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Simple Summary: The Aleurocanthus camelliae cryptic species complex, which includes a number of
morphospecies and/or haplotypes, is one of the growing biological issues, the underlying mecha-
nism of which is still unknown. It is well-known that Wolbachia infection can produce significant
mitochondrial divergence in insects, which may eventually result in cryptic speciation. Therefore,
the diversity and phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic
species complex were investigated. Two morphospecies were found to have distinct infection statuses.
A. spiniferus morphospecies was the uninfected population, while A. camelliae morphospecies was
fixed for infections. The oscillation hypothesis is discussed in light of the current discovery of novel
cryptic species of A. camelliae. This idea may offer insights into cryptic speciation, specifically on
how specialization and host expansion have been observed among these species. Additionally, this
research discovered a parasitoid wasp from the genus Eretmocerus in A. camelliae for the first time
in Japan.

Abstract: Wolbachia, an alphaproteobacterial reproductive parasite, can cause profound mitochon-
drial divergence in insects, which might eventually be a part of cryptic speciation. Aleurocanthus
camelliae is a cryptic species complex consisting of several morphospecies and/or haplotypes that are
genetically different but morphologically indistinctive. However, little is known about the Wolbachia
infection status in these tea and Citrus pests. Thus, this study aimed to profile the diversity and
phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic species complex.
A monophyletic strain of Wolbachia that infected the A. camelliae cryptic species complex (wAlec) with
different patterns was discovered. Whiteflies that are morphologically identical to Aleurocanthus
spiniferus (Aleurocanthus cf. A. spiniferus in Eurya japonica and A. spiniferus in Citrus) were grouped into
uninfected populations, whereas the fixed infection was detected in A. camelliae B1 from Theaceae.
The rapid evolution of wAlec was also found to occur through a high recombination event, which
produced subgroups A and B in wAlec. It may also be associated with the non-cytoplasmic incompat-
ibility (CI) phenotype of wAlec due to undetectable CI-related genes from phage WO (WOAlec). The
current discovery of a novel cryptic species of A. camelliae led to a discussion about the oscillation
hypothesis, which may provide insights on cryptic speciation, particularly on how specialization and
host expansion have been recorded among these species. This study also identified a parasitoid wasp
belonging to the genus Eretmocerus in A. camelliae, for the first time in Japan.

Keywords: Aleurocanthus cf. A. spiniferus; Eretmocerus sp. recombination; oscillation hypothesis;
wAlec
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1. Introduction

Wolbachia is a well-known reproductive parasite that is one of the most common facul-
tative symbiotic bacteria (secondary symbionts) of insects [1,2] and a speciation agent [3].
Wolbachia has a wide range of relationships with the host, from facultative parasitic to
obligate mutualist [4]. Fixed infections (obligate mutualist) and phenotypic strain diversity
(facultative parasitic) are important characteristics of Wolbachia infections associated with
their significant roles in the induction of parthenogenesis and cytoplasmic incompatibility
(CI), respectively [3]. Wolbachia, in its more extreme role as a speciation agent, Wolbachia
may reduce gene flow between geographically distant and genetically distinct populations
that overlap before the reproductive barrier mechanisms are complete [5]. Cryptic species
complex, a group of genetically different but morphologically indistinctive species, is an
emerging biological problem also observed in whiteflies (Hemiptera: Aleyrodidae). Increas-
ing reports suggest the effects of Wolbachia infection on the mitochondrial diversity and
evolution of hosts, supporting the hypothesis that cryptic speciation is related to Wolbachia
infections [6–10].

High vigilance must be given to the increasing facts about intercepted whiteflies
at the plant quarantine that might also be invasive species, as they would have major
environmental and economic consequences. A case in point is the interception of the
whitefly Aleurocanthus spiniferus in Japan. This species was first found in 1919 in Kagoshima
Prefecture. Due to a lack of natural enemies, it subsequently became a serious pest in citrus
orchards on Kyushu Island, Japan [11,12]. Interestingly, some secondary symbionts are
supportive agents for whitefly cryptic species complex invasion, such as the sweet potato
whitefly Bemisia tabaci [13]. They confer adaptive responses that eventually support the
invasion of this pest. For example, Wolbachia promotes fitness and provides some protection
against the parasitism of parasitoid wasps [14]. However, it is yet to be determined just
how common these phenotypic effects are to be found in other whiteflies.

The Camellia spiny whitefly Aleurocanthus camelliae (Hemiptera: Aleyrodidae) cryptic
species complex is a pest to the Theaceae plants that originated from China and is currently
considered to be an invasive species, as it has been detected in Japan (2004), the Netherlands
(2018), Italy (2020), and Indonesia (2020) [15–19]. The A. camelliae cryptic species complex
consists of at least three related species (Aleurocanthus woglumi, Aleurocanthus spiniferus,
and A. camelliae) [16] and five associated haplotypes (A. camelliae haplotypes B1–B3 and
A. spiniferus haplogroup A1 and A2) [19,20]. A. spiniferus is extremely polyphagous [21].
Conversely, A. camelliae prefers mostly Theaceae plants and is not inhabit Citrus plants
(Rutaceae) as their host [22], although they could also be found in Zanthoxylum piperitum
(Rutaceae) [23]. Thus, their dispersion was strongly associated with Theaceae mobility
through human activities, such as the global trading of Theaceae plants, such as Camellia
sinensis, Camellia japonica, Camellia sasanqua, and Eurya japonica. However, the association
between A. camelliae cryptic species complex and bacterial symbionts is poorly understood.
There are limited studies related to this topic and other close species that have been
examined, such as A. woglumi [24] and A. spiniferus [25].

Therefore, this study aimed to examine the infection status and diversity of Wol-
bachia in the A. camelliae cryptic species complex in Japan, including A. camelliae haplotype
B1, A. spiniferus haplogroup A1, and a novel cryptic species complex (Aleurocanthus cf.
A. spiniferus). In addition, to detect the possibility of the horizontal transfer mechanism of
Wolbachia, the associated population of insects such as Pealius euryae, another Theaceae
whitefly that was newly found to inhabit C. sinensis in the fields (Shizuoka and Kyoto Prefec-
tures) and parasitoid wasps. The infection and diversity of Wolbachia in A. camelliae cryptic
species complex were determined using single-gene typing and multilocus sequence typing
(MLST). Moreover, its phenotypic characteristics were examined via molecular detection of
CI-related genes.



Insects 2022, 13, 788 3 of 16

2. Materials and Methods
2.1. Sample Collection

From 2017 to 2022, samples were collected in six Prefectures in Japan from tea (C. sinen-
sis) fields and Theaceae plants, including E. japonica, C. sasanqua, and C. japonica. Samples
included in the sample collection stocks were collected between 2009 and 2011 from the
Laboratory of Applied Entomology, Shizuoka University [26]. The survey was conducted
in Shizuoka Prefecture, Shizuoka City, Shimada City, and Kikugawa City. Other prefectures,
such as Osaka, Kyoto, Tokyo, Shiga, and Mie, were also evaluated (Figure 1A). From March
2021 to February 2022, systematic random sampling was employed in a tea field in which
many tea varieties (C. sinensis) grow to estimate the dynamics of the positivity rate of
Wolbachia infection in the field. This field belongs to the National Agriculture and Food
Research Station in Kanaya–Shimada, Shizuoka Prefecture. The leaves infested by a small
number of whiteflies were selected as representative samples (Figure 1B; Table 1) and
assumed to be a single colony of individuals from different parents. The specimens were
stored in a freezer at −20 ◦C for future deoxyribonucleic acid DNA extraction.
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Table 1. Whitefly collection.

Whitefly Species Haplotype Locality (Prefecture) Host Plant Year Label Isolate *

A. camelliae B1 Shizuoka C. sinensis 2010 A1V10
B1 Shizuoka C. sinensis 2011 A1V11
B1 Shizuoka C. sinensis 2017 A1V17
B1 Shizuoka C. sinensis 2018 A1V18
B1 Shizuoka C. sinensis 2019 A1V19
B1 Shizuoka C. sinensis 2020 A1V20
B1 Shizuoka C. japonica 2020 A1W20
B1 Shizuoka E. japonica 2021 A1X21
B1 Shizuoka C. sasanqua 2020 A1Y20
B1 Shiga C. sinensis 2009 B1V09
B1 Shiga C. sinensis 2020 B1V20
B1 Mie C. sinensis 2011 C1V11
B1 Osaka C. sasanqua 2020 D1Y20
B1 Kyoto C. sinensis 2009 E1V09
B1 Kyoto C. sinensis 2020 E1V20
B1 Tokyo E.japonica 2022 F1W22

A. spiniferus A1 Shizuoka Ci.sinensis 2020 A2Z20 a

A1 Shizuoka Ci.sinensis 2021 A2Z21
A1 Shizuoka Ci.sinensis 2022 A2Z22
? Tokyo E. japonica 2020 F2X20

P. euryae Shizuoka E. japonica 2021 A3X21
Shizuoka C. sinensis 2020 A3V20

Kyoto C. sinensis 2020 E3V20

(*) Labeling order: prefecture, whitefly species, host plant, and year. In data analysis, some isolates were added
label (-No.), which represented the individual sample number analyzed. a Colony reared on the citrus leaves
in a cage (34 × 34 × 34 cm) under laboratory conditions (23 ◦C; 16:8 h light/dark photoperiod) for breeding
parasitoid wasps.

2.2. DNA Extraction

The DNA of Wolbachia and its hosts was extracted using a slightly modified HotShot
method [27] in two steps using Alkaline Buffer (25 mM NaOH and 0.2 EDTA) and a
neutralizing solution (40 mM Tris-HCl pH 5.5). Using power masher II for Biomasher II,
one individual nymph of whiteflies was crushed in an Eppendorf tube containing 50 µL
of Alkaline Buffer. Therefore, aliquots of ~30 µL were transferred into 200 µL tubes and
placed in a thermocycler at 95 ◦C for 15 min. The temperature was reduced to 4 ◦C, and
30 µL of the neutralizing solution was added and vortexed for 10 s.

2.3. Morphomolecular Identification

Morphological identification was performed using keys on species of the genus Aleuro-
canthus [28] to determine the species. Morphological comparison between A. spiniferus and
A. camelliae described by Kanmiya et al. [15], and simplified keys designated by Jansen and
Porcelli [16] were employed to distinguish between Camellia and Citrus spiny whiteflies.

To confirm the morphological identification of mitochondrial DNA markers of cy-
tochrome c oxidase I (COI-1) using the LCO1490/HCO2198 primer set [29], C1-J-2195/L2-N-3014
(COI-2; [30]) and cytochrome b (COB) were used. Species-specific primers designed by Uesugi
and Sato [23] were also applied to avoid misamplification due to the parasitism of parasitoid
wasps. In addition, haplotype-specific primers were designed to confirm strain A. camelliae
without sequencing based on the sequence data accession nos. LCO88497.1, AB786712.1,
AB786713.1, and AB786714.1 (AC-55F: AGRAGTGAGTCTGGTAAGTTGG/ACB1-267R: AC-
CACCTAGAGTTGCCAACC). PCR conditions were set as follows: pre-denaturation at
95 ◦C for 2 min, continued with 35 cycles of denaturation at 98 ◦C for 10 s, annealing
temperature 50 ◦C–52 ◦C for 30 s, and 72 ◦C for 1 min, with an extension period at 72 ◦C
for 4 min.
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2.4. Nested PCR for Determining Wolbachia Infections and MLST Sequencing

Wolbachia surface protein (wsp) typing was performed to detect Wolbachia infections
using primer 81F/691R [31]. To confirm the negative results and obtain a fair sequence
length of ~500 bp, nested PCR was also performed using primer wspNesF/wspNesR [32]
to avoid false-negative results from PCR [32]. The monthly positivity rates of Wolbachia
were monitored from March 2021 to February 2022. The monthly average temperature
data were retrieved from Japan Meteorological Agency (https://www.data.jma.go.jp/;
accessed on 31 March 2022) for Kikukawa–Makinohara (Shimada city, Shizuoka Prefecture).
The associations between Wolbachia positivity rates and the average temperatures in the
location sample (Shimada city) were estimated using the logistic regression analysis in the
R software. Generalized linear models (GLMs; logit link and a binomial distribution) were
constructed using the positivity rate as the response variable and the average temperature
as an explanatory variable. The p-values for logistic regression were tested using the Wald
test, with the level of significance set at p ≤ 0.05).

The single-gene profiling of the 16S rRNA gene of Wolbachia was conducted for com-
parison using the wspecF/wspecR primer [33]. The diversity of Wolbachia was evaluated by
profiling five housekeeping genes using a primer combination designed by [34] and using
the ftsZUniF/ftsZUniR primer [33].

PCR was conducted in a total volume of 20 µL GoTaq® Green Master Mix (1 µL DNA
template, 1 µL of each primer, 7 µL of double-distilled H2O, and 10 µL of GoTaq). The
PCR process used in this study included several steps, starting with pre-denaturation at
98 ◦C for 2 s, followed by 35 cycles at 98 ◦C for 10 s. It had an annealing temperature
for 50 s, and 72 ◦C for 1 min, with a final extension period at 72 ◦C for 4 min. The PCR
products were visualized via 1.5% agarose gel electrophoresis. The PCR products were
direct-forward-sequenced after purification using ExoSAP-IT (Thermo Fisher Scientific
Baltics UAB, Vilnius, Lithuania).

2.5. Bacteriophage Detection and Wolbachia Phenotypic Characteristic Determination

The bacteriophage of Wolbachia (phage WO) was detected by targeting the capsid
protein gene orf7 of phage WO, WO-F/R [35] and WO-SUF/R [36] comparison phage WO
diversity. The genes related to the CI and feminization, such as ankyrin genes pk1 and
pk2 [37,38] and non-ankyrin genes cifA and cifB [39,40], were targeted for the detection of a
possible mechanism of speciation with the Wolbachia CI strain.

2.6. DNA Sequencing and Phylogenetic Analysis

The amplified fragments of representative samples were directly sequenced by a com-
mercial Sanger sequencing service (Fasmac; Atsugi, Japan), and further analysis was con-
ducted from the obtained sequences. Sequence similarity was analyzed using BLAST [41]
on the nucleotide sequences deposited in the NCBI GenBank databases. Sequences were
aligned with ClustalW using MEGA X [42]. Phylogenetic analyses were conducted using
the maximum likelihood (ML) method [43], and 1000 bootstrap replicates were performed.
Evolutionary analysis via the ML method (timetree) was generated using the RelTime
method [44], calculated with the ML method, and the Tamura–Nei model [43] using
MEGA X.

2.7. Genetic Differentiation, Network Analysis, and Recombination Test of Wolbachia

The net genetic divergence between and within groups (p-distance) of wsp and 16S
rRNA of Wolbachia was estimated using MEGA X [42]. The genetic parameters of the
population, the number of segregating sites [45], the number of haplotypes (h), haplotype
diversity (Hd) [46], and nucleotide diversity (π/bp) [46] were estimated using DNASP
version 6 [47]. Using this software, a neutrality test was conducted, which examined popu-
lation expansion by analyzing deviations from selective neutrality using Tajima’s D [48]
and Fu and Li’s D* and F tests [49]. A median-joining 16S rRNA of the Wolbachia haplotype
network was constructed using the Network 10 software [50]. The negative Tajima’s D and

https://www.data.jma.go.jp/
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Fu and Li’s D* and F* values, according to Tseng et al. [51], may indicate a recent population
expansion, purifying selection, or genetic hitchhiking, whereas positive values are more
likely to indicate a population bottleneck, genetic structure, and/or balancing selection.

Putative recombinant strains in multiple sequence alignments from single-gene typing
and MLST were analyzed using RDP5 [52]. Nine methods were employed in the analysis
as follows: RDP [53], GENECONV [54], BootsScan [55], MaxChi [56], ChiMaera [57],
SiScan [58], Phylpro [59], LARD [60], and 3Seq [61]. The default search parameters of the
program were used. The acceptable p-value was <0.05

3. Results
3.1. Morphomolecular Identification

The molecular identification of A. camelliae cryptic species complex using universal
primers targeting mitochondrial genes, such as COI and COB, was sensitive to the amplifi-
cation of genes of parasitoid wasps rather than whiteflies. Parasitoid wasps belonging to
the genera Encarsia and Eretmocerus were detected on most representative samples from
the fields, such as A1V20, A1W20, B1V20, A1V20, F2X20, A1X21, and A2Z21 (Table 2).
Only a few of them were closely related to the sequence data of whiteflies. Using COI-1
typing, A. camelliae haplotype B1 (A1W20-A7) was 99.7% identical to A. spiniferus (no.
KJ437166.1), whereas A. spiniferus demonstrated 83.18% reference to Aleurocanthus aracae
(no. MZ301225.1). Therefore, Aleurocanthus species-specific (TSW and OSW) primers [19,23]
and haplotype-specific (AC55F/ACB1-267R) primers are useful to overcome this obstacle.

Table 2. Identification of mitochondrial genes using BLAST and the Wolbachia infection status.

Gene Isolates Type a Close Relative % Similarity Source Infection

COI-1

A1V20-1 B1 Encarsia sp. 90.94 KJ444561.1 (+)
A1W20-1 B1 Encarsia inquirenda 92.74 MH928989.1 (+)
A1W20-2 B1 Encarsia perniciosi 90.28 JQ083717.1 (+)
A1W20-3 B1 A. spiniferus 99.38 KJ437166.1 (+)

D1Y20 B1 A. spiniferus 99.53 KJ437166.1 (+)
B1V20 B1 Encarsia obtusiclava 90.17 MG813798.1 (−)

F2X20-1 - Aleurocanthus sp. 81.75 KY835557.1 (−)
F2X20-2 - Aleurocanthus sp. 81.95 KY836994.1 (−)
A1V20-2 B1 Eretmocerus orchamoplati 88.78 JF750712.1 (+)

A2Z20-1 b - E. orchamoplati 84.62 JF750714.1 (+)
A2Z20-2 b - Aleurocanthus arecae 83.18 MZ301225.1 (−)

COI-2

F2X20-4 - E. smithi type 2 99.46 AB786724.1 (−)
F2X20-3 - E. smithi type 1 97.82 AB786726.1 (+)
F2X20-5 - T. acaciae 80.72 MT901108.1 (−)
A2Z21-1 - E. smithi type 1 99.32 AB786726.1 (−)
A2Z21-2 - E. smithi type 1 99.32 AB786726.1 (−)
A1V20-3 B1 E. smithi type 1 99.57 AB786726.1 (+)
A1V20-4 B1 E. smithi type 1 98.29 AB786726.1 (+)

COB

F2X20-3 - Encarsia formosa 86.44 MG813797.1 (+)
F2X20-4 - E. formosa 86.49 MG813797.1 (−)
A1V20-5 B1 E. formosa 86.39 MG813797.1 (+)
A1V20-6 B1 Eretmocerus sp. 84.89 KX714964.1 (+)
A1V20-7 B1 E. formosa 85.91 MG813797.1 (+)
A1X21 B1 Eretmocerus sp. 85.16 KX714964.1 (+)

A2Z21-3 - E. formosa 86.57 MG813797.1 (−)
A2Z21-4 - E. formosa 86.26 MG813797.1 (−)

a The confirmation type is based on haplotype-specific amplification. b Laboratory reared.

The species-specific (TSW) and haplotype-specific primer (ACF55/ACB1267) primers
were unable to confirm one isolate from E. japonica in Tokyo (F2X20) as A. camelliae haplotype
B1. Despite the failure to amplify DNA using the TSW primer, the COI gene sequence
obtained using the general primer tended to be grouped with A. camelliae (Figure 2). Thus,
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morphological confirmation was conducted, and it was found that isolate F2X20 was
related to A. spiniferus instead of A. camelliae, with features such as a zig-zag arrangement
of submedian abdominal spines and having more than 200 marginal teeth. Therefore, this
isolate conformed to A. spiniferus (Aleurocanthus cf. A. spiniferus). The F2X20 isolate or
Aleurocanthus cf. A. spiniferus sequence was identical to Aleurocanthus sp. (no. KY835557.1
and no. KY836994.1), with >81% similarity. Using COI-2, this isolate was referred to as
Tetraleurodes acaciae (no. MT901108.1).
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evolutionary time was predicted by the relative time (Rt) scale bar.

3.2. Positivity and Infection Rates of Wolbachia

The monthly positivity rates (ratio of positive samples per assessed samples) of Wol-
bachia in the A. camelliae haplotype B1 ranged from 91% to 100% (Figure 3A). The positive
rates remained high across the seasonal temperature, but as the temperature increased
(>26 ◦C), the positive rates tended to decrease (Figure 3B). The high monthly positivity
rate confirmed a high infection rate (overall samples assessed) detected in A. camelliae
from C. sinensis (96.5%), while a medium rate was detected in C. japonica (40%), and a low
rate was detected in C. sasanqua (6.7%) (Table 3). As only a single isolate was examined
from E. japonica, it was difficult to estimate their actual infection rate. A. spiniferus is an
uninfected population, as individuals were trans-parasitized by Eretmocerus under labo-
ratory conditions, as strongly indicated by their identical strain, Wolbachia, despite some
individual nymphs being positively infected (A2Z20-1; see Table 2). A similar case might
have also occurred in Aleurocanthus cf. A. spiniferus. Only one individual (F2X20-3; see
Table 3) was confirmed to be infected by Wolbachia and simultaneously parasitized by the
parasitoid wasp.



Insects 2022, 13, 788 8 of 16Insects 2022, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 3. (A) Nested PCR detection of the wsp gene revealed a positivity rate range of 91–100%; (B) 
logistic regression analysis on fixed infection across the seasonal temperature. Black line indicates 
regression line, while grey lines are upper and lower thresholds of 95% confidence interval of pre-
dicted line. Regression coefficient was significant (Wald test; p < 0.05). (*) Monthly average temper-
ature data were retrieved from the Japan Meteorological Agency (https://www.data.jma.go.jp/; ac-
cessed on 31 March 2022) for Kikukawa–Makinohara (Shimada city, Shizuoka Prefecture). 

3.3. Genetic Diversity of Wolbachia 
The genetic diversity of Wolbachia infects A. camelliae is difficult to estimate. Single-

gene typing using wsp indicated an exceptionally low diversity of Wolbachia, which only 
consisted of three haplotypes (Hd: 0.1) and nucleotide diversity (π: 0.00099). Other genes, 
such as the 16S rRNA of Wolbachia, detected among A. camelliae populations, were found 
to be extremely diverse (Hd: 0.8), with 21 haplotypes and diversity among nucleotides (π: 
0.02292) (Table 4). Through MLST, Aleurocanthus spp., notably A. camelliae haplotype B1 
and Aleurocanthus cf. A. spiniferus, seemed to harbor a single group of Wolbachia, namely, 
wAlec, as indicated by the monophyletic clade among these strains. The wAlec strains de-
veloped subgroups A and B (Figure 4). These strains were grouped into the Wolbachia 
supergroup B with other strains such as wBtab, wMa, wDcit, and wEfor.  

 
Figure 4. ML phylogenetic tree of Wolbachia MLST genes. The tree was constructed based on multi-
ple alignments of concatenated DNA sequences encoding gatB, coxA, hcpA, ftsZ, and fbpA in ~2 kbp. 
Bootstrap values are shown for all nodes. A single lineage of wAlec (green line) evolved into two 

Figure 3. (A) Nested PCR detection of the wsp gene revealed a positivity rate range of 91–100%;
(B) logistic regression analysis on fixed infection across the seasonal temperature. Black line indicates
regression line, while grey lines are upper and lower thresholds of 95% confidence interval of
predicted line. Regression coefficient was significant (Wald test; p < 0.05). (*) Monthly average
temperature data were retrieved from the Japan Meteorological Agency (https://www.data.jma.go.
jp/; accessed on 31 March 2022) for Kikukawa–Makinohara (Shimada city, Shizuoka Prefecture).

Table 3. Infection status of Wolbachia using nested PCR.

Species Host No. Samples
Assessed

mtCOI Gene of Host
Amplification

Positive Infection
(Nested PCR) Infection Rate c (%)

A. camelliae C. sinensis 738 728 703 96.5
C. sasanqua 30 30 2 6.7
C. japonica 15 15 6 40
E. japonica 1 1 1 100 a

A. spiniferus C.sinensis 104 103 2 1.9
Aleurocanthus cf. A. spiniferus E. japonica 40 40 1 2.5

E. smithi A. spiniferus 16 16 0 0
Eretmocerus A. camelliae 7 7 7 100

A. spiniferus b 1 1 1 100

Total 952 941 722

a Not the actual infection rate due to the limited sample. b Laboratory reared. c Proportion of positive infection
and mtCOI host amplification.

3.3. Genetic Diversity of Wolbachia

The genetic diversity of Wolbachia infects A. camelliae is difficult to estimate. Single-gene
typing using wsp indicated an exceptionally low diversity of Wolbachia, which only consisted
of three haplotypes (Hd: 0.1) and nucleotide diversity (π: 0.00099). Other genes, such as the
16S rRNA of Wolbachia, detected among A. camelliae populations, were found to be extremely
diverse (Hd: 0.8), with 21 haplotypes and diversity among nucleotides (π: 0.02292) (Table 4).
Through MLST, Aleurocanthus spp., notably A. camelliae haplotype B1 and Aleurocanthus cf.
A. spiniferus, seemed to harbor a single group of Wolbachia, namely, wAlec, as indicated by
the monophyletic clade among these strains. The wAlec strains developed subgroups A
and B (Figure 4). These strains were grouped into the Wolbachia supergroup B with other
strains such as wBtab, wMa, wDcit, and wEfor.

https://www.data.jma.go.jp/
https://www.data.jma.go.jp/
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Table 4. Haplotype diversity of Wolbachia in A. camelliae haplotype B1 was estimated from a 364 bp
wsp and 385 bp 16S rRNA of Wolbachia gene fragments.

Gene Sample Pool N S h
Molecular Diversity Indices Neutrality Tests

Hd π k Tajima’s D (P) Fu and Li’s F (P)

wsp A. camelliae populations 30 5 3 0.1 0.00099 0.33 −2.00763 (<0.05) * −3.34142 (<0.02) **
Associated populations * 8 122 8 1.0 0.13692 46.14 −0.60085 (>0.10) ns −0.61175 (>0.10) ns

16S rRNA A. camelliae populations 51 85 21 0.8 0.02292 7.71 −2.31567 (<0.01) ** −3.93027 (<0.02) **
Associated populations * 9 36 2 0.2 0.02026 7.33 −1.99788 (<001) ** −2.48500 (<0.02) **

N, number of sequences; S, number of segregating or polymorphic sites; h, number of haplotypes; Hd, haplotype
diversity; π, nucleotide diversity; k, mean number of nucleotide differences. * Associated populations are
Wolbachia sequence collected from the other whiteflies and parasitoid wasps surrounding A. camelliae. ns p > 0.10,
* p < 0.05, and ** p < 0.02, level of significance of Tajima’s D and Fu * Li’s F tests.
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3.4. Phage WO Detection and Wolbachia Phenotypic Screening

The low genetic distance or sequence dissimilarity (<1%) of phage WO-infected Wol-
bachia in A. camelliae from C. sinensis (A1V20) and E. japonica (A1X21), along with Aleurocan-
thus sp. in E. japonica (F2X20), indicated that they harbored a single strain of phage WO,
namely, WOAlec (Table 5). This was also confirmed by the sequences obtained using the
new primer set of WOSUF/R. The genes that regulated CI phenotypes in Wolbachia from
ankyrin and non-ankyrin genes were not detected in the phage WO strain.

Table 5. Diversity of phage WO (WOAlec) and phenotypic screening.

Isolates
Sequence Dissimilarity Phenotypic Screening

1 2 3 4 pk1a pk1b pk2b1 pk2b2 cifA cifB

1 A1V20-1 0.000 0.004 0.004 (−) (−) (−) (−) (−) (−)
2 A1V20-2 0.000 0.004 0.004 (−) (−) (−) (−) (−) (−)
3 F2X20 0.006 0.006 0.004 (−) (−) (−) (−) (−) (−)
4 A1X21 0.006 0.006 0.006 (−) (−) (−) (−) (−) (−)
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3.5. Recombination and Haplotype Diversity of Wolbachia

A high prevalence of putative recombinant strains was consistently detected using
the GENECONV, ChiMaera, and Phylpro tests. Ten strains were identified in single-gene
and MLST-aligned sequences. Other tests, such as RDP, BootScan, ChiMaera, and SiScan,
confirmed four to nine recombination events (Table 6). Recombination was observed in the
wsp of E3V20 or Pealius euryae in C. sinensis from Kyoto with the main parent, A. camelliae,
from the same host and location (E1V20; Table 6). In addition, haplotype 18 (A1V20-27),
haplotype 19 (A1V20-10), and haplotype 3 (F2X20) experienced recombination on their
16S rRNA of the Wolbachia gene (Figure 5; Table 6). Based on the MLST sequences, the
major parent of recombinant strains of wAlec subgroup B (A1V20-3, A1V20-2, A1V20-4, and
A1V20-1) was the strain from wAlec subgroup A (A1V19-2 and A1V19-1) with similarity
of 93.1–96.4% (Figure 4; Table 6). In addition, wAlec subgroup A (A1V19-2 and A1V19-1)
seemed to have A1Y20 from the same subgroup as their major parent (Figure 5; Table 6).
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Table 6. Intragenic recombination in wAlec by using nine different methods implemented in RDP5 software.

Gene No. Events a Putative
Recombination b

Major Parent c

(% Similarity)
Minor Parent d

(% Similarity)
Analysis GENECONV

R G B M C S P L 3S Start End

wsp 1 E3V20 E1V20 (82.6) Unknown (−) + (−) + + (−) + (−) (−) 94 254
16S

rRNA 2 A1V20-10 A1V20-13 (96.3) Unknown (−) + (−) + + + + (−) (−) 284 372

3 A1V20-27 A1V20-13 (96.7) Unknown + + (−) (−) + (−) + (−) (−) 237 376
4 F2X20 A1V20-13 (95.2) Unknown + + (−) + + (−) + (−) (−) 288 380

MLST 5 A1V20-3 A1V19-1 (94) Unknown + + + + + (−) + (−) (−) 409 755
6 A1V20-2 A1V19-1 (94.2) Unknown + + + + + (−) + (−) (−) 396 764

7 A1V20-4 A1V19-2 (93.1) Drosophila
simulans (89.4) + + + + + + + (−) (−) 1 362

8 A1V20-1 A1V19-2 (96.5) D. simulans (97) + + + + + + + (−) (−) 131 361
9 A1V19-2 A1Y20 (94.7) A1V20-4 (99.8) + + + + + + + (−) (−) 1250 ∞~

10 A1V19-1 A1Y20 (95.2) Brugia malayi
(92.8) + + (−) + + (−) + (−) (−) ∞~ 628

a Recombination events detected by more than two analysis methods. b Putative recombinant: strains experienced
recombination. c Major parent: parent contributing the larger fraction of the putative recombinant sequence.
d Minor parent: parent contributing the smaller fraction of the putative recombinant sequence R, RDP; G,
GENECONV; B, BootScan; M, MaxChi; C, ChiMaera; S, SiScan; P, Phylpro; L, LARD; 3S, 3Seq. ∞~: undetermined.

4. Discussion

Whiteflies are sap-sucking insects belonging to the family Aleyrodidae, which consists
of >1550 species, mostly belonging to the subfamilies Aleurodicinae and Aleyrodinae [62].
The morphological identification of whiteflies (Hemiptera: Aleyrodidae), which focused on
the characteristics of puparium, has been suggested to be limited and might not even be
genus-specific [63] to the Aleurocanthus genus [16]. The current morphological characteris-
tics, number of submarginal spines, number of marginal teeth, arrangement of submedian
abdominal spines, and microscopic papillae failed to separate Aleurocanthus cf. A. spiniferus
(F2X20) from A. spiniferus, which is genetically different from A. spiniferus and A. camelliae
(Figure 2). This confirms the existence of the novel cryptic species complex of A. camelliae
in Japan.

The Aleurocanthus genus consists of at least 78 recorded species, and most species
are specific to one or two families of host plants [64]. Among those species, A. woglumi
and A. spiniferus are well-known as extremely polyphagous whiteflies that are widely
distributed worldwide. A. woglumi inhabits more than 37 host plants, while A. spiniferus
inhabits more than 19 families of host plants [64]. The oscillation hypothesis suggests a
link between the host plant and geographical range as a contributing factor in increasing
diversification rates [65], indicating that the occurrence of diversity in phytophagous insects
may be promoted through oscillation in the host plant range. We believe that the current
findings also support this hypothesis (Figure 6). The discovery of the novel cryptic species,
Aleurocanthus cf. A. spiniferus, linked the history of adaptation among A. spiniferus and
A. camelliae, suggesting that the most recent common ancestor of A. camelliae morphospecies
is the A. spiniferus morphospecies that inhabits Theaceae sensu lato (Pentaphylacaceae). The
cladogenesis of Aleurocanthus cf. A. spiniferus tended to lean toward A. camelliae instead
of A. spiniferus (Figure 2), perhaps correlating to the host plants’ group. Theaceae and
Pentaphylacaceae are plant families that belong to the same order of Ericales [66]. Therefore,
further research on the oscillation hypothesis for the cryptic speciation of A. camelliae may
benefit from investigations of how A. spiniferus inhabits another plant of the order Ericales
such as Diospyros khaki (Ebenaceae) in Japan [67].

In the cryptic species complex of A. camelliae, a different pattern of Wolbachia infection
was found (Table 3). Whiteflies morphologically identical to A. spiniferus (Aleurocanthus
sp. in E. japonica and A. spiniferus in Citrus) were grouped into uninfected populations,
whereas A. camelliae B1 from C. sinensis was considered the Wolbachia-infected population.
Wolbachia infections have been known to significantly affect the structure and mitochondrial
diversity of host insects [10,68], leading to cryptic speciation [3]. A similar case has recently
been reported in the Wiebesia pumilae cryptic species (Hymenoptera: Agaonidae), which
produce hierarchical Wolbachia infection patterns [69]. The spread barrier produced by
cryptic species or a different ancestor host population containing Wolbachia CI strains may



Insects 2022, 13, 788 12 of 16

be the reason for the distinct infection status among cryptic species. However, wAlec is not
a Wolbachia CI strain (Table 5), but it does not rule out the possibility that wAlec had a role
in speciation since the retention of Wolbachia CI strains for long-term prognosis following
secondary contact and spatial reunification of two allopatrically separated populations of a
species is normally not favorable. The wAlec CI strains may exist and could have aided the
emergence of further reproductive isolation through the process of reinforcement [70] and
maintained population differentiation [71].
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Figure 6. Hypothetical diagram of the evolutionary history of A. camelliae cryptic species. Predicted
speciation time (see Figure 2) among A. spiniferus morphospecies occurred at the relatively same
time (Rt 0.06) and was significantly separated from the predicted speciation time of A. camelliae
morphospecies (Rt 0.01–0.02). The oscillation in the host plant range represents specialization
(black-dashed arrow) and speciation (red arrow; blue bar) to host expansion (black arrow; gray
bar). The hierarchical infection status of Wolbachia might be associated with the morphospecies
(blue-dashed arrow).

The intraspecies or intrapopulation infection rates might also vary following the host
preferences of A. camelliae itself. Lower infection rates were found in A. camelliae-B1-infesting
alternative hosts, such as C. japonica and C. sasanqua. Wolbachia titer is not only maternally
inherited, but it can also be horizontally transmitted [71] or eventually lost [72]. Fixed
infection in A. camelliae haplotype B1 inhibited C. sinensis (Figure 3A), suggesting that wAlec
might have nutritional mutualism such as synthesizing biotin, which might explain the
transition from facultative symbiosis to obligate mutualism [73].

This study also provided novel evidence of the recombination event of Wolbachia
in the whitefly community in C. sinensis. Wolbachia-strain-infected P. euryae (E3V20) was
derived from Wolbachia-infected A. camelliae (E1V20). Both were collected from Kyoto. The
recombination was also observed in the population of A. camelliae that were infected by
the wAlec group strains. Notably, wAlec subgroup B (A1V20-3, A1V20-2, A1V20-4, and
A1V20-1) was derived from wAlec subgroup A (A1V19-2 and A1V19-1) as major parents,
and the samples were collected in 2020 and 2019 from the same location, respectively. The
recombination is likely to be essential for Wolbachia adaptation to escape Muller’s ratchet,
a process leading to the accumulation of mildly deleterious alleles, which is a problem
for symbionts that face a population bottleneck in each generation [74,75]. Production of
new recombinants results in Wolbachia strains with fewer harmful mutations and greater



Insects 2022, 13, 788 13 of 16

genetic variety, allowing them to use a wider range of hosts. This phenomenon is also
well-known in pathogenic bacteria [76–78]. High recombination rates might also indicate a
high incidence of horizontal transmission. Bacterial symbionts often maintain intermediate
symbiont genome sizes and substantial functional genetic variation through horizontal
transmission and recombination [79]. Further analysis is required to determine whether
the mechanism of high recombination in wAlec results in the loss of CI strains. The bioassay
confirmation of the CI phenotype of wAlec and/or trans-infection of Wolbachia CI strains,
e.g., wMel [80], might be useful as a biological control method to contain the A. camelliae
cryptic species complex [80].

The detection of positive infection in some parasitized nymphs of the A. spiniferus
morphospecies and Eretmocerus sp. (Tables 2 and 3) revealed the possibility of parasitoids
as vectors of Wolbachia [81,82] or the reverse transmission pathway from hosts to para-
sitoids [83]. Eretmocerus sp. parasitizing A. camelliae is a newly recorded occurrence in
Japan. Historically, Encarsia smithi is the only parasitoid wasp of the black spiny whitefly
species (A. camelliae and A. spiniferus) in Japan [19,84–87]. Thus, further studies are needed
to identify the Eretmocerus species parasitizing A. camelliae and their origin in order to
provide comprehensive information regarding the potential natural enemies of A. camelliae.
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