromatica, can be further investigated as a start-up genomic
research activity to support conservation, breeding, and ecosystem restoration by inform-
ing seed sourcing, species selection, or provenance selection [19]. In addition, this portable
sequencing enables in situ sequencing used in various field conditions, including real-time
sequencing of endangered species, which can help democratize scientific research and
conservation efforts [20]. The data resulting from this portable sequencer will generate
important genetic information, such as analyses of genetic relationships that can be used
as baseline data in determining the conservation strategy for the species and providing
new insights for evolutionary studies. Analysis of genetic relationship can be performed
with the chloroplast genome. The chloroplast genome is the perfect source for phylo-
genetic study because of its stable genome structure, higher evolutionary rate than the
mitochondrial genome, and 100–130 genes that encode ~79 proteins, ~30 transfer RNAs,
and 4 ribosomal RNAs [21]. In the present study, we used universal gene markers matK and
rbcL to construct phylogenetic trees because these two genes are considered standard plant
DNA barcoding markers with high discriminatory power between angiosperms [22,23].
This study aimed to generate whole genome datasets and use part of them as a promising
showcase to construct the draft of the chloroplast genome and analyze the universal DNA
barcode-based genetic relationships for D. aromatica.

2. Materials and Methods
2.1. Plant Materials

Samples of one silica-gel dried twig and one fresh leaf derived from one individual
healthy D. aromatica seedling (Figure 1) were collected for later laboratory work. Silica-gel
dried twigs were used because they allow easier collection of sawdust with a drill tool than
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fresh twigs. The seedling was originated from Lingga Island in Riau Archipelago and has
been raised for 5 years in the Komatsu-FORDA Conservation nursery, Forest Research and
Development Center, Forestry and Environmental Research Development and Innovation
Agency, Ministry of Environment and Forestry in Bogor, West Java, Indonesia.
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2.2. Genomic DNA Extraction

Genomic DNA was extracted by using the modified cetyl trimethyl ammonium
bromide (CTAB) method [24]. The CTAB buffer contains 1% PVP, 5 M NaCl, 0.5 M EDTA,
10% CTAB solution, and dH2O. D. aromatica fresh leaf was mixed with CTAB buffer and
ground manually using a mortar and pestle before proceeding to the extraction process.
Meanwhile, the twig was drilled to obtain fine sawdust using a Dremel 3000 Rotary
Tool before being mixed with CTAB buffer and mashed with a mortar and pestle for
further DNA extraction. The quality of genomic DNA was evaluated using agarose gel
electrophoresis performed by Mupid exU, and the purity of genomic DNA was assessed
using Nanophotometer IMPLEN NP80. The A260/280 ratio of 1.8 is recommended for
sequencing. DNA quantity was measured with a Qubit 1.0 fluorometer using the Qubit
dsDNA BR assay kit. The quantity of DNA required for sequencing was 1 µg of DNA
in 48 µL volume. The use of this Qubit is recommended because it provides accurate
measurements that can distinguish DNA from the rest of the solute [25].

2.3. DNA Library Preparation and Sequencing

A DNA library was prepared in accordance with the nanopore protocol using Native
Barcoding Genomic DNA with barcode kit 1-12 (EXPNBD104) and ligation sequencing kit
(SQK-LSK109), version NBE_9065_v109_revJ_23May2018. The DNA library preparation
consists of several steps: (i) DNA repair (FFPE) and end-prep for optimizing DNA quality,
(ii) preparing DNA sequence ends for barcode and adapter attachment, and (iii) preparing
R9.4 flow cell for sequencing (priming the flow cell). DNA clean-up was performed in
between each library preparation step using magnetic AMPure XP beads. The DNA library
was loaded into the R9.4 MinION Flowcell, and sequencing was performed using MinKnow
software from ONT.

2.4. Data Analysis
2.4.1. Sequence Raw Data Analysis

The output of MinION sequencing was raw Fast5 data, which was subsequently
base called into FASTQ files using the Guppy program v4.2.3+8aca2af8 [26,27]. Then, a
data quality check was performed using the NanoStat program v1.5.0 [28] to obtain the
statistic of the FASTQ reads and its distribution of quality scores. The NanoPlot program
v1.33.1 [29] was used to create a plot of reading length x average quality score. Reads with
inadequate quality (Q < 7) and length <500 bp were filtered using the NanoFilt program
v2.7.1 [30], and the parameters used were -l 500 -q 7 –headcrop 10 –tailcrop 10 –readtype
1D. The QC-passed reads were assembled using Rebaler (v0.2.0) [31], with Dipterocarpus
turbinatus (NCBI accession code NC_046842.1) as the reference-based assembly [32], for
correction of reads and assembled reads into contigs. The resulting contigs were subject to
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assembly polishing using the MEDAKA consensus v1.2.1 [33] to obtain contigs with high
accuracy. The statistics of the polished contig were calculated using QUAST v5.0.2 [34]
with reference to the D. turbinatus chloroplast genome. Subsequently, the polished contig
was annotated using the GeSeq platform [35], and GenBank annotations were generated.

2.4.2. Chloroplast Marker Analysis

The GenBank annotation obtained from GeSeq was visualized using SnapGene
v5.2.3 [36] to search for the potential gene marker. Two universal coding gene sequences
(Table S1), rbcL and matK [22,23], were then selected for further analysis. Sequences of the
rbcL and matK genes were blasted on the NCBI [37] by using translated nucleotide query
(BLASTX) [38–40] under the Dipterocarpaceae family. The result of 50 homolog sequences
of each marker was downloaded in the form of a Fasta file for further phylogenetic tree
construction.

2.4.3. Phylogenetic Tree Construction

Phylogenetic analysis was performed using MEGA X v10.2.2 [38,41]. Sequence align-
ment of 50 homolog sequences plus marker was carried out using ClustalW alignment and
default parameter. A phylogenetic tree was constructed on the aligned sequences using the
neighbor-joining algorithm and a bootstrap value of 1000 repetitions to test the topological
validity of the phylogenetic tree [40]. The constructed tree was evaluated, and branches
with bootstrap value >70% were retained. According to [42], the bootstrap value was
categorized into very weak (<50%), weak (50–69%), moderate (70–85%), and high (>85%).
Therefore, the bootstrap value must be at least >70% to obtain a topology with the reliable
(valid) genetic relationship of D. aromatica. The final constructed phylogenetic tree was
exported to Newick format (.nwk) and then uploaded on the iTOL web server [43] to create
a phylogenetic tree cladogram design. The phylogenetic tree cladogram was finalized in
Inkscape v1.0.2 [44] to provide a clear branch color thickness.

3. Results
3.1. Genome Sequencing and Assembly

The first step in the long-read analysis is base-calling or conversion from raw data to
nucleic acid sequences. The MinION platform outputs in the form of FAST5 files, which are
then converted into FASTQ (raw data from base-calling) [27]. The FASTQ files were subject
to a quality check to determine the read length with its initial quality. On the basis of the
distribution (Figure 2), the longest read lengths reach approximately 60 Kb or 60,000 bp
with the highest reading quality of Q25 and the lowest quality of Q4. The higher the read
lengths, the lower the number of reads. Most of the reads fall under 20 Kb and quality
above Q10. Thus, the sequence of D. aromatica obtained in this study is good for long-read
sequencing.

FASTQ data were filtered to remove sequences whose DNA quality is <Q7 according
to the ONT quality passing standard [45]. DNA sequences with read lengths below 500 bp
were removed to avoid wasting computational resources in the assembly process [46].
Previously, the results of the initial data quality examination showed that the genomic data
of D. aromatica still had several base sequences that could increase or affect the error value
due to low read length and quality. When low read length and quality were removed, the
mean read length, mean read quality, and read length N50 statistically increased (Table 1).
After filtering, approximately 96% of reads passed the quality control (351,411 reads) with
a reading length N50 of 6114 bp and a total base of 1.55 Gb.
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Table 1. Statistics of the raw, filtered, and assembled reads.

Raw Reads Filtered Reads Assembled Reads

Mean read length/contig length (bp) 3862 4438 148,856
Mean read quality 12,6 12,7 -

Number of reads/contig 418,943 351,411 1
Read length N50 (bp) 6061 6114 -

Total bases (bp) 1,617,953,241 1,559,878,347 -
Average coverage - - 186.804

The assembly stage in this study was carried out using reference-guided DNA assem-
bly by comparing the studied genome with the reference genome in bioinformatics analysis.
The reference-guided assembly produced a partial genome of D. aromatica chloroplasts of
148,856 bp. The GC content was calculated as 36.92%, which is consistent with cpDNAs
from other Dipterocarpaceae family members, such as Hopea reticulata (37.4%) [47] and
Parashorea chinensis (37.1%) [48]. Several genes with high GC content were exhibited by
four ribosomal proteins, namely, rrn23, rrn16, rrn4,5, and rrn5 with 55%, 56%, 50%, and
51%, respectively. In addition, the total genome fraction found in the partial genome was
89.99%, with 411 indels and 135,411 alignments for reference.

Reference assembly is less time-consuming and has computational power [49]. DNA
assembly to generate the whole genome starts with combining overlapping reads to con-
struct contigs. The contigs were combined to make scaffolds, which were also combined to
obtain the whole genome. However, genome assembly usually meets several challenges
(sequencing error, short reads, repeats, polymorphism, etc.) that need to be resolved and
requires repeated sequencing before being able to construct a complete genome. There-
fore, this study focused on the chloroplast genome of D. aromatica because of the single
sequencing generated in this study.

3.2. Chloroplast Genome Annotation

Genome annotation was performed to identify functional genes along the genome
sequence [50]. The annotation of D. aromatica chloroplast identifies genes contained in the
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cpDNA (Table 2). The assembled draft chloroplast genome contains 137 genes, including 98
protein-coding sequences, 33 tRNA genes, and 8 rRNA genes. A total of 14 protein-coding
genes contain intron, whereas 2 genes (rps12 and ycf 3) contain 2 introns each. trnK-UUU
exhibits the largest intron at 2528 bp, encompassing the matK gene. The smallest intron is
located at the rps12 gene with an intron size of 232 bp (Table S2).

Table 2. Summary of the genome assembly and annotation in D. aromatica.

Assembly Size (contig, bp) 148,856

GC content (%) 36.92
Genome fraction (%) 89.99

Number of indels 411
Alignment to reference 135,411

Total number of gene features 349

The chloroplast genome draft contains genetic information in the form of protein-
coding regions (Figure 3), which can be used as DNA barcode markers. Several cpDNA
markers found in the draft genome of D. aromatica chloroplasts are common markers that
have been developed and used as DNA barcodes; these markers include rbcL, matK, the
intergenic spacer trnH–psbA, and trnL-trnF [51]. The 98 protein-coding genes have been
classified into genes responsible for photosynthesis (psaA, psaB, psbA, psbK, petA, petN,
atpA, atpF, etc.), genes with self-replication (rpl33, rpl20, rps16, rps2, rrn16, rrn23, etc.), and
other genes (accD, ccsA, cemA, inf A, matK, rbcL, etc.). On the basis of these findings, DNA
barcodes rbcL and matK and their combination were selected to be used in further analysis.
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3.3. Phylogenetic Tree Construction

The rbcL and matK markers are commonly used as molecular identifications, espe-
cially plants for DNA barcoding in taxonomic studies. On the basis of the Consortium
for the Barcode of Life’s, the two markers (rbcL and matK) and their combination were
recommended for determining the genetic status of a species in a comprehensive, accurate,
and fast manner [52,53]. The rbcL gene in cpDNA encodes RuBisCo and has a high degree
of similarity between species because of its low mutation rate [54]. The rbcL gene has a full
length of approximately ±1400 bp [55]. The matK gene marker has a sequence length of
±1500 bp and has a gene substitution rate six times higher at the amino acid level and three
times higher at the nucleotide level when compared with the rbcL gene because the matK
gene is the fastest evolving coding region that consistently shows high-level discrimination
in species [52]. Previously, molecular phylogenetic studies have been carried out on the
Dipterocarpaceae family using several markers [56,57], indicating the genetic relationship
of a species observed in the phylogenetic tree. Phylogenetics is a genetic relationship
diagram that can be analyzed based on the similarity of genes or phenotypes from one
family; it is supported by several literature reviews as a complement to ecological and
morphological information [58].
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In this study, the results of genetic relationship analysis using the neighbor-joining
method with 1000 bootstraps on D. aromatica with other species from the Dipterocarpaceae
family showed that species of the genus Dryobalanops had a close relationship because they
were in adjacent branches [59], either based on the matK gene with a length of 1314 bp
(Figure 4), the rbcL gene with a length of 1428 bp (Figure 5), or a combination of the two
genes (Figure 6). However, the number and members of species in a branch were different
for each gene used. For example, Dryobalanops lanceolata and D. aromatica were found in the
phylogenetic tree based on the rbcL gene (Figure 4); Dryobalanops beccarii, D. aromatica, and
Dryobalanops rappa were found in the phylogenetic tree based on the matK gene (Figure 5);
and D. rappa and D. aromatica were present in a phylogenetic tree based on the combined
genes (Figure 6).
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In addition, the phylogenetic tree constructed from the rbcL gene showed that D. aro-
matica was genetically close to another D. aromatica sequence with a bootstrap value of
61%. However, D. rappa was outside the branch of the Dryobalanops genus and separated
from D. aromatica. Meanwhile, the phylogenetic tree of matK and the combination of
matK and rbcL genes showed a close relationship between D. aromatica and D. rappa with
bootstrap values of 64% and 95%, respectively. The rbcL gene has a high success rate in
amplifying gene fragments [60], but this gene also has some disadvantages, such as low
resolution in distinguishing several closely related species [61]. Therefore, the rbcL gene
was inconsistent in distinguishing between genera. By contrast, the matK gene can better
differentiate between genus and species levels [62].
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4. Discussion
4.1. Genome Sequencing and Assembly

In this study, we present the genome sequencing of D. aromatica based on single
sequencing run, which generated considerably higher output, 1,617,953,241 bases in
418,943 reads, compared with the output from the previous sequencing with the Diospyros
celebica genome using MinION (318,492,700 bases in 302,567 reads) [63]. As much as 16.2%
reads presented a quality score of 15 or higher with a mean quality score of 12.6. Raw read
filtering yielded high-quality 1,559,878,347 reads with 15.7% presenting a quality score of
15 or higher and 100% of the total reads having a quality score of more than 7. Quality
checks before and after screening were performed to determine information reads that will
be gained in constructing contigs, scaffolds, or genome reconstructions.

Chloroplast genome sequencing of D. aromatica was successfully carried out with the
aid of D. turbinatus as reference for assembly, which resulted in 148,856 bp of D. aromatica
cpDNA. Long-read sequencing technologies, such as ONT, have the potential to allow a
single read to cover the entirety or parts of the chloroplast genome, especially using the
R9.4 chemistry [64,65]. In addition, ONT provides polishing tools (Medaka) to improve the
accuracy of assembly results [66]. Despite concerns about the error rate exhibited by long-
read sequencing technologies, genomic application to genetic resource conservation and
plant breeding especially in forest trees can harness the benefit of these technologies [67].

4.2. Organization of a Partial Chloroplast Genome

The advantage of chloroplast DNA (cpDNA) is its small genome and stable structure.
The low average nucleotide substitution makes the genome in cpDNA more conserva-
tive. In addition, the genome in cpDNA is not subject to recombination and is inherited
uniparentally. In general, the genome size of a plant is approximately 61 Mb (Genlisa
tuberosa) [66] to 152 Gb (Paris japonica) [68,69]. The chloroplast genome in terrestrial plants
has been obtained with a size range of 120–170 Kb, although the chloroplast size of each
plant is different [70]. For example, some studies showed a chloroplast genome size of
156 Kb (Saurauia tristyla) to 206 Kb (Rhododendron griersonianum) [51]. A study of the
chloroplast genome of D. turbinatus (NC_046842.1), which is used as a reference for D. aro-
matica [32], successfully generated 5.2 Gb high-quality clean reads to assemble and obtain
the annotation result as a complete chloroplast genome with a length of 152,279 bp.

Wang et al. [71] have recently determined that the complete chloroplast genome of
D. aromatica is 152,696 bp in length. The two inverted repeats separated the two single-
copy regions of 93,610 bp and 18,902 bp. A total of 128 predicted genes consisting of
84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes were found. The GC content
of the chloroplast genome was 39.16%. However, the result of our study could not be
compared with those of Wang et al. [71] because the taxonomic classification of D. aro-
matica was inconsistent and incorrect, i.e., D. aromatica was designated as a species of the
family Lauraceae. Differences in family groupings of D. aromatica between this study and
Wang et al. [71] raised doubts on whether these two studies examined the same species. In
addition, D. aromatica was clearly placed in the Dipterocarpaceae family [72–74] and not in
the Lauraceae family [71].

The information of genes in the chloroplast genome will be useful to support the study
of the evolutionary history of plants [75,76] and to select the best marker for D. aromatica
in this case. Recent studies have shown that repeated chloroplasts serve a function that
is useful in genetic resources for population genetics and biogeography studies [77]. In
addition, other genetic studies in Lycoris species [78], Acer miaotaiense using matK [79],
and C4 plants using rbcL [80] reported that these genes could be used in for comparative
and phylogenetic analysis. Some studies have proven that matK and rbcL can be used as
markers for plant evolutionary studies [79,81].
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4.3. Phylogenetic Inference

The bootstrap values of rbcL (61%) and matK (65%) in this study showed that the
nodes were still allowed in the tree (above 50%) despite the low confidence [82], whereas
the combined rbcL and matK genes (95%) showed a very significant difference between
D. aromatica and D. rappa. This pattern indicated that the combination of matK and rbcL
genes produced a better resolution of phylogenetic analysis [83]. The barcodes used for
plant species are very unstable; thus, the more DNA markers used in analyzing a plant, the
greater the effort to identify the plant species [84].

The data from this information provide new knowledge related to phylogenetic study
on the genus Dryobalanops [85], which previously showed a phylogenetic relationship
with the genera Shorea and Hopea [86]. In a previous study, the genus Hopea was declared
as closely related to Shorea [87]. In a 1999 study, the paraphyletic group between Hopea
and Shorea was revealed based on the rbcL sequence, leading to further questions of
their phylogenetic relationship [88]. The Dryobalanops phylogeny was not resolved using
the rbcL marker; however, the use of trnL-trnF placed Dryobalanops as a sister taxon to
Hopea and Shorea. In another study in 2005 [89], Dryobalanops was considered as a sister
taxon to a group containing Shorea and Hopea, but Dryobalanops is more closely related to
Shorea than to Hopea. The next study in 2006 [90], in which a molecular phylogeny of the
Indonesian Dipterocarpaceae was constructed using PCR-RFLP of the chloroplast regions
rbcL, petB, psbA, psaA, and trnL-F, revealed that Dryobalanops is intermediate between
genera Shorea and Dipterocarps. However, the phylogenetic tree of Dryobalanops, especially
D. aromatica, has not been studied extensively with other markers. The phylogenetic tree
created from this study with rbcL marker shows that Dryobalanops is still included in the
clade genus Shorea, but the genus Vatica was also included in one clade between Shorea
and Dryobalanops. The matK marker and combination of rbcL and matK showed that
Dryobalanops is monophyletic.

The bootstrap value showed the value of genetic relationships between species that
have many similar characters and are closely related [91]. D. rappa and D. aromatica possibly
descended from a common ancestor that carries the same chemical-genetic traits or patterns,
which agrees with several studies that characterized the content of compounds in both
species [92,93]. Several other studies have shown that D. rappa is an endemic species
in Kalimantan with D. beccarii, Dryobalanops fusca, Dryobalanops keithii, and D. lanceolata,
whereas D. aromatica and Dryobalanops oblongiofolia are endemic species from Sumatra [94].
The high proximity of D. aromatica and D. rappa means that the distribution of D. aromatica
in Sumatra is an evolutionary form of Borneo, as evidenced by the fact that D. aromatica is
found naturally in Kalimantan [95].

5. Conclusions

Genome sequencing of D. aromatica was successfully carried out by reading the base
sequence of long-read DNA, resulting in high-quality DNA of 1.55 Gb from which a partial
genome of D. aromatica chloroplasts of 148.856 bp was constructed. The processed data
could be used to observe the genetic relationship of D. aromatica using two genes, namely,
matK, rbcL, and a combination of both. The phylogenetic tree showed that D. aromatica was
closely related to D. rappa based on matK gene markers and combinations (matK and rbcL).
However, the combination of matK and rbcL genes showed a very high confidence level, so
the combination of these genes is recommended for further analysis of D. aromatica.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12111515/s1, Table S1: Gene sequence from rbcL and matK marker; Table S2: Protein-coding
genes containing intron.

https://www.mdpi.com/article/10.3390/f12111515/s1
https://www.mdpi.com/article/10.3390/f12111515/s1
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