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Abstract: Cytochrome P450 monooxygenase CYP51 (sterol 14α-demethylase) is a well-known target
of the azole drug fluconazole for treating cryptococcosis, a life-threatening fungal infection in immune-
compromised patients in poor countries. Studies indicate that mutations in CYP51 confer fluconazole
resistance on cryptococcal species. Despite the importance of CYP51 in these species, few studies on
the structural analysis of CYP51 and its interactions with different azole drugs have been reported.
We therefore performed in silico structural analysis of 11 CYP51s from cryptococcal species and
other Tremellomycetes. Interactions of 11 CYP51s with nine ligands (three substrates and six azoles)
performed by Rosetta docking using 10,000 combinations for each of the CYP51-ligand complex
(11 CYP51s × 9 ligands = 99 complexes) and hierarchical agglomerative clustering were used for
selecting the complexes. A web application for visualization of CYP51s’ interactions with ligands
was developed (http://bioshell.pl/azoledocking/). The study results indicated that Tremellomycetes
CYP51s have a high preference for itraconazole, corroborating the in vitro effectiveness of itraconazole
compared to fluconazole. Amino acids interacting with different ligands were found to be conserved
across CYP51s, indicating that the procedure employed in this study is accurate and can be automated
for studying P450-ligand interactions to cater for the growing number of P450s.

Keywords: cytochrome P450 monooxygenases; CYP51; Tremellomycetes; sterol 14α-demethylase;
Cryptococcus neoformans; drug-resistance; web-application; docking

1. Introduction

Among fungal diseases, cryptococcosis remains a significant cause of morbidity and
mortality in immunocompromised people especially in sub-Saharan Africa [1]. Cryptococ-
cal species such as Cryptococcus neoformans and C. gatti are primarily responsible for this
disease [2]. Across the world, an average of 6% of HIV-infected people have contract this
disease, of which 73% of cases were reported in sub-Saharan Africa, with a death rate of
15% [1]. Treatment options for cryptococcosis are limited to only three drugs (amphotericin
B, flucytosine, and fluconazole), with few compounds reaching clinical trials [3]. The
treatment involves use of an azole drug, fluconazole, as primary or consolidation and main-
tenance therapy, followed by induction therapy with intravenous amphotericin B with or
without flucytosine [4]. In developed countries, patients are initially subjected to induction
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therapy and then treatment with fluconazole. However, in resource-limited countries such
as low- and middle-income countries, treatment is solely based on fluconazole [4,5].

Non-susceptibility of cryptococcal species to fluconazole has been observed around
the world and this has become a growing problem [6–11]. Interestingly, quite a number
of laboratory-based studies reported better performance of other azoles (itraconazole,
voriconazole, posaconazole, and isavuconazole) including the new class of tetrazole com-
pound, VT-1129, against cryptococcal species [10,12–21]. Azole compounds exert their
anti-fungal activity by inhibiting the enzyme cytochrome P450 monooxygenase (CYP/P450)
CYP51 involved in the synthesis of fungal membrane ergosterol [22,23]. CYP51, also known
as sterol 14α-demethylase, is highly conserved across the phyla and stimulates a key enzy-
matic reaction that involves stereoselective three-step oxidative removal of the 14α-methyl
group from the sterol [24]. Because of this important enzymatic reaction, this enzyme
has become a drug target against fungal pathogens and protozoan parasites where azole
compounds are in use as drugs in clinical practice targeting this enzyme [24–26]. A search
using the word “CYP51” at Research Collaboratory for Structural Bioinformatics Protein
Data Bank (RCSB PDB) [27] indicated the presence of 109 crystal structures (as of 22 January
2021), clearly indicating the enormous importance of this enzyme, especially its exploitation
as a drug target [24,28].

Some progress has been made with unraveling the molecular mechanisms responsi-
ble for fluconazole non-susceptibility based on CYP51 in cryptococcal species [25,29–32].
Over-expression of this gene either by sterol regulatory element-binding protein or by
virtue of the presence of more than one copy of this gene due to genomic aneuploidy or
the mutations in this gene has been to be responsible for fluconazole resistance [25,29–32].
A point mutation in CYP51 at G484S resulted in conferring resistance on fluconazole [29].
Azole drug resistance patterns were changed by a single mutation Y145F that caused
high fluconazole/voriconazole resistance but increased susceptibility to itraconazole and
posaconazole [30]. G344S mutation caused multi-drug resistance to fluconazole, itracona-
zole, and voriconazole [31]. Detailed information on different mechanisms employed to
deal with fluconazole resistance of cryptococcal species was recently reviewed [25].

The CYP51 gene mutational studies mentioned above are based on sequencing the
CYP51 gene from the fluconazole non-susceptible strains and comparing its sequence with
fluconazole-susceptible strains. To date, structure–activity relationship studies on CYP51
from cryptococcal species have not been reported, with the exception of one study pub-
lished in 2009 reporting the first three-dimensional (3D) model of CYP51 from C. neoformans.
Based on the in silico results, the authors suggested that G484S substitution changed the
orientation of the heme-binding domain, leading to decreased catalytic activity and thus,
azole binding conferring the drug resistance [33]. Recently, our laboratory performed
genome-wide analysis and annotation of P450s in the fungal class Tremellomycetes, which
included quite a number of cryptococcal species as well [34]. The study revealed the pres-
ence of the CYP51 gene in all species of Tremellomycetes. Considering that structure-activity
studies are scarcely reported on CYP51 of cryptococcal species and the availability of a
large number of CYP51 sequences [34], this study is aimed at addressing this research gap
by performing comparative modeling of CYP51s, which includes assessing their binding
patterns to substrates and azoles. CYP51s from other Tremellomycetes were included for
comparative analysis with CYP51s of cryptococcal species.

2. Results and Discussion
2.1. CYP51s Grouped as per Tremellomycetes Lifestyle

Phylogenetic analysis of CYP51s from different Tremellomycetes revealed an interesting
pattern where CYP51s from species with a similar lifestyle or adaption to similar ecolog-
ical niches grouped together (Figure 1). CYP51s from human pathogenic species such
as C. neoformans and C. gatti grouped together whereas CYP51s from oleaginous yeasts
C. curvatus and Trichosporon oleaginosus IBC0246 were grouped together with the excep-
tion of CYP51 from C. terricola (Figure 1). The CYP51s from the Tremellomycetes having
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diverse lifestyles standalone on the tree, indicating considerable changes in CYP51 amino
acids after speciation. This phenomenon of grouping P450s from species with similar
life style/adaption to similar ecological niches was observed in some bacterial [35–37]
and fungal species [38–40]. This indicates that after speciation, lifestyle/ecological niches
played a key role in changing/preserving the amino acid content, as observed for different
P450s families in bacteria [35–37] and fungi [38–40].
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Figure 1. Phylogenetic analysis of CYP51s from Tremellomycetes. The analysis involved 22 CYP51
protein sequences. Phylogenetic analysis was carried out as described in the Methods section and the
percentage of trees in which the associated taxa clustered together is shown next to the branches.

2.2. CYP51s of Tremellomycetes Have All the CYP Characteristic Motifs

Eleven CYP51s from Tremellomycetes as representative of diverse lifestyle/ecological
niches were selected for structural analysis (Table 1). Three-dimensional structural models
were built with template-based modeling using Modeller software version 9.21 [41].

Table 1. Analysis of Tremellomycetes CYP51s and ligand complexes. Number of models falling into
‘clashes’, ‘correct’, ‘near’, and ‘pocket’ group summarized by ligands. These numbers are summed
up over all 11 proteins, so the total number of models for each inhibitor is 99,000.

Ligand No. Clashes No. Correct No. Near No. Pocket

Lanosterol 131 212 809 12,032
Obtusifoliol 116 209 720 11,670

Eburicol 116 202 828 12,511
Itraconazole 185 108 256 9041

average 76 98 387 7555
VT_1129 24 76 250 4552

Clotrimazole 1 25 98 2825
Voriconazole 21 22 195 5020
Fluconazole 42 19 240 5040

Ketoconazole 55 14 87 5307

The template 4LXJ (CYP51F from S. cerevisiae) [42] was selected as the best template
for modeling as the sequence identity with CYP51s from Tremellomycetes ranged from 41%
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to 50% at very high alignment coverage above 90% and the sequence similarity was always
well above 70% (Table S1). Multiple sequence alignment of Tremellomycetes CYP51s with the
template showed very good alignment, with no major deletions when using the template
(Supplementary Dataset S1). Three-dimensional modeling of Tremellomycetes CYP51s on
such good alignment should produce high-quality models as described elsewhere [43].
Furthermore, a point to be noted is that all these CYPs belong to the same subfamily where
they share >55% identity criteria to be part of the same subfamily [44]. Considering these
facts, the 11 CYP51 models generated in the study, as expected, were found to have highly
similar structures with characteristic CYP helices and beta sheets [45,46], with only a few
minor differences (Figure 2 and Supplementary Dataset S1). An amphipathic helix and two
transmembrane helices are missing from the N-terminal region of CYP51F Cter whereas an
amphipathic helix, two transmembrane helices, αA helix and αL helix, and subsequent C-
terminal end, are missing from CYP51F1 Nen UCDFST68-887 (protein ID: 523016) (Figure 2
and Supplementary Dataset S1). Lack of these helices may be due to genome editing or
gene prediction error where prediction of a complete gene sequence is impossible at present.
Compared to the rest of the 10 CYP51s, the αC helix of CYP51F1 TaaCBS2479 is found to
be longer with 34 amino acids (Figure 2 and Supplementary Dataset S1). Tremellomycetes
CYP51s have substrate recognition sites 1–6 (SRS 1-6) with the exception of CYP51F1 Nen
UCDFST68-887, where the SRS6 region is missing because the C-terminal region is missing,
as described earlier (Figure 2 and Supplementary Dataset 1). Amino acids, part of the SRSs,
are highly conserved across the Tremellomycetes CYP51s (Supplementary Dataset S1).
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Figure 2. Superimposition of 3D structural models of 11 CYP51s from Tremellomycetes. Helices and
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2.3. Tremellomycetes CYP51s Active Site Cavities Are Highly Hydrophobic

Analysis of active site cavities revealed that Tremellomycetes CYP51s active site cavities
mostly comprise hydrophobic amino acids (Figure 3 and Table S2). The active site cavity
volumes range from 685–4173 Å3, where CYP51F1 Nen UCDFST68-887 has the largest
active site cavity and CYP51F1 TaaCBS2479 has the smallest active site cavity (Figure 3 and
Table S2). One of the reasons why CYP51F1 Nen UCDFST68-887 has the largest active site
cavity is the opening of a channel right next to heme because of the missing C-terminal
region that encompasses SRS6, as described earlier. Thus, the active site cavity volume of
this P450 is not an actual volume and a full-length CYP sequence is needed to deduce the
correct volume of the active site cavity. CYP51s from prominent human pathogens such as
C. neoformans var. grubii H99, C. neoformans var. neoformans B-3501A, and C. gattii EJB2 have
similar sizes to active site cavities (Figure 3 and Table S2). CYP51s from other cryptococcal
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species have larger active site cavities compared to CYP51s from these three prominent
human pathogens (Figure 3 and Table S2). Analysis of the composition of active site cavity
amino acids revealed that 50–60% of cavity amino acids are hydrophobic (Table S2), sug-
gesting that Tremellomycetes CYP51s’ active site cavities are highly hydrophobic. Among
Tremellomycetes CYP51s, CYP51F from C. werringae has the highest percentage of hydropho-
bic amino acids (60%). CYP51s active site cavities’ acidic residues range from 1.64–5.73%
and the basic residues range from 6.25–12.17%, where CYP51F1 Nen UCDFST68-887 has
most acidic amino acids in its cavity and CYP51F from C. curvatus has most basic amino
acids in its active site cavity (Table S2). The hydrophobic nature of these CYP51s’ active
sites is expected considering that they accept highly hydrophobic substrates such as sterols.
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acids, part of the active site cavity, are represented using a ball and stick model. A detailed list of amino acids, part of the
active site cavity, is presented in Table S2.

2.4. A Web Application for Visualization of Tremellomycetes CYP51s Interactions with Ligands

After successful construction of 11 CYP51s 3D models, we then proceeded to under-
stand their interactions with ligands such as substrates and azoles. Among substrates,
apart from the fungal CYP51 substrates lanosterol and eburicol [24], we also included
the plant CYP51 substrate obtusifoliol [24] as a positive control to assess the accuracy of
the study. Among the azoles, five are triazoles (clotrimazole, fluconazole, itraconazole,
ketoconazole, and voriconazole) and one is tetrazole (VT_1129). The rationale for including
these azoles, especially itraconazole, is to assess if any corroboration occurs between the in
silico study and the laboratory studies that showed itraconazole performing better than
the fluconazole [10,12–17].

Docking of each CYP51 vs. each ligand in 11 × 9 resulted in generating 99 combina-
tions (Figure 4). For each of these combinations, we generated 10,000 models as described
in the Methods section. Each of these combinations was analyzed independently. The huge
amount of data generated during these docking calculations posed a formidable challenge
to the analysis. Therefore, we developed a custom web application for this purpose, and
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made it publicly available at the address: http://bioshell.pl/azoledocking/. The applica-
tion can display every model that was generated with its basic numerical parameters, such
as Rosetta energy, number of hydrogen bonds, etc. The results can be browsed by cluster,
sorted, etc.
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11 × 9 = 99 CYP51-ligand combinations considered in this work. CYP51s were indicated with their protein IDs. Each
square displays up to four bars, corresponding to models classified as ‘clashes’, ‘correct’, ‘near’, and ‘pocket’ (blue, orange,
red, and cyan, respectively). Bars taller than 60 observations were reduced to 60 to fit into a plotting area; actual values
are provided in Table 1. Docking results and corresponding information can be accessed at our online web application
(Http://Bioshell.Pl/Azoledocking/).

2.5. Tremellomycetes CYP51s Have the Highest Preference for Itraconazole

Structures for the complexes (CYP51-ligand) considered in this study have not yet
been established experimentally. Therefore, we cannot compare these study results to any
reference structure. Nevertheless, the geometry of interaction between a heme moiety of
P450s and azole drugs has been studied extensively in P450 enzyme systems where azole
drugs are known to coordinate with the ferric core of heme group [47]. A lone pair of
aromatic nitrogen of azole rings forms a semi-covalent bond with the Fe atom of length
dNFe = 2.1 Å [47]. In our analysis, we report the closest distance between heme’s iron and an
aromatic nitrogen atom of an azole drug as a measure of success. For the cases of eburicol,
lanosterol, and obtusifoliol, dNFe denotes the closest distance between Fe and any atom of
a ligand. Since we allowed Rosetta to sample a wide range of binding spots, we observe
ligands located in virtually any region of a receptor. In order to assess the performance of
Rosetta LigandDocking protocol critically, we included all models in our analysis.

http://bioshell.pl/azoledocking/
Http://Bioshell.Pl/Azoledocking/
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The values of dNFe range from below 2 Å to 80 Å. For the analysis, we defined the
following four groups, based on the dNFe distance: Bulleted lists look like this:

• ‘clashes’ where a ligand was closer to the Fe than 1.5 Å;
• ‘correct’ where dNFe was in the range 1.5–2.5 Å;
• ‘near’ with dNFe in the range 2.5–3.5 Å;
• ‘pocket’ with dNFe in the range 3.5–8.0 Å.

The number of models in each of the four categories is provided in Table 1, as well
as shown in Figure 4 by blue, orange, red, and cyan bars, respectively. The definition
of these categories was based on a visual analysis of the resulting structures using the
online application. The distance ranges defining them were manually adjusted to keep the
classification meaningful for as many models as possible. Information on each of these four
were elaborated in the supplementary information under the title “CYP51-ligand groups”.

Ligand binding affinity under physiological conditions results from free energy gain
upon binding. This free energy change includes entropic contributions as well as other
effects such as solvent, ions, etc. Although some of these effects (most notably the inter-
actions with solvent) are included in the Rosetta force field as mean field potentials, the
energy value reported by Rosetta primarily accounts for conformational energy (i.e., en-
thalpy). In order to assess relative binding affinity, one has to take into account the number
of observations for a particular conformation. The docking procedure that was applied
allowed Rosetta to place a ligand virtually anywhere at the protein surface to avoid any
conformational bias. The numbers of correctly docked models given in Table 1 therefore
provide an estimation of binding affinity for different ligands. Based on these results, it
is clear that Tremellomycetes CYP51s’ natural substrate, lanosterol, achieved the top score,
followed by obtusifoliol and eburicol, indicating that our method of analysis is correct, as
one can expect the highest binding affinity to natural substrates. It is also interesting to
see the pattern of preference for azoles by Tremellomycetes CYP51s where itraconazole is
preferred azole followed by VT_1129 and fluconazole, which is the least favored before
ketoconazole (Table 1). This preference pattern perfectly matches wet laboratory data
where itraconazole and VT_1129 were shown to perform better than fluconazole [10,12–21].
Overall, based on these results, we can safely say that our method of analysis is correct.

Given the drawbacks of the Rosetta scoring functions as elaborated on the supple-
mentary section “CYP51-ligand”, the chance of selecting a correct complex without prior
knowledge of the actual in vivo conformation is low. A commonly used remedy to solve
this problem is structural clustering. Thus, in this study, we used this method to select the
correct CYP-ligand complex.

Clustering analysis is a method commonly used in the field of biomacromolecular
modeling. It helps to analyze large amounts of data generated by computer simulations
and to overcome inaccuracies of molecular force fields. A group of structurally similar
conformations corresponds to a single local energy minimum [48]. In general, it is expected
that a conformation corresponding to a larger cluster will be more favored entropically.
Entropic contributions, necessary to estimate the free energy of a given conformation, are
typically not described properly by molecular modeling force fields. Giving preference to
larger clusters during the process of selecting the final docking result, implicitly allows
inclusion of these entropic contributions. Here, we employed a hierarchical agglomerative
clustering algorithm, as described in the Methods section. Following the standard protocols
in the field, we report the five largest clusters for every protein–ligand combination. The
clusters are indicated graphically in Figure 5 as circles. A circular area is proportional to a
cluster size while the color scale represents the dNFe values, in a range from 1 to 80 Å (see
Figure 5). In three cases, no suitable clusters were found (Figure 5). All these clustering
results can be browsed online at: http://bioshell.pl/azoledocking/.
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All the following analyses require selection of a single representative model for each
of the 99 modeling cases. The clustering procedure described above is certainly helpful,
but on its own, is unable to select the final solution in every case. Therefore, we used a web
application (http://bioshell.pl/azoledocking/) to browse the results and manually selected
final conformations. In this process, we took into account the classification resulting from
the clustering procedure, the chemical correctness of a conformation, and the number of
interactions (stacking, H-bonding, and Van der Waals) between a ligand and a protein.
The number of such interactions listed in a table of the web application facilitates the
selection process.

2.6. High Conservation Observed in Tremellomycetes CYP51s Amino Acids Interacting
with Ligands

After selection of each of the CYP51-ligand complex as described above, we further
analyzed the amino acids interacting with different ligands and their location. This is a
very important aspect to check the accuracy of our method employed to dock and select
CYP51-ligand complexes. As all of these CYPs belong to the same subfamily and high
conservation of amino acids is observed in SRS regions (Supplementary Dataset S1), if our
analysis is correct, we should observe high conservation of amino acids interacting with
analyzed ligands across the CYPs. As predicted, our analysis revealed conservation of
a large number of amino acids interacting with docked ligands across the CYPs (Table 2
and Table S2). Mapping of the amino acids interacting with ≥5 ligands revealed that
these amino acids are part of SRSs (Supplementary Dataset S1). We also identified amino
acids across the CYPs that are able to form hydrogen bonds with ligands and interact
with ligands via stacking and Van der Waals interactions (Table S2). This suggests that
our method of docking and selecting the CYP-ligand complexes is correct and in future

http://bioshell.pl/azoledocking/
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these aspects can be automated to understand the CYP-ligand interactions to cater for the
growing number of CYPs. A point to be noted that CYP51F1 TaaCBS2479 due to its compact
active site cavity, has more amino acids interacting with ligands compared CYP51F1 Nen
UCDFST68-887 where due to its larger active site cavity ligands are not strongly binding
and thus, less number of amino acids found to be interacting with the ligands (Table 2).

Table 2. Analysis of Tremellomycetes CYP51s amino acids interacting with different ligands. Amino acids interacting with
≥5 ligands are presented in the table. Amino acids are colored based on their interactions with nine ligands (red), eight
ligands (blue), seven ligands (brown), six ligands (green), and five ligands (pink). A complete list of amino acids interacting
with different ligands is listed in Table S2.

CYP51F Amino Acids Interacting with Ligands (≥5 Ligands)

CYP51F CngH99 F240, Y145, A317, F139, I386, M528, T321, V144, Y131
CYP51F1 TaaCBS2479 S159, A158, A334, F127, F257, H337, I403, M333, M545, P402, S157, T123, T338, T544

CYP51F1 Tmfri A307, F126, F228, I376, M521, T311, V131, Y118, Y132
CYP51F Ccur A307, F128, F230, I376, M518, T124, T311, Y120, Y134
CYP51F1 Nvis F228, Y120, A305, F128, I374, T309, Y134

CYP51F1 Nen UCDFST68-887 A210, A214, F137, F35, H217,
I283, T218, T31, V40, Y27, Y41

CYP51F1 Kim NRRL Y-17943 A313, F235, H316, I382, L129, M526, T130, T317, T525, Y126, Y140

CYP51F Cwer A304, F128, F227, I373, S375,
T124, T308, Y120, Y134

CYP51F Cter A237, F160, F60, H240, L306, L55, M236, M451, T241, T56, Y52, Y66
CYP51F1 Cneo B-3501A F234, I380, A311, F133, H314, I523, M310, T129, T315, V524, Y125, Y139

CYP51F Cgat EJB2 F240, A317, F139, I386, M316, M528, T135, T321, Y131, Y145

Analysis of amino acid substitutions in CYP51s that are found to be critical in response
to different azole drugs [29–31] revealed that Y145 and G484 amino acids are absolutely
conserved in the Tremellomycetes CYP51s (Supplementary Dataset 1 indicated with “X”).
However, substitution of glycine at 410 position (formerly reported as G344) [31] with
alanine (in three CYP51s), serine (in two CYP51s), lysine (in two CYP51s), and arginine
(in a single CYP51) is found (Supplementary Dataset 1 indicated with “X”). This is quite
an interesting observation as it has been reported that G344S substitution in six strains of
C. neoformans var. grubii strain, NUBS14020, resulted in the development of multi-drug
resistance to azoles such as fluconazole, itraconazole, and voriconazole [31]. Considering
these findings, it would be interesting to see the response of the strains containing G344
substitutions in their CYP51s.

3. Materials and Methods
3.1. CYP51s Used in the Study

Twenty-one CYP51s from Tremellomycetes were used in this study. Among 21 CYP51s,
11 CYP51s from different Tremellomycetes representing diverse lifestyles/adaptation to
different ecological niches were selected for structural analysis (Table 3). A detailed
description of the well-known characteristics of Tremellomycetes can be found in a recently
published article [34]. All CYP51 sequences from Tremellomycetes were retrieved from a
recently published article from our laboratory [34] and used in the study. CYP51 sequences
used in the study are presented in Supplementary Information.

3.2. Phylogenetic Analysis

Phylogenetic analysis of CYP51s from Tremellomycetes was carried out using the max-
imum likelihood method based on the JTT matrix-based model [49] and 500 bootstrap
replications. Analysis and visualization of the phylogenetic tree were carried out using
molecular evolutionary genetic analysis [50].
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Table 3. Information on CYP51s from Tremellomycetes used for structural analysis in this study. Amino acid sequences of
CYP51s have been retrieved from the published data [34] and used in the study. The databases used for collecting CYP51
sequences were presented in parenthesis under the P450 ID column.

Species Name Species Abbreviation CYP ID CYP Abbreviation Used in
the Study

Cryptococcus neoformans var. grubii H99 CngH99 00040 (NCBI) CYP51F CngH99

Trichosporon asahii var. asahii CBS 2479 TaaCBS2479 1742 (JGI) CYP51F1 TaaCBS2479

Tremella mesenterica Fries v1.0 Tmfri 38441 (JGI) CYP51F1 Tmfri

Cryptococcus curvatus Ccur 367271 (JGI) CYP51F Ccur

Naganishia vishniacii v1.0 Nvis 345805 (JGI) CYP51F1 Nvis

Naematella encephela UCDFST 68-887 Nen UCDFST68-887 523016 (JGI) CYP51F1 Nen UCDFST68-887

Kockovaella imperatae NRRL Y-17943 Kim NRRL Y-17943 627561 (JGI) CYP51F1 Kim NRRL Y-17943

Cryptococcus werringae Cwer 629036 (JGI) CYP51F Cwer

Cryptococcus terricola Cter 809380 (JGI) CYP51F Cter

Cryptococcus neoformans var. neoformans
B-3501A Cneo B-3501A EAL23379 (NCBI) CYP51F1 Cneo B-3501A

Cryptococcus gattii EJB2 Cgat EJB2 KIR77383 (NCBI) CYP51F Cgat EJB2

Abbreviations: NCBI, National Center for Biotechnology Information; JGI, Joint-Genome Institute, USA.

3.3. Homology Modeling of CYP51s

A 3D structural model for each CYP51s (Table 3) was constructed by employing a
template-based modeling procedure. The template was selected from a non-redundant sub-
set of the Protein Data Bank [51] by searching the database with the HHpred algorithm [52]
available on the website. CYP51 from Saccharomyces cerevisiae (PDB code: 4lxj) [42] which
has the highest E-value, highest percentage identity, and the highest alignment coverage
with all 11 CYP51s of Tremellomycetes was selected as the best template for modeling of
CYP51s. Although some CYP51s share more than 50% identity with other templates, we
did not see much added value from using multiple templates. Unfortunately, they will
not help in bridging gaps introduced by an alignment. On the other hand, we decided to
include a ligand from the template structure in the homology modeling protocol to render
the pocket in the active state. The use of multiple templates would considerably have
complicated the modeling process. Thus, in this study, we used CYP51 from S. cerevisiae
as a template. Query to template alignments were also obtained from the HHPred results.
Manual editing was introduced when necessary. CYP51s structural models were built
based on these alignments with Modeller software (version 9.21) [41]. Three-dimensional
modeling of CYP51s was performed based on structural information from the template
4LXJ where heme cofactor and ligand molecules (lanosterol and heme molecule) were
explicitly included during the modeling to ensure correct geometry of an active site. The
models were checked with Molprobity [NN] which reported 7 to 21 residues (for CYP51F1
Kim NRRL Y-17943 and TaaCBS2479, respectively) outside the allowed Ramachandran
region. Detailed statistics are provided in Table S3.

3.4. Preparation of CYP51s Models for Docking

Most calculations related to docking were performed with the Rosetta [53] software
package, dedicated to biomolecular structure prediction, design, and docking. The software
was collaboratively developed by over 60 laboratories from all over the world [54]. The
clean-pdb.py script (distributed with the software package) [55] was used to remove all
non-protein molecules from the model. Optimization of bonds and dihedral angles was
also performed [55]. Rosetta’s molfile_to_param.py script was used to prepare input files:
PDB and params (internal Rosetta format) for each ligand, based on the particular SDF files,
downloaded from PubChem following the protocol described elsewhere [56], obtained
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from Rosetta Ligand Docking Tutorial online [55]. Ligand conformers generated with Open-
babel [57], and BCL [58] were used, following the protocol used in the Rosetta Community
developed at the Meiler’s laboratory. A Rosetta program named ligand_rpkmin was used
to minimize protein side chains present near the heme molecule following the protocol
used in the Rosetta Community developed by our laboratory. The protein conformation
with the lowest energy was chosen for docking procedures.

3.5. Ligands and Their Docking Procedure

CYP51 substrates (lanosterol, obtusifoliol, and eburicol), azole drugs such as itracona-
zole, clotrimazole, voriconazole, fluconazole, and ketoconazole including the novel fungal
CYP51 inhibitor VT-1129, were used in the study for assessing their binding pattern with
11 CYP51s of Tremellomycetes (Table 3). Chemical structures of the ligands used in the study
are presented in Figure S1. In silico docking of these nine ligands to each of the CYP51
3D models was performed. Docking simulations were done with a PyRosetta script [59].
For this purpose, we adapted a standard script distributed with Rosetta Ligand Docking
Tutorial [55] and PyRosetta notebook 08.01-Ligand-Docking-XMLObjects [60].

The ligand docking procedure was divided into two stages: low and high resolution.
During the first, semi-global stage, a ligand was free to sample the protein surface within a
sphere of 20 Å, which covers nearly the whole protein. A soft variant of the Rosetta score
function called “ligand_soft_rep” was used at this stage to ease energy barrier crossing.
Repulsive LJ term and Coulomb interactions were ramped down while hydrogen bonds
were promoted. Any side chain within 6 Å from a ligand was also allowed to change its
conformation. During the second, high-resolution stage, HighResDocker mover was used
for local refinement of a conformation obtained from the previous stage. A final model
was subjected to all-atom energy minimization and scoring. The procedure was repeated
independently 10,000 for each ortholog-ligand combination and 10,000 resulting poses
were subjected to further analysis.

3.6. Hierarchical Agglomerative Clustering

All clustering analyses in this work were performed with the ap_ligand_clustering
program of the BioShell 3.0 package [61]. Here, we briefly summarize the procedure
as the details of this approach have been reviewed and the software has already been
published [62]. The procedure begins with placing every structure in a separate cluster of
size 1. Then, at every step, the two closest clusters are found and merged into one. The
newly merged cluster contains all structures from its ancestors and the total number of
clusters decreases by one. The procedure is repeated until a convergence condition is met.
Here, we stop clustering when the distance between the two closest clusters exceeds a
certain distance cutoff, e.g., 5.0 Å. There are a few widely used approaches to compute a
distance between two clusters. In this work, we assumed the complete link strategy: the
distance between two clusters i.e., groups of structures, is defined as the smallest distance
possible between any structure from the first group and a structure from the second group.
Clustering with complete link strategy results in relatively many small but tight clusters. A
single clustering calculation of 10,000 models takes around 5 min on a single CPU core.

It is also very convenient to be able to select a “representative” element of a cluster.
Many methods have been devised for this purpose in the literature, e.g., taking an average
of all the cluster elements. Averaged conformation, however, may not represent a chemi-
cally correct structure. Therefore, we defined a “middle” structure (often named ‘medoid’
in the literature) as the one for which the sum of distances to all other members of the
cluster is the smallest.

3.7. Protocols

The detailed description of our modeling protocols, comparative modeling, docking,
and analysis are given on the laboratory ‘Protocols’ website: https://labnotes.readthedocs.

https://labnotes.readthedocs.io
https://labnotes.readthedocs.io
https://labnotes.readthedocs.io
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io. The website provides all the necessary files, scripts, and commands that would allow
other researchers access to our calculations.

3.8. Data Visualization

In order to analyze the results of the calculations extensively and thoroughly, we built
a custom visualization tool (http://bioshell.pl/azoledocking/). The application displays
plots, statistics, and 3D structural models in a web browser. The server side is run by a
Flask application server, also implemented in Python. The client side (i.e., the web browser
part) utilizes VisuaLife Python library (visualife.readthedocs.io/) to render plots, charts,
and tables. NGL biomolecular viewer [63] is employed to display structural models.

3.9. Active Site Cavity and Ligand Interacting Amino Acids Detection

Active site cavities in CYP51 models were detected using CavityPlus [64]. Interactions
between a ligand and the protein were detected automatically with a BioShell package [61].
Van der Waals interactions were assigned when any atoms of two residues (including
hydrogens) were closer to each other than the sum of their VdW radii + 0.5 Å. Hydrogen
bonds were assigned when the distance between the donated hydrogen atom and its
acceptor was shorter than 3 Å and the planar angle formed by the three atoms, pre-acceptor,
acceptor, and the hydrogen was wider than 90 deg. Stacking interactions were recorded
when the distance between the two aromatic ring centers was shorter than 7 Å.

4. Conclusions

Cytochrome P450 monooxygenases (CYPs/P450s) are some of the well-studied en-
zymes in the field of biology. Among CYPs, CYP51 serves as drug target against fungal
pathogens. In the case of cryptococcosis, a life-threatening fungal disease in immunocom-
promised patients, studies indicated that cryptococcal species are developing resistance to
the currently used azole drug fluconazole. Despite knowing that CYP51 is the prime target
of this drug, mutations in this gene conferring resistance on fluconazole and a large number
of in vitro studies indicating that other azoles perform better than fluconazole, to date
very few studies on CYP51s structure from cryptococcal or other Tremellomycetes and their
interactions with azoles have been reported. To address this research gap, in this study, we
performed comparative modeling of CYP51s and their interactions with different ligands
from Tremellomycetes. Phylogenetic analysis of CYP51s indicated some kind of amino acid
conservation after speciation, as CYP51s grouped as per their species lifestyle/ecological
niches. Structural models built for 11 CYP51s revealed the presence of P450 characteristic
motifs and high conservation of amino acids in substrate recognition sites (SRSs) 1–6. The
active site cavities of CYP51s were found to be highly hydrophobic to accommodation of
hydrophobic sterol substrates. Since the structures for the complexes (CYP51-ligand) we
considered have not yet been established experimentally, we performed global docking of
ligands (three substrates and six azoles) with 10,000 combinations for each of the complex
and the correct complexes were selected by hierarchical agglomerative clustering using the
cluster program of the BioShell package. To analyze the huge data generated in this study,
we developed an online visualization tool (http://bioshell.pl/azoledocking/). These study
results indicated that Tremellomycetes CYP51s have the highest preference for its natural
substrate lanosterol, followed by obtusifoliol and eburicol. Among azoles, Tremellomycetes
CYP51s have the highest preference for itraconazole, followed by VT_1129, clotrimazole,
voriconazole, fluconazole, and ketoconazole. Tremellomycetes CYP51s’ high preference
for itraconazole is possibly the reason why this azole perform better than fluconazole, as
observed in a large number of in vitro studies. The methodology followed in this study is
correct, as the amino acids we identified as interacting with different ligands are highly
conserved across the CYP51s, indicating no errors in the procedure. Furthermore, most
of these amino acids were found to be part of SRSs. In this study, we focused on a single
subfamily of CYPs simply to assess the methods employed in the study, but this method
needs to be validated for the analysis of different CYP families and their interactions with
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different ligands. Studies are in progress to develop a website on which this program
will be automated to study CYPs’ interactions with different compounds. This type of
dedicated website for this family of enzymes is desperately needed, as the number of
CYPs is growing exponentially every day. The results of this study further strengthen the
previous laboratory results that itraconazole and VT_1129 will be potential compounds
in the fight against cryptococcosis and their efficacy against cryptococcal species needs to
be determined. One of the interesting results from this study is the identification of non-
conservation of G344 amino acid in Tremellomycetes CYP51s, including in some cryptococcal
species. It would be interesting to see if these Tremellomycetes are resistant to fluconazole,
itraconazole, and voriconazole, as was reported for G344S substituted species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22157811/s1, Reference [42] is cited in the Supplementary Materials.
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61. Macnar, J.M.; Szulc, N.A.; Kryś, J.D.; Badaczewska-Dawid, A.E.; Gront, D. BioShell 3.0: Library for Processing Structural Biology
Data. Biomolecules 2020, 10, 461. [CrossRef]

62. Gront, D.; Kolinski, A. HCPM—Program for hierarchical clustering of protein models. Bioinformatics 2005, 21, 3179–3180.
[CrossRef] [PubMed]

63. Rose, A.S.; Hildebrand, P.W. NGL Viewer: A web application for molecular visualization. Nucleic Acids Res. 2015, 43, W576–W579.
[CrossRef] [PubMed]

64. Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity
detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic
Acids Res. 2018, 46, W374–W379. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pcbi.1007507
http://www.ncbi.nlm.nih.gov/pubmed/32365137
http://doi.org/10.1002/prot.21086
http://doi.org/10.1186/1758-2946-3-33
http://doi.org/10.1186/s13321-015-0095-1
http://doi.org/10.1093/bioinformatics/btq007
http://doi.org/10.35459/tbp.2019.000147
http://doi.org/10.3390/biom10030461
http://doi.org/10.1093/bioinformatics/bti450
http://www.ncbi.nlm.nih.gov/pubmed/15840705
http://doi.org/10.1093/nar/gkv402
http://www.ncbi.nlm.nih.gov/pubmed/25925569
http://doi.org/10.1093/nar/gky380
http://www.ncbi.nlm.nih.gov/pubmed/29750256

	Introduction 
	Results and Discussion 
	CYP51s Grouped as per Tremellomycetes Lifestyle 
	CYP51s of Tremellomycetes Have All the CYP Characteristic Motifs 
	Tremellomycetes CYP51s Active Site Cavities Are Highly Hydrophobic 
	A Web Application for Visualization of Tremellomycetes CYP51s Interactions with Ligands 
	Tremellomycetes CYP51s Have the Highest Preference for Itraconazole 
	High Conservation Observed in Tremellomycetes CYP51s Amino Acids Interacting with Ligands 

	Materials and Methods 
	CYP51s Used in the Study 
	Phylogenetic Analysis 
	Homology Modeling of CYP51s 
	Preparation of CYP51s Models for Docking 
	Ligands and Their Docking Procedure 
	Hierarchical Agglomerative Clustering 
	Protocols 
	Data Visualization 
	Active Site Cavity and Ligand Interacting Amino Acids Detection 

	Conclusions 
	References

