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Simple Summary: Reductions in the numbers of chemical plant protection products that are ap-
proved and a move towards organic production has changed the way growers produce fruit in
Europe. This is likely the result of public pressure and the need for less reliance on broad-spectrum in-
terventions. This review summarises organic approaches that could be adopted as part of integrated
pest management strategies in apple and pear orchards. It focuses on control methods to target key
and emerging European insect pests through biological, cultural, and physical control strategies.

Abstract: Growers of organic tree fruit face challenges in controlling some pests more easily sup-
pressed by broad-spectrum insecticides in conventionally managed orchards. In recent decades,
there has been a move towards organically growing varieties normally reliant on synthetic chem-
ical pesticides (e.g., Gala), often to meet retailer/consumer demands. This inevitably makes crop
protection in organic orchards more challenging, as modern varieties can be less tolerant to pests.
In addition, there have been substantial reductions in plant protection product (PPP) approvals,
resulting in fewer chemical options available for integrated pest management (IPM)-maintained
orchards. Conversely, the organic management of fruit tree pests involves many practices that could
be successfully implemented in conventionally grown crops, but which are currently not. These
practices could also be more widely used in IPM-maintained orchards, alleviating the reliance on
broad-spectrum PPP. In this review, we evaluate organic practices, with a focus on those that could
be incorporated into conventional apple and pear production. The topics cover cultural control,
biological control, physical and pest modifications. While the pests discussed mainly affect European
species, many of the methods could be used to target other global pests for more environmentally
sustainable practices.

Keywords: biological control; codling moth; cultural control; fruit; physical control

1. Introduction

The incentive for growers to adopt organic methods has been driven by consumer
attitudes and an increased awareness of the impacts that some agricultural practices have
on the environment [1]. However, organic agriculture typically produces 8–25% lower
yields than conventional production [2], and in apple production, a ~48% reduction in
yield has been recorded compared with conventional and integrated pest management
(IPM) orchards [3]. There are also concerns that fully organic systems alone will not meet
the increasing food demand for our expanding populations [4–7]. Whilst there are positive
impacts associated with organic agriculture, such as increased biodiversity [8,9], there is
an economic and societal requirement for a balance between high yields, reduced waste
and land use [10]. Organic production, as of 2017, covers 69.8 million hectares worldwide,
but only 1.6% of temperate fruit is grown organically [11]. Apples comprised 40% of
organic temperate fruit production in 2017, the largest proportion of all temperate fruit,
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with pears accounting for 10% [11]. In 2018, the UK market production of apples (dessert
and culinary) and pears (dessert) was 300.6 and 26.6 thousand tonnes, imports were 372
and 120 thousand tonnes, and exports were 22 and 2 thousand tonnes, respectively. In 2020,
dessert apple production was valued at approximately GBP 158 million from over 6000
hectares of land in the UK (Table 1).

Table 1. Data collected by the UK Office for National Statistics on behalf of the Department for
Environment Food and Rural Affairs (Defra) on apple and pear production values projected for 2020,
based on 2019 data (accessed on 16 August 2021).

2020 Provisional Data

Area Grown
(Hectares)

Yield
(Thousand Tonnes)

Value
(£ Million)

Dessert Apples 6372 200.7 158.1
Culinary Apples 2473 92.2 81.2

Cider Apples and Perry Pears 6700 154.1 27.6
Dessert Pears 1470 25 19.9

An increase in the area of apples and pears grown, coupled with the recent and rapid
reduction in the number of plant protection product (PPP) approvals, also threatens the
pome fruit industry. The loss of organophosphates and some pyrethroid and neonicotinoid
foliar sprays over recent years has resulted in a resurgence of key pests and diseases
in European apple and pear orchards. There have been additional yield losses due to
fruit damage caused by sporadic pests that would have been suppressed by these broad-
spectrum products [12], e.g., damage by the forest bug Pentatoma rufipes (L.) [13]. Impending
PPP withdrawals, such as thiacloprid at the end of 2021, are expected to result in increases
in intermittent pests such as weevils, capsids, and aphids. In addition, there are some
invasive species that are likely to be a future risk to the industry, and control options
are needed to prevent yield loss, for example the brown marmorated stink bug (BMSB)
Halyomorpha halys (Stål) [14]. As more broad-spectrum PPPs lose approval [15], growers
need to adapt and be receptive to alternative methods for fruit pest control.

Pest pressure in organic orchards can result in high yield losses, which may be difficult
to estimate, although direct damage to fruit caused by pests such as the codling moth, Cydia
pomonella (L.), can be quantified at harvest. However, not all damage is easily identifiable,
and true losses may be much higher than estimated [16]. Much pest damage is indirect—for
example, apple fruit weevils, Tatianaerhynchites aequatus (L.), sever the stem of developing
apple fruitlets, causing them to fall to the ground after egg laying, coinciding with June-
drop in the UK. Pear suckers, Cacopsylla pyri (L.), reduce plant health by feeding on leaves
and overwintering buds, causing subsequent yield reductions.

This review focuses on organic strategies for achieving effective pest control in apple
and pear orchards, with specific emphasis on European invertebrate pests. The control
strategies discussed can be adopted within IPM programs and, in some cases, substitute
or complement PPP-based pest control. While there are several synthetic organically
approved products, biostimulants, and physically acting compounds used in IPM and
organic fruit production (e.g., spinosad, neem, FLiPPER, etc.), they are not discussed in this
review. This review focuses on alternative methods to foliar products, with the exception
of biopesticides including viruses, entomopathogenic nematodes and fungi.

2. Cultural Control

Cultural control prevents or discourages pest populations by optimising growing
parameters and improving plant health and husbandry [17], and can be both crop- and/or
surrounding habitat-focused. Many techniques are implemented prior to planting and are
applicable in both organic and IPM orchards.
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2.1. Soil Health and Properties

Soil characteristics and health can dictate the occurrence of pests within a crop and
varies between farm and location. Prior to establishing an orchard or new planting, it is
beneficial to identify the soil type and its properties to give an indication of qualities such
as drainage, soil composition and soil quality. These factors may impact fruit production
after orchard establishment [18] and determine the most appropriate pre-planting soil
amendments. Soil health is vital in organic and IPM orchard pest management; however,
above- and below-ground management strategies are rarely combined in ‘ecologically
based pest management’ approaches [19]. Higher soil fertility and organic matter content
have been linked to lower pest pressure, but excessive nutrient levels have adverse effects
by prompting excessive new tree growth which can be colonised by aphids [20]. In pears,
high nitrogen levels result in higher numbers of pear suckers, Cacopsylla pyricola (Foerster),
as a result of more foliar growth [21]. These examples demonstrate the balance between
improving soil properties and avoiding favouring pest insects.

2.2. Cover Crops

Methods used to improve soil fertility for pest and disease resilience in trees include
cover cropping pre-planting [22]. Cover crops protect soil and amend soil properties
including nitrogen and organic matter content. Wildflower mixes could be considered for
the long-term management of orchards to provide habitats for beneficial insects including
pollinators [23,24]. Cover crops modify nutrient levels in soil and healthy soils result in
healthy plants, more tolerant to pests and diseases than those grown in poor soils [20,22].
However, not all cover crops are beneficial; some increase soil fertility above optimum
levels [25]. In an organic pear orchard sown with the legume hairy vetch, Vicia villosa
Roth, the K content was higher than control plots, but plots planted with barley, Hordeum
vulgare L., or rye, Secale cereale L., had lower K than the uncovered control plots [26]. Pome
fruit varieties also have different nutritional needs, which should be considered before
planting cover crops. For example, cv. Comice pears are frequently deficient in Mg [27],
and so barley and hairy vetch would be incompatible, as lower Mg levels occurred in plots
covered with these species [26]. Common vetch, Vicia sativa L., as a cover crop caused a
sharp increase in soil nitrates in the spring and increased soil organic matter following
the decomposition of cuttings [28]. During this time, there was also an increase in the
total number of soil nematodes and, although no predatory species were collected, high
nematode numbers indicate good carbon flow within an orchard soil [29]. These researchers
attributed increased nematode numbers to increasing soil organic matter from the cuttings.

Many non-pest herbivorous invertebrates utilize cover crops providing predators and
parasitoids with alternative food sources [30]. Marking natural enemies with egg albumen
protein, and analysing by monoclonal antibody techniques, it was possible to demonstrate
that beneficial insects moved between cover crops and pear trees. In field trials, 17–29% of
predators collected on pear trees were marked, indicating that they had either migrated
from, or previously visited, the immune marker-treated cover crops [31]. Marked predators
included species of Heteroptera (Anthocoris sp.), Coccinellidae (ladybirds), Chrysopidae
(lacewings), and Araneae (spiders), all common natural enemies in apple and pear orchards.
This topic is described in more detail in the ‘Natural enemies’ Section 3.1 of this review.

2.3. Variety

Varietal choice is a primary consideration in preventing pest damage to tree fruit.
However, cultivar plantings are often driven by markets, retailer demands and producer
organization variety requirements. A reliance on varieties that are high yielding but
more susceptible to pests is a barrier to reducing the reliance on PPP. Certain apple scion
varieties, such as Florina and Prima, are less susceptible to aphids, including rosy apple
aphid, Dysaphis plantaginea (Passerini) [32], and green-apple aphid, Aphis pomi De Geer [33].
Rosy apple aphid resistance is linked to the presence of hydroxycinnamic acids, common in
cider apple varieties. Hydroxycinnamic acids protect fruit skin from UV light [34]. As such,
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plant breeding that incorporates crosses between varieties that are high in hydroxycinnamic
acids could increase the availability of tolerant cultivars.

Marker-assisted breeding has identified genetic markers associated with resistance
to rosy apple aphid [35], green-apple aphid [36], and leaf-curling aphid, Dysaphis devecta
(Walker) [37]. These markers should be targeted in the selection of future cultivars. The
woolly apple aphid, Eriosoma lanigerum (Hausmann), is controlled by varietal resistance
in many New Zealand-bred cultivars, which are developed for a temperate climate, and
may be appropriate for other temperate growing regions. These varieties include Geneva,
Willie Sharp, and Korichnoe Polosatoje G01-104 [38].

In pears, pear sucker (C. pyri and C. pyricola)-resistant varieties can be selected [39,40].
The profile of polyphenolic secondary metabolites within pear leaves has been associ-
ated with pear sucker resistance. Increases in these compounds are linked to the plant’s
self-defence mechanism against pathogens and UV, which in turn increases fitness [41].
Microsatellite markers associated with resistance to the pear-bedstraw aphid, Dysaphis
pyri (Boyer de Fonscolombe), and QTL markers associated with the pear sawfly (Caliroa
cerasi (L.)) and pear blister mite (Eriophyes pyri (Pagenstecher)) resistance have also been
identified in European pear varieties and can be identified early in the screening of varietal
development [42,43].

Apple rootstocks, resistant to woolly apple aphid, such as ‘Northern spy’ (developed
at East Malling Research, Kent, UK) [44], are also available, but there is little to indicate that
they are widely used for this purpose [45]. At the time of writing, there were no conclusive
reports of pear rootstocks that promote pest resistance.

Classical breeding of new apple and pear varieties takes decades, but the integration
of marker-assisted breeding techniques could reduce the time from concept to commer-
cialisation while also promoting resistance to key pests and diseases [42,46–49]. However,
marker-assisted fruit-breeding is underexploited, often attributed to cost and the need for
expertise [49].

Cultivar phenology also impacts the susceptibility of fruit trees to insect pests by
avoiding synchrony of vulnerable stages with the emergence or arrival of pests [50]. In
apples, later developing, susceptible varieties have fewer rosy apple aphids, as bud burst
occurs after egg hatch and neonates cannot feed [51]. However, in pears, a preference for
more advanced stages of leaf emergence was demonstrated for egg-laying winter morph
pear suckers, even when susceptible varieties were available. Whilst there are pear varieties
resistant to summer morph pear suckers, winter morph insects are more influenced by tree
phenology than variety [52]. Fruit growers can use knowledge of pests prevalent on their
farms to select cultivars with known resistance and phenology to reduce the need for PPP
control measures.

2.4. Canopy Maintenance

Pruning changes environmental conditions in the tree canopy, such as humidity, tem-
perature, airflow and light penetration [53]. In addition to rootstock selection, pruning,
nutrient inputs and tree canopy architecture can be controlled through genetic manipula-
tion. Key genes involved with branching and growth can be used in the marker-assisted
breeding of future varieties [54]. Training fruit trees as they grow reduced pest and disease
pressure in French orchards [55]. For example, centrifugal training of pear and apple
promoted a reduction in aphids and scab incidence, attributed to the ability of predators to
more easily access pests and a reduction in disease-promoting humidity [56,57]. Growers
can combine methods such as pruning and applications of nitrogen to reduce excessive
growth, which promote aphid damage [58]. In young orchards, rosy apple aphid colonies
can be controlled by the removal of curled leaves, which harbour the fundatrix (founding)
aphid during blossom. This method does not require skilled labour and has been found to
be extremely effective, although time consuming (C. Nagy, unpublished). Aphid colonies
are tended by ants (Lasius niger L.) as part of a mutualistic relationship. Ants defend aphid
colonies against predators in exchange for honeydew secreted by the aphids, although
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this relationship is not observed in all aphid species [59]. Colonies that infest the lower
and middle tree shoots are located earlier in the season and are more accessible to ants
compared to colonies on peripheral shoots (C. Nagy, unpublished). In older orchards,
pruning excess growth (the suckers) around the central tree zone prevents aphid colonies
from establishing, leaving colonies in the tree periphery where they are more accessible
to aerial predators (see natural enemies’ Section 3.1 for more detail). Figure 1 shows the
central growth that should be removed to promote rosy apple aphid control. Using this
pruning technique, rosy apple aphid damage to the foliage was reduced by 50% compared
to an unpruned control (C. Nagy, unpublished).

Insects 2021, 12, x FOR PEER REVIEW  5  of  27 
 

 

unpublished). Aphid colonies are tended by ants (Lasius niger L.) as part of a mutualistic 

relationship. Ants defend aphid colonies against predators in exchange for honeydew se‐

creted by the aphids, although this relationship is not observed in all aphid species [59]. 

Colonies that infest the lower and middle tree shoots are located earlier in the season and 

are more  accessible  to  ants  compared  to  colonies  on  peripheral  shoots  (C. Nagy,  un‐

published). In older orchards, pruning excess growth (the suckers) around the central tree 

zone prevents aphid  colonies  from establishing,  leaving  colonies  in  the  tree periphery 

where they are more accessible to aerial predators (see natural enemies’ section for more 

detail). Figure 1 shows the central growth that should be removed to promote rosy apple 

aphid control. Using this pruning technique, rosy apple aphid damage to the foliage was 

reduced by 50% compared to an unpruned control (C. Nagy, unpublished). 

 

Figure 1. Graphic of real apple tree including shoots removed to reduce rosy apple aphid, Dysaphis 

plantaginea, colonies and disrupt the ant–aphid mutualistic relationship. Red dashed lines indicate 

areas of growth to be removed. Coloured circles display aphid fundatrices occurring at different 

times. Illustration by C. Nagy. 

There is little literature on apple and pear canopy management for the reduction in 

the populations of other types of pests, but canopy management can increase fruit yield. 

Apple trees are normally managed to have less dense canopies to improve light and air 

flow for higher fruit yields and better fruit colouration [60,61], but opportunities for pest 

insects to hide from larger predators is also reduced. Birds, predominantly Paridae, pre‐

date a range of pests in apple and pear orchards [62], particularly caterpillars during the 

bird nesting season, and are linked to a reduction in pest occurrence and an increase in 

crop yield [63–67]. Growers could further enhance numbers of Paridae on their farms by 

providing appropriate nesting habitat and nest boxes [65,67]. While some bird species can 

cause direct damage fruit, mainly blackbirds Turdus merula (L.) and starlings Sturnus vul‐

garis (L.), they generally attack near‐ripening fruit [68] and can be deterred with bird scar‐

ers  or  netting.  Canopy  thinning  also  aids  visual  inspections  by  crop  walkers  and 

Figure 1. Graphic of real apple tree including shoots removed to reduce rosy apple aphid, Dysaphis
plantaginea, colonies and disrupt the ant–aphid mutualistic relationship. Red dashed lines indicate
areas of growth to be removed. Coloured circles display aphid fundatrices occurring at different
times. Illustration by C. Nagy.

There is little literature on apple and pear canopy management for the reduction in the
populations of other types of pests, but canopy management can increase fruit yield. Apple
trees are normally managed to have less dense canopies to improve light and air flow for higher
fruit yields and better fruit colouration [60,61], but opportunities for pest insects to hide from
larger predators is also reduced. Birds, predominantly Paridae, predate a range of pests in apple
and pear orchards [62], particularly caterpillars during the bird nesting season, and are linked
to a reduction in pest occurrence and an increase in crop yield [63–67]. Growers could further
enhance numbers of Paridae on their farms by providing appropriate nesting habitat and nest
boxes [65,67]. While some bird species can cause direct damage fruit, mainly blackbirds Turdus
merula (L.) and starlings Sturnus vulgaris (L.), they generally attack near-ripening fruit [68] and
can be deterred with bird scarers or netting. Canopy thinning also aids visual inspections by
crop walkers and agronomists, resulting in the quicker detection of pests and timely control.
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In addition, the coverage of plant protection products such as entomopathogenic viruses and
bio-protectants, is improved by good canopy management [69,70].

Labour costs associated with accurate pruning might be prohibitive, but there are
opportunities for canopy management from spring through early summer between more
time-specific tasks.

3. Biological Control
3.1. Natural Enemies

Unsprayed fruit trees support a large fauna of >2000 arthropod species, which in-
clude pest, beneficial and benign invertebrates [71]. Some insect pests have become more
prevalent in orchards due to the adverse effects of PPP on their natural enemies [72–74].
Pear sucker prevalence has increased over the past 30 years through insecticide resistance
and repeated applications of insecticides toxic to their natural enemies [75]. However,
effective control is achievable in orchards that support and promote a healthy and diverse
natural enemy network [76,77]. For many predators and parasitoids, a diverse habitat is
required to support their full lifecycle. Improved habitat can be facilitated through the
planting of pollen, nectar, and structure rich ground cover either within or around the
orchard perimeter. Conservation biological control should be tailored to encourage benefi-
cial insects whilst minimising the build-up of other pests and diseases; this is discussed
in more detail in Section 3.2. Growers should encourage a wide range of generalist and
species-specific natural enemies for a broad range of pests. Natural enemy populations
fluctuate throughout the fruit growing season, but there are many naturally occurring
generalist predators that suppress pest populations at different times of the year [78].

The pirate bug, Anthocoris nemoralis (Fabricius), suppresses pear sucker populations
in orchards when chemical controls are removed [79]. A. nemoralis and Anthocoris nemo-
rum (L.) are the most widely occurring predatory Heteroptera in pear and apple orchards,
respectively [80]. Anthocorids are generalist predators of fruit tree red spider mites, Panony-
chus ulmi (Koch), and numerous aphid species [81]. Floral resources, including weeds,
sustain anthocorid populations when prey within the orchard is scarce [82]. Non-crop
plants encourage anthocorids by supporting non-pest herbivores which act as alternative
prey until pest numbers in orchards have begun to build-up. For example, traditional
hedgerows which also act as windbreaks around orchards support anthocorids and also
benefit other beneficial insects including earwigs, Forficula auricularia L. [83]. Goat and
grey willow (Salix caprea L. and S. cinerea L.), hawthorn (Crataegus monogyna Jacq.), and
nettle (Urtica dioica L.) host anthocorids early in the growing season and can be utilised
for pear sucker control [84]. Hedgerows have the added benefits of “providing water
quality improvement, flood risk reduction, soil loss reduction (erosion), crop water avail-
ability, crop pest reduction, crop pollination improvement, shelter provision (crops and
livestock), climate change mitigation and urban air quality” [85]. Unbroken, they act as
vegetation pathways enabling the movement of pollinators and natural enemies across a
landscape [86]. Growers can encourage anthocorids into cropping areas by planting and
enhancing the wild hosts of anthocorids in the vicinity of apple and pear orchards. This
will promote a more fluid movement of predators between wild and cultivated plants,
reducing the lag in predator establishment and pest suppression [87]. However, more
work is needed to tailor hedgerows for other pest control and conservation biocontrol. The
augmented release of anthocorids from commercial biocontrol companies can also speed
up pear sucker control in the spring when naturally occurring anthocorid numbers are low.

Earwigs are generalist predators of pests in apple and pear orchards. Unusually for
insects, they care for their brood by tending to the eggs and nymphs in nests [88]. They
predate on a range of pests, including aphids, midge larvae, moth larvae [89], and scale
pests [90]. In cases where sticky bands were applied to the trunks of apple trees to prevent
woolly apple aphid movement, researchers observed an increase in aphid colony size
because the banding inadvertently prevented earwigs predating the aphid colonies [45].
A similar bioassay found that ‘Tanglefoot insect exclusion bands’ increased the woolly
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apple aphid infestation of new apple shoots by 20–25% in comparison to controls in which
earwigs could access colonies [91].

Earwigs are also sensitive to many PPPs [92,93], sometimes with sublethal effects
difficult to detect in orchards [93]. In soft fruit production, earwigs are regarded as a
pest due to their omnivorous diet [89], but do not cause direct damage to apples [94].
Earwigs are nocturnal foragers and spend the daylight hours hiding in crevices in bark or
introduced structures that provide refuge, such as supporting canes and tree stakes. More
recently, a commercial refuge has been made available to the UK market, ‘Wignest’ (Russell
IPM), which provides shelter and a food attractant. Rolled-up corrugated cardboard within
a bottomless plastic drinks bottle can provide a simplified refuge and can be supplemented
with dried cat food when prey is scarce [95]. These commercial or homemade-equivalent
devices are particularly beneficial in young orchards where trees have not yet formed
naturally occurring shelters. In orchard trees with more than six earwigs per refuge,
woolly apple aphid infestation never exceeded five small colonies per tree [96]. In organic
apple orchards, releases of earwigs were performed in aphid-infected trees, resulting in a
reduction in aphid numbers from >500 to 50 per tree within three weeks [97]. This greatly
contrasted with the 3000 and 2000 aphids per tree in the earwig-free and control plots,
respectively. In these orchards, five to six earwigs were released per tree and provided
with day refuges within the trees and a straw floor covering to provide shelter for the
ground-dwelling nymphs [97].

Hoverflies are a common visitor to many crops, and their importance in providing
economic, environmental and ecological services is widely recognised [98,99]. A range
of hoverfly species occur in apple and pear orchards and contribute to aphid control,
through larval feeding in addition to pollination from adults hoverflies [100]. Hoverflies
use a combination of chemical volatiles to locate prey, some of which are emitted by the
aphid and others from the attacked plant [101]. Encouraging flora, in particular pollen-
and nectar-rich species, and alternative food sources for predacious larvae is vital to both
prolong the life and build up populations of hoverflies local to crops. The provision of
alyssum, Lobularia maritima (L.), can improve hoverfly diversity and subsequent reduction
in aphids on crops [102,103]. Episyrphus balteatus (De Geer) is a specialist predator of aphids
and an important pollinator of fruit crops [104,105]. The larvae are voracious predators
capable of consuming large numbers of aphids even at low temperatures (15 ◦C) [106,107],
hence may be effective predators in the spring when pear and apple trees are in flower.

Nettle (Urtica) is a host to the nettle aphid, Microlophium carnosum (Buckton), which
acts as a ‘reservoir’ for many natural enemies [108]. Populations of nettle aphids increase
from late April [108], and provide a resource for biocontrol agents to establish during the
period in which cultural control practices delay the expansion of aphid colonies on trees.
Over 100 insect species have been identified on the common nettle, U. dioica L., including
ladybirds, lacewings, hoverflies and parasitoids [109]. Ladybirds are generalist predators
common in both commercial crops and wild habitats and are less prevalent in conventional
than in organic apple [110]. Ladybird larval predation of pests typically begins just before
apple flowering, which coincides with PPP applications, resulting in the disruption of this
predator [110].

The control of aphids by a range of predators and parasitoids can be disrupted by
colonies being tended by ants in a mutualistic relationship. In the UK the common black
ant, Lasius niger (L.), typically tends colonies of rosy apple aphids and green apple aphids,
and has been observed defending aphids from parasitic wasps [71]. In field experiments
in both the UK and Hungary, the exclusion of ants from aphid colonies and the provision
of ants with sugar feeders resulted in an increase in predation from naturally occurring
predators, including hoverflies [111–113]. Ants prevented from reaching the aphids by
exclusion bands or supplemented with sugar feeders did not defend aphid colonies, and
this enabled aerial predators (e.g., hoverflies and ladybirds) to access the aphids [114].
Aphidiinae parasitic wasp species, in particular, are able to exploit undefended aphid
colonies but are not sufficient on their own to prevent economic damage [75].
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For some predatory species, growers can support populations through the manage-
ment of wild hosts. Common nettles could be left uncut and native hedgerow species
planted instead of current Italian Alder, Alnus cordata (Loisel.) Duby. Currently, in the UK,
growers can claim GBP 11 per meter under grant number BN11: Planting new hedges
within the Countryside Stewardship grants [115]. The deployment of commercial or home-
made refuges for earwigs would require initial financial and labour inputs but could be
in place for several seasons, building up earwig populations in fruit trees, making it cost
effective in the long term.

3.2. Introduced/Augmented Biological Control

Although historically applied in glasshouses or protected cropping [78], the aug-
mented release of some predatory mites can be performed outdoors. Large numbers can
be introduced either as a preventative or curative treatment, but temperature requirements
and the timing of releases should be considered. In glasshouses, predatory mite pop-
ulations establish quickly and can be implemented for curative treatments. In outdoor
orchards, predatory mite populations take longer to increase, and so deploying them before
pest outbreaks may mitigate the lag often observed between introduction and predation.
Predatory mites can be introduced to suppress a wide number of pest mites, including the
two spot spider mite, Tetranychus urticae Koch [116], fruit tree red spider mite, P. ulmi [117],
apple rust mite, Aculus schlechtendali (Nalepa) [118], and pear rust mite, Epitrimerus pyri
(Nalepa) [119].

The temperature range also influences the application timing of biological control
agents and the recommendations of manufacturers should be heeded for optimum efficacy.
Phytoseiulus persimilis Athias-Henriot, used to suppress the two-spot spider mite, requires
a temperature range of 15–28 ◦C to successfully establish and actively predate [120]. P.
persimilis females consume, on average, 370 two-spot spider mite eggs in their life time,
with 320 of these being while they themselves are egg laying within this temperature
range [121]. Amblyseius andersoni (Chant) can be introduced to control two-spot spider
mites and fruit tree red spider mites and has a much wider temperature range than P.
persimilis. A. andersoni is active at 6–40 ◦C [122] and consumes more adult spider mites
than P. persimilis. However, the former has a lower rate of population increase [123]. A.
andersoni are attracted to apple branches infested with fruit tree red spider mite, possibly
as a response to the emission rates of volatile organic compounds from the trees influenced
by pest pressure [124]. These factors indicate that plant volatile cues could be combined
with pest volatiles to encourage or attract predatory mites to specific areas of a crop.

Predatory mites are used widely in protected crops, but their use in unprotected orchards
appears to be minimal. This may be due to the costs of implementation, which reflects the high
costs associated with the mass production of these predators [125]. The cost coupled with the
delay in noticeable impact on pest populations is likely to be the cause of the lack of uptake by
growers. However, growers can encourage natural establishment of predatory mites. Orchard
leaf litter, the growing tips from other crops, such as strawberry or vines with a high predator
population density can be transferred during the autumn [126,127]. Typhlodromus pyri Scheuten,
the main predator of phytophagous mites on apple trees, can be introduced into orchards by
removing prunings from orchards with high populations and laying the prunings in the canopy
of the trees [128].

In addition, fabric bands can be tied round tree trunks during the summer months
and then transferred during the winter to areas with low predatory mite populations [129].
Fabric or cardboard bands provide refuge for a wide range of predators in apple and
pear orchards and can be left in situ to provide year-round shelter [130,131]. Refuges are
particularly beneficial in young orchards where the trees have not yet developed textured
bark and crevices [132]. Cardboard and fabric bands can also be utilised by some pest
insects, including codling moths, and act as an indicator of pest presence.
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3.3. Avoiding Practices Harmful to Beneficial Insects and Conservation Biological Control

Conservation biological control aims to support beneficial organisms by enhancing
and protecting their environment [133]. The addition of cover crops or floral resources
can benefit substrate-dwelling insects by improving drainage and soil structure. Earwigs
nest in burrows where eggs are laid and nymphs are reared by the parent female [134,135].
Kölliker [134] found that the disruption of the nest or death or exclusion of the female can
cause the loss of the brood, reducing numbers of nymphs emerging in the spring. Although
brood-adoption has been observed in some cases, with females adopting orphaned nymphs,
the survival is greatly reduced and is not expected to be a frequent occurrence in the
field [136]. Earwigs require good drainage to prevent the waterlogging of nests, but are
also more prevalent in orchards with higher ground cover and minimal soil disturbance
or compaction [89]. As females nest within the soil during winter and early spring [137],
growers should avoid deep tillage and prevent soil compaction by minimising vehicular
travel around orchards. It is possible that similar advice is appropriate for the main
pollinators of apples, solitary ground nesting bees, but this requires further investigation.
Although, in spring, it is often necessary to apply PPPs during flowering to protect blossoms
from diseases, where possible, this should be kept to a minimum.

Ground-dwelling Coleoptera such as ground beetles (Carabidae) are polyphagous
predators disrupted by tillage [138]. In cereals, rotary tillage reduced carabid activity by 52%
in comparison to an untilled control [139], and in carrot fields the presence of vegetation
cover, from no soil disturbance, promoted ground beetle presence [140]. Mechanical
weeding may negatively affect soil invertebrates, including earwigs, and where possible
should be kept to a minimum depth to reduce disturbance. Larger, more robust insects,
such as ground beetles, seem more tolerant of this practice [141]. Mechanical weed control
is less detrimental than herbicide applications to web spinning orchard spiders as weed
re-generation is quicker with the former method [142].

The application of compost or mulches to suppress weeds in apple and pear orchards
may be a more appropriate weed control practice. However, consideration of the source
of mulch is needed, as mulch treatment can affect the viability of weed seeds. In apple,
composted poultry manure applications to the base of trees resulted in weed suppression
and an increase in predator population [143]. Benefits from compost application into the
tree row include reductions in the populations of woolly apple aphid and spotted tentiform
leafminer, Phyllonorycter blancardella (Fabricius) [143]. The timing of compost application
also needs consideration. New, excessive shoot growth from high nitrogen inputs could
promote aphid and pear sucker populations.

Fungicide applications to alleyways and tree spacings can negatively affect ground-
nesting bees, which use the bare ground for their nests. Although the majority of fungicides
will have no measurable impact on bees, some can cause periods of inactivity while the
bees ‘recover’ [144], or impair orientation and nest recognition [145]. To ensure that ground-
nesting bees are not exposed to harmful PPPs, applications should be made before nesting
begins, prior to apple blossom [136].

In summary, less frequent mowing and careful consideration of the timing and type of
PPP applied could foster natural enemies in orchards and improve pest control, ultimately
leading to less reliance on insecticide applications.

3.4. Viruses

Species-specific viruses are used to target the codling moth and summer fruit tortrix,
Adoxophyes orana (Fischer von Röslerstamm), which cause damage in apple and pear or-
chards. The granuloviruses belong to the baculovirus family (double-stranded DNA) [146].
They cause caterpillar mortality [147], and to date have had no reported impacts on non-
target species. In a typical year, in a temperate climate, summer fruit tortrix and codling
moth have their first generation between May and July and their partial second and full
second generation between August and September, respectively, in the UK. Larvae pupate
on the ground in leaf litter and soil, but also in bark crevasses or in splits in tree stakes and
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tree ties. The codling moth and summer fruit tortrix are resistant to many plant protection
products [55,148–151], a major driving factor in the development of commercial viruses.
The application of the viruses is targeted to coincide with egg hatching and larval feeding
on the surface of fruit to ensure infection [152]. The timing of application is critical. For
the codling moth, the first applications typically occur at 111–139 ◦C degree days [153],
which for the UK is usually during May, but applications can also be timed by monitoring
adult populations with species-specific pheromone traps [154,155]. Field trials employing
viruses reduced larvae in the shoots by 97%, damage to fruit by 50–60%, and increased
tortrix larval mortality by >81% [156]. There was a >77% reduction in fruit deep entry
wounds when applied against codling moth [154]. The timing of pest generations can be
predicted with models which use local temperature data to predict larval hatching. RIMPro
software (Relative Infection Measure Pro) uses temperature, rainfall and humidity data and
applies them to simulation models developed for apple and pear in Europe [157]. Codling
moth and apple sawfly, Hoplocampa testudinea (Klug), egg hatch can also be predicted by
RIMPro models [158,159]. Resistance to viruses is likely as individuals with low viral
tolerance become removed from the population and offspring with a higher tolerance
inherit resistance to the virus. This occurred in populations of codling moth in southeast
France to the CpGV-M strain of granulovirus, which was used for 15 years. This barrier
was overcome by developing new viral strains [160]. At the time of writing, there are no
other viruses approved for use in the UK on pests in apple and pear, although several
baculoviruses are currently being produced to control other global lepidopteran pests [161].
In addition, the development of viruses for the control of other key pests would greatly
benefit growers by increasing control options that are species-specific.

3.5. Entomopathogenic Fungi and Nematodes

Entomopathogenic nematodes and fungi can be effective strategies pest control agents
and are IPM and organic compatible [162]. Both are naturally occurring in the environment
but are formulated to contain different species or stains for optimum efficacy. Gener-
ally, they have a broad host range with no impact on vertebrates and require specific
environmental conditions to be effective.

Nematodes are commonly used for control of vine weevils, Otiorhynchus sulcatus
(Fabricius) [163], and slugs [164]. Cross et al. [12] highlighted the potential of soil-applied
nematodes for the control of pests which spend some of their lifecycle below ground, (e.g.,
weevils, tortrix moths, and codling moths). Apple sawfly is a common pest of dessert
apple with the varieties Discovery and Worcester being highly susceptible. Controlling
sawflies in organic orchards is challenging because the most effective PPPs are not available
to organic production. Adult sawflies emerge before blossom and once the larvae have
excited the apples in May, the rest of the lifecycle is spent belowground in a prepupal or
pupal form [165]. Once applied to a substrate [166], nematodes locate a host by following
CO2 trails [167]. Nematodes can also be applied to plant foliage. In field trials, where
four foliar applications of Steinernema carpocapsae (Weiser) were applied to apple trees,
secondary sawfly damage was reduced by 19% compared to an untreated control [168].
When applying nematodes as a foliar application, growers should be aware that in-field
conditions, such as low humidity or high temperature, can make control variable [169].

Pear sawfly, Hoplocampa brevis (Klug), has a similar lifecycle to apple sawfly, spending
several months in the soil. The pear sawfly can be controlled with the nematode, Steinernema
feltiae (Filipjev), using both foliar and soil applications [170], but the optimum temperature
for this nematode can limit its effectiveness, becoming inactive when the soil temperature
is below 10 ◦C. There are currently very few reports of pear sawfly causing economic losses
in the UK. Rising average temperatures during the summer could increase the incidence of
this pest, as it is common in its native range of Asia and warmer European climates, such
as Italy [171].

In an unpublished study by Fountain et al., 2020, S. carpocaspsae and S. feltiae were
applied to codling moth larvae in a series of laboratory tests (Figure 2). At 50 and 100% field
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rates, 62% and 100% mortality occurred in treated larvae, respectively. There is evidence to
show that S. carpocaspsae and S. feltiae can be applied to reduce the survival of codling moth
larvae as a foliar application [172] and woolly apple aphid as a spot treatment [173] in the
field. However, foliar application of nematodes requires high moisture levels to ensure that
nematodes do not desiccate and are able to reach the target host. Although there are several
publications showing the efficacy of nematodes for pest control, they are rarely employed
in orchards [162]. This may be because control is often difficult to quantify in a field setting
or incorrect application timing or unfavourable conditions result in reduced efficacy.
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By 2020, 750 species of entomopathogenic fungi (EPF) had been identified that infect
a wide range of invertebrate hosts from virtually all orders of insects [174]. Almost all
infect the host through the cuticle, and spores are picked up from brief contact with an
inoculated surface [175]. As with many control options discussed in this review, uptake
of EPF as a pest control tool in horticulture has been minimal [176]. This may be because
EPF do not kill the pest instantly and the pest may continue to feed and reproduce for
some time after infection. Generally, the processes of infection, once a host has come into
contact with the EPF, can take between 7 and 14 days for symptoms and finally death to
occur [176]. However, EPF spores are persistent in the environment, even when hosts are
absent or when environmental conditions are unfavourable. Once hosts are available, EPF
have the potential to repeatedly cycle within the host population providing-season long
pest mortality [177]. Organic growing environments typically have higher diversity and
abundance of EPF than conventional systems [178]. While there are reports of detrimental
impacts of PPPs on EPF in laboratory trials [176], Clifton et al. [179] concluded that in the
field, negative impacts of growing practices used in conventional production such as tillage
and soil disturbance are more likely to reduce EPF abundance.

Rust mites (Eriophyidae) are a secondary pest in apple (A. schlechtendali) and pear (E.
pyri) orchards. Apple rust mite can be controlled with the predatory mite Typhlodromus
pyri; however, T. pyri is less common in pear trees, probably because the leaves have
fewer trichomes (hairs) and offer the predator less protection. Both pest species are small
(0.13–0.16 mm) and are wind dispersed [180]. Effective Eriophyidae population suppression
has been achieved using several strains of EPF in other crops through foliar applications
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in laboratory and field trials [181]. To date, only one study has been published on EPF
control in apple rust mites [182], and there are no reports for EPF efficacy on pear rust
mites. Ninety-eight percent apple rust mite mortality, 6 days after the application of
Paecilomyces lilacinus (Thom) to apple leaves, was observed in laboratory bioassays [182].
However, high humidity levels resulted in higher spore concentration than might be
experienced in the field, indicating that applications after rainfall may be beneficial (as
observed by Yagimuma [183]). Historically, EPF have more consistent efficacy when applied
to target soil dwelling pests, due to the humidity required for sporulation [12]; nevertheless,
their efficacy as foliar applications has greatly improved over the last 5 years. Advances
in formulation [184], microencapsulation [185], application technology, and application
setting (i.e., in unprotected cropping) [176] have enhanced the reliability and consistency
of fungal-based insecticides.

3.6. Parasitoids

Parasitoids are insects of which the larval stages feed on, and eventually kill, an
arthropod host [186]. Parasitic wasps (Hymenoptera) are the most widely known endopar-
asitoids. Female parasitoid wasps have an elongated ovipositor enabling them to lay eggs
in the host. The release of parasitic wasps is a common strategy in soft-fruit production,
typically in protected growing systems, but natural parasitism does occur in orchards. The
review by Cross et al. [75], over 20 years ago, is still the most comprehensive report on
the uses of European parasitoids to target pest insects of apples and pears. The authors
highlighted that there is a wide range of parasitoids in orchards, although their impact on
pest populations is probably minimal as individual species. However, multiple species
may contribute to significant control in the absence of PPPs.

Apple sawfly is parasitized by the Ichneumonid, Lathrolestes ensator (Brauns). This
wasp lays eggs during a two-week period, targeting the first and second larval instars [165].
This short window of opportunity can be disrupted by poor weather conditions. In addition,
due to variation in flowering and fruit development time, varying rates of parasitism occur
on different cultivars [187], depending on whether cultivar phenology is synchronized
with that of the parasitoid. Rates of parasitism by L. ensator are affected by individual
orchard and the management strategy used. Generally, parasitoid species richness is higher
in organic orchards compared to conventional or IPM orchards [188] due to the detrimental
impact of chemical PPP applications [75]. However, the occurrence of L. enactor can also
be impacted in organic orchards by sulphur applications during parasitoid flight, and L.
enactor is found more commonly in orchards with sandy soils [189,190].

Woolly apple aphids decrease plant health and can result in yield loss at high pop-
ulation levels. Aphelinus mali (Haldeman) is the main parasitoid wasp of the woolly
apple aphid. Female wasps can oviposit 85 eggs within a lifetime. However, A. mali is
temperature-limited, with slow reproduction rates below 25 ◦C, restricting its effectiveness
in northern temperate climates [191]. Quarrell et al. [192] investigated the ability of A. mali
to suppress woolly apple aphid populations aided by earwigs, which predate earlier in
the season at cooler temperatures. They found that >14 earwigs per tree were required
to suppress woolly apple aphids, and where this level was not met, >0.5 A. mali females
per tree were required to prevent ‘severe’ infestation. They concluded that where these
densities of natural enemies occurred in orchards, PPP may not be required to control
woolly apple aphids.

Several weevil species are damaging in apple and pear orchards, including the pear
blossom weevil Anthonomus spilotus Redtenbacher, apple bud weevil Anthonomus pyri
Kollar, and apple blossom weevil Anthonomus pomorum (L.) [193]. While there are associated
parasitoids, mainly from the Pteromalidae family (Hymenoptera), these are not effective
for seasonal control, because the weevils have only one generation per year. In addition,
due to the lengthy underground life stage of these weevils, the opportunity for parasitism
to occur is time-restricted. However, Centistes delusorius (Foerster) hibernates within apple
blossom weevil adults as a larva and pupation occurs in late spring, with adult parasitoids
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emerging to coincide with the emergence of weevil adults [194]. As discussed in previous
sections, floral margins provide food (pollen and nectar) and shelter for parasitoids [195],
which may increase their lifespan and rate of parasitism.

Codling and tortrix moths (primarily, summer fruit tortrix A. orana, and tree fruit
tortrix Archips podana (Scopoli)) can be targeted by egg, larval, and pupal parasitoids, but
attempts to employ these as augmented releases have been unsuccessful in Europe. This
has been attributed to the high PPP input associated with control of these moths. As low
populations of these pest species result in economic damage, growers typically employ PPP
applications timed to coincide with adult moth flight, and hence egg hatch. Fruit damage
by tortrix caterpillars is economically damaging at low pest population numbers. As
parasitoids are sensitive to broad-spectrum PPP, the two methods are not complementary.
However, in organic orchards, parasitoids (both native and introduced) have a positive
effect on pest control [75]. Anecdotally, in unpublished field trials in the UK, 50% of the
samples of tortrix larvae from chemically untreated plots were parasitised by various
parasitoid species, but it is estimated that 10–20% parasitism is more typical [196]. In
Swedish apple orchards, following the withdrawal of azinphosmethyl (a broad-spectrum
product applied to control codling moth), population densities of A. orana and A. podana
increased, but no increase in damage was observed [197]. Although several factors were
thought to contribute to this response, the use of more selective PPP appears to have had a
positive impact on predation and parasitism. Parasitoids are used very successfully in New
Zealand to target codling moths, where augmented releases 50 years previously are now
identified in crops where they were not recently released [198]. Before parasitoids such as
Ascogaster quadridentata Wesmael can be released to control codling and tortrix moths, a
consideration of which PPP are going to be employed needs to be taken into account.

The registration process for the release of non-native species for augmented biocontrol
is often lengthy. As the introduction of alien species can severely disrupt native ecosystems,
careful consideration is needed before they can be released [199]. In the event of an invasive
pest species entering a region, there is often a lag between pest detection and parasitoid
release, due to the approval process. However, researchers in New Zealand have pushed
forward the approval process for the release of the Samurai wasp, Trissolcus japonicus
(Ashmead), a specialist parasitoid of the brown marmorated stink bug (BMSB), Halyomorpha
halys Stål, before it established in New Zealand. This invasive species, originally from
Asia, has extended its range to include the United States of America and Europe, aided
by its habit of ‘hitchhiking’ during aggregation. BMSB is a polyphagous pest of many
crops, but also invades buildings during aggregation, causing an unpleasant odour [200].
By having a preemptive non-native parasitoid wasp approval in place in New Zealand,
releases of the wasp can be performed immediately on the detection of BMSB living free in
the environment. Researchers have also evaluated the possible impacts of this species on
native stink bugs [201], and how it will interact with the environment [202].

3.7. Semiochemicals

Sex pheromones have been, to date, the most widely investigated and exploited
semiochemicals for pest monitoring and control, although other pheromones, such as
alarm, trail and aggregation pheromones, have been identified and characterised for
many species [203]. The ability to synthetically produce semiochemicals has enabled their
exploitation for pest monitoring and control because they are target-specific and have
minimal impact on non-target species [204]. Once pheromones have been identified [205]
and successfully synthesized, they can be employed in control strategies including mass
trapping and mating disruption [206]. Monitoring using pheromones provides an accu-
rate, localised approach and a species-specific detection method to make real-time crop
protection decisions [207].

Pheromone monitoring traps are also a useful tool to aid growers in the detection of
new, invasive species. They can be deployed in habitats known to be favourable to the pest,
saving time and resources on physical searches. Apple and pear are two BMSB host plants
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and direct feeding damage to the fruits causes high yield losses if not controlled [208,209].
BMSB aggregate in human dwellings during the winter and the aggregation pheromone,
which is produced to attract conspecifics, has been identified and synthesised for use in
pheromone trapping. Pheromone traps are used to aid monitoring in countries that do not
yet have the pest [210]. In West Virginia, a recently invaded area, trap catch thresholds,
trap position, and resulting economic damage were investigated [211]. In apple orchards,
two black pyramid traps baited with BMSB pheromone were deployed, at the edge and
centre of each orchard and checked weekly. If an effective PPP was applied within a week
of a capture of 1 to 10 BMSB individuals, there was a significant reduction in fruit damage
compared to trap catches of 20 BMSB per week or an untreated control. Unfortunately, there
are no organic products currently available to target BMSB. However, due to the severity
of this pest, there is a pressing need to develop alternative, biological, and organically
approved control products.

Species-specific aggregation pheromones combined with plant volatiles in mass traps
can attract both insect pest sexes. This approach has been used for soft-fruit pests such as the
strawberry blossom weevil Anthonomus rubi (Herbst), European tarnished plant bug Lygus
rugulipennis Poppius [212–215], and raspberry beetle Byturus tomentosus De Geer [216]. The
application of mass trapping in pome fruit is not common practice although it would be
beneficial to develop this for insects with aggregation pheromones, e.g., weevils.

Pheromones can also be deployed without trapping devices for effective pest control.
Codling moth is one of the most damaging insects in apple and pear crops, worldwide, and
has insecticide resistant populations [217], which has driven the development of several
organically approved control strategies. Mating disruption is an area-wide management
practice that exploits the adult insects’ mate finding behaviour. This system works by
releasing species-specific female sex pheromone over the treated area, preventing males
from locating the females and subsequent mating [218]. First proposed in the 1960s [219],
mating disruption use began commercially in the 1990s with varying levels of success [220].
Since then, mating disruption has evolved and has become extremely successful for several
moth species; however, it has limitations and knowledge gaps [221–223]. For the codling
moth, a dispenser is loaded with a synthetic formulation of the female sex pheromone.
Dispensers can either be in the form of a device impregnated with the pheromone (passive),
applied as a regular aerial spray, or via a timed-release aerosol (‘puffer’). The passive
dispensers are distributed within the orchards at high densities, typically between 200
and 3000 units per hectare depending on manufacturer recommendations [224], and are
labour-intensive to deploy and collect at the end of the season [225]. Aerosol dispensers
can be timed to release pheromones at specific times to coincide with the female’s natural
pheromone release, reflecting ‘calling’ behaviour, which for codling moth occurs at dusk.
These aerosols are deployed at a much lower density per hectare, typically 2–4, depending
on the manufacturer [224]. McGhee et al. [226] concluded that to provide the same atmo-
spheric saturation as the passive mating disruption technique, five aerosol units per hectare
are needed. Pheromones can ‘camouflage’ calling females, but also employed as false
trail following, diverting the male moths away from females [226]. In addition, exposure
to high quantities of sex pheromones can result in male olfactory receptors becoming
non-functional, preventing the further detection of sex pheromones; synthetic or natural.
Codling moth mating disruption development and implementation was covered in detail
by Knight et al. [227]. This approach may also be combined with the sterile insect technique
(see below).

In laboratory studies, conducted by Verheggen et al. [228], the presence of a synthetic
aphid pheromone in cages containing prey resulted in an increase in foraging behaviour
and oviposition by female hoverflies. In unpublished work by Fountain et al., 2020,
several volatiles and blends were successful in attracting hoverflies, and other beneficials,
including common green lacewings, Chrysoperla carnea (Stephens), into cropping areas.
Methyl salicylate released from a range of plants under attack from herbivorous insects has
been used to attract hoverflies and lacewings into apple orchards (Fountain unpublished),
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and was also found to be effective in attracting lacewings [229], ladybirds and Orius [230]
into hop gardens.

Semiochemicals can also be deployed as repellents, deterring pests away from a crop
or even disrupting behaviour [231]. These disrupting cues can be based on a range of
volatiles including alarm pheromones and even repellent plants, inter-cropped within
the orchard. The common green capsid, Lygocoris pabulinus (L.), has historically been an
infrequent pest on apple and pear trees [213], although, along with other mirid species, it
is expected to become more common in the future. Groot et al. [232] identified the female
alarm pheromone of the common green capsid, and virgin females housed in a monitoring
trap in combination with the alarm volatile caught only 1 male over a 30-day period, in
comparison to the female alone treatment that caught 36 males. In the presence of hexyl
butanoate, male common green capsids were less attracted to females, which would reduce
mating success and subsequent population development. Similarly, research has identified
and demonstrated the repellence of L. rugulipennis in conventionally and organically grown
strawberry crops, with a reduction in mirid presence in the crop and a reduction in fruit
damage of up to 80%. In a follow-on project, L. pabulinus was successfully repelled from
commercial raspberry crops, reducing fruit and foliar damage (Fountain unpublished). To
date, no studies have tested this strategy in apple or pear orchards for mirid control.

Aromatic plants emit volatiles that have the potential to attract and/or repel a wide
range of pest species. Where ageratum Ageratum houstonianum Mill., French marigold
Tagetes patula L., and summer savory Satureja hortensis L. were planted, there was a reduction
in summer fruit tortrix moths within organic apple orchards [233]. In these orchards, there
was also an increase in parasitic wasps and diverse natural enemies of other pest species.
French marigold, agreatum and basil Ocimum basilicum L. also reduced spirea aphid (Aphis
spiraecola Patch) infestation on apple by 35%, 29% and 38%, respectively, in comparison
to an untreated control. These plants act as a deterrent to the pest and an attractant to
their parasitoids [234] and predators. Similarly, coriander Coriandrum sativum L. promoted
lacewing oviposition in strawberry tunnels [235].

Apple blossom weevil is one of the most damaging pests in organic apple and can
attack pear trees [236]. Synthetic volatiles of the walnut tree Juglans regia L. had a deter-
rent effect on apple blossom weevil in laboratory studies [237], but this research was not
extended into pest control options. The pear blossom weevil, pear bud weevil Anthono-
mus spilotus Redtenbacher and apple bud weevil are also minor pests of pear trees [193].
Pheromones have been identified for Anthonomus pests on other crops, e.g., cotton boll wee-
vil (Anthonomus grandis Boheman) [238], pepper weevil (Anthonomus eugenii Cano) [239],
and strawberry blossom weevil (Anthonomus rubi Herbst) [240], indicating that volatile
communication and detection is well preserved in this family. For this reason, it would
be beneficial to identify the pheromones of orchard weevils to better monitor and exploit
pheromones for control.

Semiochemicals used to attract (‘pull’) pests away from crops can be combined with
repellent volatiles to ‘push’ the pest away from the area in a push–pull approach, which
could exploit synthetic or natural volatiles. Semiochemicals can also be employed to
pull natural enemies into the vicinity and target the pest [231,241]. This system is used
effectively by subsistence farmers in Africa, the first area to employ this method, to control
stem borer species (Lepidoptera) in maize [242]. There are several reports of the use
of this system in vegetable and field crops [243], but its uses in fruit crops are limited.
The implementation of push–pull approaches in apple and pear trees requires additional
research. There are semiochemicals associated with several apple and pear pest (e.g.,
mirids, midges, tortrix, etc.) species and, hence, this represents an opportunity to exploit
pheromones and plant volatiles in push–pull approaches in orchards.
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4. Physical Control
4.1. Netting and Barriers

The netting of fruit trees has become common practice for stone fruits over recent
years, especially with the introduction of spotted wing drosophila, Drosophila suzukii
(Matsumura), in cherries [244]. The netting or mesh is normally erected prior to pest
occurrence in the orchards and physically prevents the pest from reaching the developing
fruit. Netting apple and pear trees has historically been used to protect fruit from damage
from environmental conditions such as sunburn, hail damage and high winds [245], but
is infrequently used for pest control. In pear and apple trees, many lepidopteran, sawfly
and weevil pests spend a proportion of their life-cycle within the soil, meaning trees would
need to be netted with minimal or no soil accessibility or as individual rows rather than
whole-orchard netting [246]. To do this, nets need to encase the canopy and be closed
around the main trunk to be effective. In France, this approach has been successfully used
within field trials to reduce fruit damage by codling moth by 91% in comparison to an
un-netted control [247]. It is speculated that the reduction occurs via disrupting mating
(by preventing moths from flying over the canopy to find mates) rather than suppressing
oviposition. Fruit damage from mirids and birds was also reduced; however, woolly
and rosy apple aphid species can increase in prevalence [246], presumably because an
insect-excluding mesh creates a microclimate beneficial to aphids and/or prevents their
main natural enemies from reaching trees (e.g., earwigs, hoverflies, ladybirds, etc.). In
continental Europe, netting has been successfully used to prevent BMSB damage to apples
to levels lower than insecticide treated plots. These authors also state that predator and
parasitoid numbers were not reduced using this technique [248]. BMSB has not yet been
confirmed as having a breeding population in the UK and is classed as migratory until
such a time as juvenile life stages are found [14].

4.2. Waste Removal

The life cycle of some key pear and apple pests has a soil phase. Weevil, sawfly,
midge, and lepidopteran pests can pupate in the soil beneath trees after migrating from the
dropped fruitlets and foliage to the soil. For example, apple fruit weevil females sever the
petiole of developing fruitlets once an egg has been laid. The larvae then access the soil for
pupation. In soft- and stone-fruit, it has become common practice to remove all waste fruit
from the cropping area, including the ground surface, and then treat the fruit to prevent
re-infestation of spotted wing drosophila [249,250]. Currently, this has not been adopted in
pome fruit management, presumably due to the high labour input needed to implement
it successfully.

In some cases, growers have combined apple and livestock farming and used either
sheep or pigs to graze on dropped fruit. With sheep grazing, there have been reports of
increased levels of N, C, and P [251] (see Section 2.1 on soil health and properties) which
can be beneficial or detrimental depending on cultivar. There are varying levels of success
reported, but overall reductions in codling moth and tortrix damage the following season
have been observed; pigs typically remove between 90 and 100% of dropped fruit [252,253].
Buehrer and Grieshop [252] identified a significant reduction in oriental fruit moth larvae
in dropped fruit and significantly reduced codling moth and oriental fruit moth damage to
fruit the following year in pig-grazed orchards, compared to untreated controls. There are
many associated costs with implementing livestock grazing in orchards including fencing,
animal husbandry, and licensing. Livestock can cause extensive soil disturbance, which
could have impacts on ground-nesting/dwelling organisms. The choice of livestock breed
and age should be carefully considered to prevent tree damage (more detail and case
studies were provided by Grieshop [254]).

4.3. Particle Films

Particle films are mineral in composition and coat the target crop in a barrier which
disrupts insect behaviour and protects fruit from damage [255]. Most films consist of
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kaolin, a white clay that has high reflectance and can be easily washed from fruit prior to
sale. Kaolin films have been used successfully for the season-long control of olive fruit
flies compared to an insecticide-treated grove, which was only protected while the last
spray persisted [256]. For boll weevil, cotton plants treated with kaolin yielded 2.4 and
1.4 times more cotton than an untreated control and cotton treated with an insecticide,
respectively [257]. The application of kaolin to control pear sucker reduced nymph density,
which resulted in season-long suppression and an increase in pear yield [258]. Pear sucker
prevalence was reduced by 75% in trees treated with kaolin in an unpublished study by
Fountain et al., 2019, and has been suggested as a pre-bud burst treatment to control early
season suckers. In warmer climates, the use of particle films reduced leaf-roller damage
to leaves and heat stress in apple [259]. In the Netherlands, kaolin was reduced several
key pest species including apple blossom weevil numbers, by 51% [260]. However, a
disruption of earwigs and parasitoids was also observed and woolly apple aphid and rosy
apple aphid incidence increased in the treated plots [260]. It would be beneficial to further
investigate the timing and application methods of particle films for improved pest control
whilst preserving natural enemies.

Physical pest control can be time-consuming and costly to initially implement in
apple and pear orchards. However, physical barriers generally reduce pest pressure by
preventing pest migration on to orchard trees, removing dependence on other control
approaches. For insect exclusion netting, the initial cost of purchasing and deploying the
materials appears high (396 EUR/ha including material, labour and machinery [244]),
but the life expectancy can be 10–15 years if well maintained. It is likely that physical
approaches to pest management may be more suitable for smaller orchards in which
smaller machinery is used due to the hinderance enclosure netting has on orchard access.
The implementation of livestock on some farms is not feasible due to the many other
requirements. However, for existing livestock farmers this may be a low-cost approach to
waste disposal and soil improvement.

5. Conclusions

While there are many organic options available to control pests in apple and pear
orchards, several methods need to be combined for suppression below economic thresh-
olds. Whereas a broad-spectrum insecticide may potentially eliminate many pests with
one application, organic practices generally require several, accurately timed strategies
and the integration of several control methods. For some control options, there may be
an increase in labour requirements in installation, monitoring, and regular deployment.
However, through employing these techniques, growers will build more resilient and
sustainable control strategies year-on-year into the long term, rather than short-term fixes
with faster-acting PPPs. To achieve this, more regular and accurate monitoring with a
greater understanding of pest/natural enemy lifecycle and biology is required, coupled
with information on the appropriate timing and environmental conditions required for
effective pest control. There appears to be a lack of uptake from growers for some of the
more effective methods, but this may be due to the availability of other easy and low-cost
options. It is likely that uptake of the control methods has been prevented by the higher
costs associated with many of the strategies. Labour costs associated with implementing
many of the outlined approaches are also prohibitive. With the current labour shortages
in horticulture, some of the methods discussed may not be possible. However, many of
the suggested approaches require very little skill and some are not time-restricted within
the season (i.e., deploying earwig refuges), and so could be reserved for quieter periods in
the year.

From discussions with apple and pear growers, other than the cost, it is the speed of
pest kill, high associated risk to fruit, and lack of demonstrable results on farms that deter
confidence and uptake, particularly approaches such as EPF and nematodes. Enhancing
environments for biological control, e.g., conservation biological control, can take years to
fully establish. However, it is promising that there are many organic pest control options
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available for apple and pear growers and that there are pioneering growers willing to test
and demonstrate implementation and efficacy. With expected changes in maximum residue
limits for PPP and restrictions in the number of detected active ingredients (residues) in
Europe, growers need to adopt alternative approaches to pest control.

This review has highlighted current and future approaches which are available to
commercial organic and IPM orchards. We have also highlighted areas where there are
gaps in knowledge that could be researched and further exploited for future pest control
options. Although the foundations for future research are well-established, strategic
funding is needed to fully explore, integrate, and implement new strategies under different
orchard scenarios. Finally, growers need evidence of efficacy in field conditions and added
incentives to employ methods which are often costly and impact net income.
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