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Simple Summary: An egg-larva endoparasitoid (Chelonus bifoveolatus) of fall armyworm (FAW) in
Zambia was identified based on morphological and molecular characteristics. To assess the parasitism
capabilities of C. bifoveolatus against FAW, we compared partial biological parameters parasitizing 0-
to 2-day-old FAW eggs. Chelonus bifoveolatus successfully parasitized and developed on eggs in all
tested samples. In addition, it had a higher parasitism rate, pupation rate, and emergence rate on
1-day-old FAW eggs, but shorter development time on 2-day-old FAW eggs. Eggs of all ages tested
revealed that females to males sex ratio was nearly 1:1.

Abstract: The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae),
is a migratory pest endemic, to tropical and subtropical regions of America. Biological control can
effectively and sustainably control pests over a long period of time while reducing the frequency of
pesticide use and ensuring the safety of agricultural produce. In our study, the egg-larval Chelonus
species (Chelonus bifoveolatus) from parasitized eggs of Spodoptera frugiperda in Zambia were described
and identified based on morphological and genetic characteristics. To evaluate the efficiency of
C. bifoveolatus, their parasitism suitability on 0- to 2-day FAW eggs under laboratory conditions was
compared. The results showed that C. bifoveolatus could accept all FAW eggs at 0-, 1- and 2-day-old
age and complete development successfully. Significant differences were found among 0-, 1-, and
2-day-old host eggs with respect to egg-larva developmental duration of C. bifoveolatus, and the
egg-larva developmental duration on 2-day-old eggs was significantly lower than those on 0- and
1-day-old eggs. No significant differences were observed in the parasitism, pupation, emergence, and
female rates for C. bifoveolatus on various age eggs of FAW. Generally, the parasitism rate, pupal rate,
and emergence rate at various ages of FAW eggs were higher than 90%, 75%, and 82%, respectively,
and the longevity of female parasitoids was longer than male parasitoids, and the sex ratio of females
to males was nearly 1:1. Our results indicate that C. bifoveolatus performed well on various ages of
FAW eggs and is a potential biological control agent against FAW in Africa.

Keywords: Spodoptera frugiperda; egg parasitoid; Chelonus; biological control; Africa

1. Introduction

The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae),
a migratory pest endemic to tropical and subtropical regions of America was first recorded
on grains and grasses in Georgia in 1797 [1–3]. The following attributes are associated with
the first report in West Africa, wide adaptability, strong migration ability, high fecundity,
lack of diapause, quick resistance to insecticides, and spread to more than 60 countries
and regions, among which Africa, Asia, and Oceania [3–6]. The FAW larvae feed on
leaves, stems, and reproductive parts of a wide range of host plants, including cultivated
crops, such as maize, wheat, rice, peanut, soybean, cotton, tobacco, and vegetables, among
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others [7]. Hence, the major socio-economic consequence for human and global food
security is under a serious threat [8].

In most African countries, favorable climatic conditions, available host plants,
off-season, and irrigated crops allow the pest to complete several generations per year [9,10].
Maize is the most important economic and staple food crop in Africa, where it is grown
predominantly by small-holder farmers [11]. The occurrence of fall armyworm in over
44 countries in Africa threats the food security of millions of people [12,13]. In the absence
of proper control methods, FAW has the potential to cause maize yield losses of 8.3 m tons
to 20.6 m tons per year in just 12 of Africa’s maize-producing countries and economic loss
of $2.53 billion to $6.31 billion [13,14].In Zambia, FAW has the potential to cause maize
yield losses of 0.7 m tons to 14.6 m tons per year, which was equivalent to an economic loss
of $125.2 million to $250.4 million [14].

Several options are available to mitigate the impact of FAW, such as synthetic insecti-
cides, biopesticides, botanicals, genetically modified crops, mechanical control practices,
and cultural control [14,15]. However, the immediate response for the management meth-
ods to control FAW has focused primarily on chemical insecticides in Africa, mainly due to
the unavailability of alternative and governmental emergency programmers subsidizing
synthetic insecticides [14,16–18]. As a result, there is an abundant influx of pesticides into
fields that previously did not apply pesticides to maize growing fields [19,20]. Frequent and
improper use of pesticides can favor the development of insecticide resistance, reduce the
population of beneficial natural enemies, and cause environmental problems, and further,
can pose a threat to human health [18,21–23]. Because of the excessive use of insecticides
and small-holder farmers using scientifically unproven methods, such as the application of
ash, sand, botanical extracts, and other locally available materials, this damage has created
challenges all over Africa [24]. Hence, there is an urgent need for readily available, safe,
effective, and sustainable alternative agents [13].

Biological control can effectively and sustainably control pests over a long period
of time while reducing the frequency of pesticide use and ensuring the safety of agricul-
tural products [25,26]. Therefore, biological control approaches exploit the use of para-
sitoids, predators, entomopathogenic viruses, bacteria, and fungi as viable alternatives
for the management of this pest [27–34]. Among the approximately 150 species of para-
sitoids and parasites that have been recorded worldwide, the egg parasitoids Trichogramma
dendrolimi (Matsumura) (Hymenoptera: Trichogrammatidae) and Telenomus remus (Nixon)
(Hymenoptera: Platygastridae), the egg—larval parasitoids Chelonus insularis (Cresson)
and Chelonus antillarum (Marshall) (Hymenoptera: Braconidae), the larval parasitoids
Coccygidium luteum (Brullé) and Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae),
the pupal parasitoids Diapetimorpha introita (Cresson) (Hymenoptera: Ichneumonidae) and
Brachymeria ovata (Say) (Hymenoptera: Chalcididae), can be used against FAW [35–38].

The genus Chelonus (Hymenoptera: Cheloninae), an egg-larva endoparasitoid, is
one of the largest genera of the subfamily Cheloninae (Hymenoptera, Braconidae) with
973 described species worldwide [39] and is the most common and widely distributed
parasitoid of FAW in the Americas and Africa [40]. In Colombia, C. insularis was reported
parasitizing FAW, but is very susceptible to insecticides (e.g., chlorpyriphos, methomyl,
and cypermethrin) except for Bt toxin [41]. In the Caribbean Islands, C. antillarum Marshall
parasitizes eggs of FAW [42]. In South and West Africa, C. insularis caused about 91% of
natural parasitism in maize field samples. In Tanzania, the abundance of C. bifoveolatus has
a significant interaction between the cropping system and pesticide application [37]. How-
ever, Chelonus spp. reared in the laboratory using factitious host, have been used widely as
biological control agents to control Batrachedra arenosella (Walker) (Lepidoptera: Batrachedri-
dae), Earias vittella (Fabricius) (Lepidoptera: Noctuidae), Helicoverpa armigera (Hübner)
(Lepidoptera: Noctuidae), Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae),
Prays oleae (Bernard) (Lepidoptera: Praydidae) and Spodoptera littoralis (Boisduval) (Lep-
idoptera: Noctuidae) [43–47]. The aim of our study was to identify the Chelonus species,
collected from parasitized FAW eggs in Zambia in 2019, using a combination of character-
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istics of external morphology and molecular techniques. In addition, the performance of
Chelonus species on FAW eggs of different ages to determine the biological control potential
was explored to provide the theoretical basis for their application in the future.

2. Materials and Methods
2.1. Sample Collection and Insect Rearing

The original FAW eggs (parasitized and unparasitized) were collected from maize
fields at China-aid Zambia Agricultural Technology Demonstration Centre (15◦21′30′ ′ S,
28◦27′27′ ′ E), Lusaka, Zambia, in September of 2019. Each egg mass was kept in a petri
dish (diameter = 10.5 cm, height = 2.5 cm) containing fresh maize leaves to ensure that the
enclosed neonates had available food and was kept at laboratory conditions with 26 ± 1 ◦C,
R.H. 70 ± 5% and photoperiod 14:10 (L:D) h. The larvae were reared on maize leaves until
they became FAW pupae or parasitoid cocoons. After emergence, the FAW adults and
parasitoids were introduced into a cage (length, width, height = 35.0 cm) and provided
with a cotton-wool ball soaked with 20% honey as diet, respectively. Filter plastic paper
was provided for FAW adults as an oviposition substrate and periodically replaced, as
required. FAW egg masses attached to plastic paper were introduced into the rearing cage
of parasitoid adults for 4 h to allow parasitism. Then, each egg mass attached to plastic
paper was placed in a petri dish (diameter = 10.5 cm, height = 2.5 cm) containing a piece
of artificial diet that was made from Greene et al.’s method [48]. The larvae were reared
individually when they reached the third instar in 12-well plastic plate until they emerged
as adults [49].

2.2. Morphological Identification

Ten newly emerged female and 10 newly emerged male parasitoids were introduced in
a 1.5 mL tube, then put at −40 ◦C refrigerator for 10 min. The parasitoids were later soaked
in 5% potassium hydroxide in a plastic dish (diameter = 2.0 cm) for 24 h and subsequently
washed 3–4 times with distilled water. Finally, tissues were separated under the microscope
and soaked 5 min in graded alcohols at concentrations of 50, 70, 80, 85, 90, 95, 100%,
respectively. Based on morphological characters, the specimen was initially identified
using the published taxonomic literature on Braconidae [50–54]. Measurement methods
were used according to Van Achterberg [55,56], Harris [57], and Zack [58]. Specimens were
examined with a Nikon SMZ 1500 binocular microscope, and photographs were made with
a Keyence (VHX-2000) digital microscope. Photographs were slightly processed (mainly
cropping and modification of background) in Adobe Photoshop CC 2018.

2.3. Molecular Identification
2.3.1. DNA Extraction

Genomic DNA of Chelonus samples were extracted following Kumar et al.’s method [59].
Two female adults were put in a 2 mL tube, and three magnetic beads were placed. Tissue
that was previously frozen for 5–10 min at −80 ◦C was crushed 120 s with a grinding
apparatus in 200 µL GA. 20 µL proteinase k was added, and the mixture was incubated
for three hours at 56 ◦C, and thereafter, 200 µL GB was added for incubation for 10 min at
70 ◦C. After incubation, 200 µL of 100% ethanol was added and centrifuged at 12,000 rpm
for 30 s. The flocculent precipitate was transferred into the adsorption column CB3 and
centrifuged at 12,000 rpm for 30 s. 500 µL of GD was added, followed by centrifugation
at 12,000 rpm for 30 s. 600 µL of PW was added, and centrifuged at 12,000 rpm for 30 s
and repeated once. The adsorption column CB3 was transferred into another 1.5 mL tube
and centrifuged at 12,000 rpm for two minutes, and the pellets were air-dried for several
minutes. Overall, 70 µL distilled water was added and stored at −20 ◦C for further use.

2.3.2. DNA Amplification

DNA barcodes were amplified by the standard barcoding primer pair LCO1490 (5′-
GGT CAA CAA ATC ATA AAG ATA TTG G-3′) and HCO2198 (5′-TAA ACT TCA GGG
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TGA CCA AAA AAT CA-3′) [60]. Polymerase chain reaction (PCR) was conducted in the
total volume of 50 µL consisting of 25 µL 2× Taq Premix Mix, 1 µL forward primer and
reverse primer at 10 µM of concentration, 2 µL genomic DNA (10–30 ng/µL) and 21 µL
distilled water. One cycle of initiation was performed at 94 ◦C for 5 min, followed by
35 cycles of 94 ◦C for 30 s, primer annealing at 52 ◦C for 30 s, primer extension at 72 ◦C for
30 s. Afterwards, the reactions were kept at 72 ◦C for 10 min as the final step. The PCR
products were separated by electrophoresis in 1× TAE buffer using a 1% agarose gel stained
with ethidium bromide (EB) at 150 volts for 30 min. A 2000 bp DNA ladder (Sangon Biotech
(Shanghai) Co., Ltd., Shanghai, China) was used as a size marker. The result was visualized
under JS-3000 UV transilluminator (Peiqing tech (Shanghai) Co., Shanghai, China). Then
PCR products were sent to Sangon (Shanghai) for bidirectional sequencing.

2.4. Assessment of Biological Characteristics

FAW egg masses (containing 200–300 eggs) laid on plastic paper were randomly
selected from cages of 100–200 adults, and egg masses with different ages (within 1 h as
0-day age, 1- and 2-day age hosts indicated the egg masses that had developed for one
and two days, respectively) were prepared under the microscope and individually placed
in glass tubes (diameter = 10.5 cm, height = 2.5 cm). Afterwards, one mated female was
randomly selected from a cage that had 200 parasitoids (less than 24 h of age, fed with
20% honey water and no oviposition experience), introduced in glass tubes containing egg
masses and a cotton ball soaked in 20% honey water, and allowed to oviposit eggs for 24 h.
The egg mass was removed and placed in a petri dish (diameter = 6.0 cm, height = 1.5 cm).
A few drops of (0.4–0.5 mL) water was added to the absorbent cotton to avoid desiccation.
When larvae hatched, a piece of artificial diet was made from Greene et al.’s method [48],
and this diet was placed at the bottom of the Petri dishes. Petri dishes were closed at the
top with paper. In order to avoid cannibalism among the old larvae, they were individually
transferred into 12-well plastic plates with fresh artificial diets. Wells with larvae were
tested and checked daily for the developmental stage until emergence or death. The dead
larvae were dissected under a microscope to confirm the presence of parasitic wasp larvae.
When the parasitized larvae started curling their bodies, an indication that the larvae of
parasitoids were about to reach the pre-pupal period, the frass was cleaned, and the larvae
were covered with thin cotton until successful pupation. Newly emerged females and
males were recorded, and individuals were placed in glass tubes (diameter = 10.5 cm,
height = 2.5 cm) covered with gauze element (100 mesh) to allow air exchange. Cotton balls
with 20% honey water were placed inside the glass tubes until the parasitoids died. The
experiment was conducted under laboratory conditions at 26 ± 1 ◦C, relative humidity of
70 ± 5%, and photoperiod of 14:10 (L:D) h. There were 5 replicates for various egg ages.

Parasitism rate = (number of parasitoid larvae/total number of larvae) × 100%

Pupation rate = (number of cocoons/total number of parasitoid larvae) × 100%

Emergence rate = (number of parasitoids/total number of cocoons) × 100%

2.5. Statistical Analysis
2.5.1. Phylogenetic Analysis

The sequences were retrieved from Basic Local Alignment Search Tool (BLAST) base
(http://www.ncbi.nlm.nih.gov/genbank/) (accessed on 20 October 2022) and Barcode
of Life and Data-system (Bold) to reveal the possible identity. The phylogenic tree was
constructed using the Neighbor-Join and BioNJ algorithms in MEGA 6.0 software to a
matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL)
approach and then selecting the topology with superior log likelihood value. Branch
support was evaluated by bootstrapping with 1000 repetitions.

http://www.ncbi.nlm.nih.gov/genbank/
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2.5.2. Bioassay Analysis

A one-way analysis of variance (ANOVA) was conducted to determine the effect of
treatment on the number of parasitized larvae, developmental time, longevity, parasitism
rate, percentage of pupation, emergence rate, and percent female progeny. Tukey’s honestly
significant difference (HSD) test was used to compare means at p < 0.05. All data were
subject to a normality test (Shapiro–Wilk test) prior to ANOVA. All percentage data were
arcsine square-root-transformed prior to the Shapiro–Wilk test. The analysis was performed
on the transformed data, and untransformed means ± SE were presented. Longevity be-
tween males and females was analyzed using the independent-samples t-test for statistical
analysis, with a confidence level of 95%. All statistical analyses were performed using SPSS
version 20 software package (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Morphological Characteristics

Description. Holotype, female adult, length of body 5.0~7.0 mm, forewing 4.0~5.0 mm
(Figure 1A, Figure 2A).

Head. Head transverse, length of head 2.3× its width. Antennae 24~26, whip, average
length 3rd, 4th, and terminal segments 3.0, 2.5, and 2.1 × their width, respectively. Oval
eyes, length of eyes 2.3 × temple in dorsal view, OOL:OD:POL = 17:4:12 (Figure 2G). Vertex
Face striate-rugose, covered with white hairs, width of the face is 3.2 times its height
(Figure 2F). Clypeus evenly convex and punctate. Temple finely and areolate-rugose, frons
concave and longitudinal striate-rugose around antennal sockets. Malar space is 1.4 × base
width of the mandible (Figure 2I).

Mesosoma: Developed mesosoma with strongly reticulate rugosity, length 1.3 × its
height (Figure 2B), pronotum slightly saddle-shaped with irregular rugose, mesonotum
strongly convex, mesoscutum evenly convex, reticulate-rugose, mesopleurum coarsely
reticulate-rugose, scutellar narrow and rugose, scutellar suture deep and with several
carinae (Figure 2C), propodeum coarsely reticulate-rugose with transversal carina and two
blunt tubercles.

Wing: Length of fore wing of 2.6× its width, r:3-SR:SR1 = 23:23:87, vein SR1 of curved
upward, vein CU1b exists, 1-CU1:2-CU1 = 16:55. Parastigma strong concave, cu-a not
obvious and straight (Figure 2A).

Feet: Smooth and slender, hind femur robust, 3.8 × its maximum width. Hind tibia
and tarsus 5.1 and 10.0 × its maximum width, respectively (Figure 2H).
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Metasoma: Metasoma short oval, length 1.6 × its maximum width in dorsal view,
and 2.5 × in lateral view (Figure 2D). Two oval-shaped maculae at metasoma basally, the
ends curved inward. Length of metasoma cavity about 0.8 ×metasoma (Figure 2E). The
ovipositor is hidden under the metasoma.

Color. Black, antennae black, mandible brown except black basally, maxillary palpi
and labial palpi brown, anterior, middle, and hind coxa and trochanter black, femur basally
part black remaining brown, hind 5th tarsus black remaining brown. wing transparent and
metallic, parastigma dark brown, veins of wing brown (Figures 1 and 2).

Male. Similar to female, expect in having 28 antennomeres (Figure 1B).
Distribution. West and East Africa (Burkina Faso, Cameroon, Chad, DR Congo,

Madagascar, Nigeria, Sudan, Togo, Kenya, and Tanzania), India.
Based on the results of morphological identification and the bar-code data from Agboyi

et al., it is confirmed that it is the Chelonus bifoveolatus redescribed by De Saeger 1948. De
Saeger and our description of the pigmentation on the hind foot is not consistent with
Szepliget’s original description. Besides, our measurement is different from De Saeger’s
who claimed that the length of tarsus is 7.0 × its maximum width.

3.2. Molecular Biological Identification

The sequencing of Chelonus sp. DNA barcode region of Cytochrome c Oxidase Subunit
I (COI) was carried out, aiming at the identification of nucleotide sequences. With the
improvement of the conditions of PCR, a 688 bp fragment of Chelonus sp. could be amplified
repeatedly with the standard primer. The results of the search for similarities by BLAST
tool in the Gen-Bank database was found that they all corresponded to the desired regions,
which formed well-supported clusters in the NJ-tree. The results of the blast showed that
the Chelonus sp. and C. bifoveolatus were obviously in the same branch, obtaining 99.99%
similarity between them, besides, it also showed >99.69% similarity to Chelonus formosanus
sonan 1932 (Figure 3).
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The results of molecular biological identification, in combination with morphological
evidence, indicated that Chelonus sp. was conspecific with C. bifoveolatus.

3.3. Performance on Host Eggs
Parasitism, Development Duration, and Longevity of C. bifoveolatus on FAW Eggs at
Various Ages

From the initial egg masses, 109 (0-day-old), 121 (1-day-old), 141 (2-day-old) indi-
viduals hatched as the total number of larvae and 103, 116, and 129 of these successfully
parasitized, respectively. No significant differences were found in the pupa duration,
longevity of female and male for C. bifoveolatus on various age egg of FAW (pupa duration:
F2,12 = 0.237, p = 0.792, longevity of female: F2,12 = 2.328, p = 0.140, longevity of male:
F2,12 = 1.096, p = 0.365). Significant differences were found in the egg-larva duration on 0-,
1- and 2-day-old ages, the egg-larva duration on 2-day-old ages was significantly lower on
0-, 1-day-old (F2,12 = 9.418, p = 0.003). However, whatever age egg of FAW, the longevity
of females was significantly longer on males (0-day-old: t = 8.996, p < 0.0001; 1-day-old:
t = 11.841, p < 0.0001; 2-day-old: t = 7.037, p < 0.0001) (Table 1).

Table 1. Comparisons of parasitism, developmental time and longevity of C. bifoveolatus on differently
aged FAW eggs.

Host Eggs with
Different Ages

Mean Egg Number
per Egg Mass

Larvae Number
Tested

Larvae Number
Parasitized

Egg-Larva
Duration (d)

Pupa Duration
(d)

Longevity (d)
Female Male

0 d 237.6 109.0 ± 8.9 a 102.8 ± 8.3 a 18.19 ± 0.18 a 12.10 ± 0.47 a 13.52 ± 0.26 aA 10.28 ± 0.25 aB
1 d 256.8 121.0 ± 6.9 a 115.8 ± 7.0 a 18.08 ± 0.19 a 12.05 ± 0.26 a 13.32 ± 0.28 aA 9.81 ± 0.09 aB
2 d 280.6 140.8 ± 9.8 a 129.0 ± 9.0 a 17.11 ± 0.21 b 11.77 ± 0.32 a 12.76 ± 0.24 aA 10.11 ± 0.29 aB

Note: Means ± SE are presented. Means in a column followed by the same lowercase letter do not differ
significantly (p < 0.05) by Tukey’s HSD test and means in a row followed by the same uppercase letter do not
differ significantly. (p < 0.05) by T-test.

No significant differences were found in the parasitism, pupation, emergence, and
female rate for C. bifoveolatus on various age egg of FAW (parasitism rate: F2,12 = 3.293,
p = 0.072; pupation rate: F2,12 = 1.772, p = 0.212; emergence rate: F2,12 = 1.406, p = 0.283;
female rate: F2,12 = 0.444, p = 0.652). The parasitism rate (95.75%), pupation rate (76.75%),
and emergence rate (84.50%) were the highest on 1-day-old. The sex ratio of females to
males was nearly 1:1 from all age egg of FAW (Figure 4).
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4. Discussion

Based on morphological and genetic characteristics, the Chelonus spp. (egg-larval en-
doparasitoids) from parasitized eggs of S. frugiperda in Zambia were identified. Samples of
Chelonus sp., were similar to C. bifoveolatus [50,51], which have previously been discovered
from Spodoptera spp. in West and East Africa (Burkina Faso, Cameroon, Chad, DR Congo,
Madagascar, Nigeria, Sudan, Togo, and Tanzania) [51,61,62], and was recently reported
to be prevalent in Ghana and Benin [63]. However, it has been occasionally recovered
from larvae of Spodoptera exigua (Hübner) in peri-urban vegetable onions gardens along
the coast in Benin [64]. Interestingly, recovered C. bifoveolatus from Ghana and Benin had a
>99% similarity to that reported in Zimbabwe and Kenya as well as from South Asia and
Polynesia [63]. Our study indicated that although Chelonus sp. has a > 99% similarity with
Ghana and Benin regions, it also has a >99% similarity to C. formosanus that is widespread
distribution in Guangdong, Taiwan, Haina and Zhejiang (China) and some regions of
India [65–67]. That means it is difficult to distinguish the two species by molecular bio-
logical using the universal primer COI, and it may be possible to use other primers to
distinguish them [68]. However, the morphological comparison between the two Chelonus
species provides strong evidence of differences in the size and shape of the spots at the
basal of the mesosoma, as well as the transverse ridges of the propodeum (the results of
our observations).

For most parasitoid species, the preference may be influenced by host age, host size and
high-quality hosts [69–72]. For example, Trichogramma mwanzai and Trichogrammatoidea lutea
parasitism significantly decreases with the increasing FAW host age [73]. Similar results
were reported on T. dendrolimi that parasitized Mythimna separata (Walker) egg [74]. In our
study, all stages of eggs of S. frugiperda (4–48 h after laying) are successfully parasitized
by C. bifoveolatus, and the parasitism rate was >90%. In a previous study, Chelonus inanitus
even could successfully parasitize all stages of eggs of S. littoralis (3 h old until 20 min
before hatching), and parasitism rate ranged from 80% to 95% [75]. In contrast, Chelonus. sp.
parasitism reaches 47% if old eggs of Trichoplusia ni Hubner (3 days old) were parasitized,
where pseudoparasitization is frequent [76,77]. It may not be surprising that the latter
parasitoid-host combination is induced in the laboratory, while the former is a naturally
occurring parasitoid-host combination. The success of parasitism may also depend partly
on where the parasitoid lays its eggs. The eggs of T. dendrolimi are laid in the host egg
yolk [78]. On the contrary, Trichogramma chilonis are laid in or near the peripheral yolk of
the host egg [79]. The eggs of Trichogramma heliothidis are generally oviposited next to the
host embryo [80], while both are found within and outside the host embryo of T. remus [81],
a parasitoid which is native to the Malay Peninsula, and due to the higher parasitism,
has been used in augmentative biological control (ABC) programs against FAW in the
Americas [82,83]. However, C. inanitus females lay eggs inside the embryo in mature hosts
and inside the yolk in young hosts [84,85]. When parasitization occurs in young eggs, the
parasitoid larvae must invest time and resources to reach the host embryo [86]. We also
observed similar results when C. bifoveolatus parasitized all old eggs of S. frugiperda. In
general, Chelonus. sp. is much larger than some egg parasitoids, thus the ovipositor may be
inserted anywhere in the host egg, which may enable the parasitoid to successfully parasite
eggs of all ages.

There are numerous associations between the genus Chelonus with many important
Spodoptera species all over the world, such as S. exigua, S. litura and S. eridania. [76]. In our
study, the egg-larva duration of C. bifoveolatus on 2-day-old ages host eggs was significantly
lower on 0-, 1-day-old. Similarly, a previous study showed that the development time of
C. inanitus reared on 75–80 h old eggs of the S. littoralis was significantly shorter than on
3–8 h old eggs [85]. This seems to be characteristic of all members of the genus Chelonus
as similar observations were reported for C. annulipes [87], C. curvimaculatus [88], and for
C. sp. [89]. In general, the genus Chelonus adapts to host development by varying its growth
rate. Parasitoids that develop in non-feeding stages, such as eggs and pupae (represents
a “closed” system), which can be assessed by the female at oviposition, regardless of



Insects 2023, 14, 61 10 of 14

any physiological changes that may occur later in the interaction [90,91]. In contrast,
parasitoids exploit hosts that continue to feed and grow, such as larval stages (represents
an “open” system), which vary with circumstances during the interaction [92,93]. The host
adaptation mechanism of the egg-larval parasitoids may combine “closed” and “open”
system strategies.

Life-history responses reflect the optimal balance between adaptation and constraint [94].
Host choice often reflects the koinobiont parasitoids female’s ability to find and oviposit in
or on a host, rather than to provide optimum resources for immatures. Therefore, immature
parasitoids may evolve ontogenetic responses to resource constraints.

5. Conclusions

In our study, Chelonus bifoveolatus accepted all test FAW eggs with different ages and
completed development successfully. Duration of the egg-larva developmental stage of
the C. bifoveolatus on 2-day-old ages host egg was significantly lower on 0- and 1-day-old.
There were no significant differences in the parasitism rate, pupal rate, and emergence
rate of C. bifoveolatus at various ages of FAW eggs. The longevity of female parasitoids
was longer than male parasitoids, and the sex ratio of females to males was nearly 1:1.
Generally, our results indicate that C. bifoveolatus performed well on various aged FAW eggs
and is a potential biological control agent against FAW in Africa. However, the rearing of
C. bifoveolatus on an alternative host should be considered for cost-effective mass production
in the future.
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