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Simple Summary: The rusty grain beetle, Cryptolestes ferrugineus (Stephens), is a common pest
found worldwide that can adapt to various climates. This insect poses a significant economic threat,
making it crucial to understand its biology, ecology, and behavior to develop effective management
strategies. To gain insights, a comprehensive review of the existing literature about C. ferrugineus was
performed utilizing databases such as Web of Science and Scopus. The review covered publications
from 1949 to 2023 and highlighted the global importance of C. ferrugineus through its presence in over
110 countries. The article provides a comprehensive examination of the insect’s biology and ecology,
highlighting influential factors. A summary of the research performed on the interspecific interaction
of C. ferrugineus with other organisms has also been presented. Mathematical models focusing on
population dynamics and movement behavior are also presented. Finally, the article outlines the
potential directions for future work, aiming to deepen our understanding of C. ferrugineus and aid in
the development of improved management strategies.

Abstract: Cryptolestes ferrugineus, the rusty grain beetle, is a cosmopolitan pest that has adapted to
cool and warm climates due to its unique biology, ecology, and behavior. The rusty grain beetle is a
pest of high economic importance; hence, understanding their biology, ecology, and behavior could
be useful in designing effective management strategies. An extensive literature survey was conducted
using the databases Web of Science and Scopus. Information on country-wise publications from 1949
to 2023 on C. ferrugineus was provided, and a table illustrating the distribution of C. ferrugineus was
also presented to demonstrate the global significance of C. ferrugineus. We overviewed their life stages,
morphology, and factors influencing their biology, ecology, and behavior, such as refuge-seeking
behavior, flight activity, mating behavior, interspecific interaction with other species, movement, and
distribution. Mathematical models focusing on C. ferrugineus population dynamics and movement
were also presented. In order to advance our knowledge on C. ferrugineus, the following possible
avenues for future research were outlined: application of molecular markers and population genetic
approaches to understand their evolutionary history; mechanisms responsible for adaptation and
resistance to insecticide; interspecific interaction in storage facilities and wider landscapes; and
identification of microbial roles in the ecology, behavior, and control of C. ferrugineus.

Keywords: Cryptolestes ferrugineus; rusty grain beetle; stored grain pest; biology; ecology

1. Introduction

The rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloei-
dae), is considered a significant threat to the global food supply chain, causing significant
economic losses and food waste. The insect is known for its reddish-brown coloration,
adaptability to wide environmental conditions, cosmopolitan nature, unique behavior,
and reproductive capabilities. Despite its importance, a comprehensive publication on the
biology, ecology, and behavior of C. ferrugineus is currently lacking in the literature. In
1949, Rilett [1] summarized the biology of C. ferrugineus in detail. In 2009, Jian and Jayas [2]
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provided a detailed review focusing mainly on the movement of the insect. Several aspects
of its behavior have been explored by various researchers around the world. Hence, the
current review aims to summarize the relevant literature on the biology and ecology of
C. ferrugineus to provide a detailed comprehension of one of the most important pests in the
world. The information presented in this review will be useful for researchers, pest man-
agement professionals, and policymakers to develop effective and sustainable strategies to
control the pest and reduce economic losses and food waste.

2. Literature Survey and Geographical Distribution

The review of literature was conducted using the databases Web of Science and
Scopus with search terms such as “Rusty grain beetle”, “Cryptolestes ferrugineus” and
“Laemophloeus ferrugineus”. On 1 January 2023, a total of 380 and 412 articles (in English
and other languages, such as Chinese, Czech, French, German, Portuguese, Russian, and
Turkish) were retrieved from the Web of Science and Scopus databases, respectively. The
articles from both sources were merged, and the duplicates were removed. A total of
483 distinct research publications from 1949 to 2023 were compiled. To categorize the
country of investigation, the affiliation of the authors was taken into consideration. For an
article with authors from multiple countries, the country of the first author was assumed.
From Figure 1, it can be observed that most of the literature on C. ferrugineus was published
in Canada (171), followed by the U.S. (80) and the UK (47). The surge in the number of
publications on C. ferrugineus over the years (Figure 2) highlights the economic importance
of this insect. Even though a literature search in well-known and reputable databases
like Web of Science and Scopus is a valid approach for conducting a systematic review,
restricting a literature search to Web of Science and Scopus may introduce some bias. The
additional literature that is not included in Web of Science and Scopus has been retrieved
from Google Scholar and cited appropriately in the current article.

Insects 2023, 14, x FOR PEER REVIEW 2 of 31 
 

 

1949, Rilett [1] summarized the biology of C. ferrugineus in detail. In 2009, Jian and Jayas 
[2] provided a detailed review focusing mainly on the movement of the insect. Several 
aspects of its behavior have been explored by various researchers around the world. 
Hence, the current review aims to summarize the relevant literature on the biology and 
ecology of C. ferrugineus to provide a detailed comprehension of one of the most important 
pests in the world. The information presented in this review will be useful for researchers, pest 
management professionals, and policymakers to develop effective and sustainable strategies 
to control the pest and reduce economic losses and food waste. 

2. Literature Survey and Geographical Distribution 
The review of literature was conducted using the databases Web of Science and Sco-

pus with search terms such as “Rusty grain beetle”, “Cryptolestes ferrugineus” and “Lae-
mophloeus ferrugineus”. On 1 January 2023, a total of 380 and 412 articles (in English and 
other languages, such as Chinese, Czech, French, German, Portuguese, Russian, and Turk-
ish) were retrieved from the Web of Science and Scopus databases, respectively. The arti-
cles from both sources were merged, and the duplicates were removed. A total of 483 dis-
tinct research publications from 1949 to 2023 were compiled. To categorize the country of 
investigation, the affiliation of the authors was taken into consideration. For an article with 
authors from multiple countries, the country of the first author was assumed. From Figure 
1, it can be observed that most of the literature on C. ferrugineus was published in Canada 
(171), followed by the U.S. (80) and the UK (47). The surge in the number of publications 
on C. ferrugineus over the years (Figure 2) highlights the economic importance of this in-
sect. Even though a literature search in well-known and reputable databases like Web of 
Science and Scopus is a valid approach for conducting a systematic review, restricting a 
literature search to Web of Science and Scopus may introduce some bias. The additional 
literature that is not included in Web of Science and Scopus has been retrieved from 
Google Scholar and cited appropriately in the current article. 

 
Figure 1. The number of publications on Cryptolestes ferrugineus from different countries, compiled 
using the data retrieved from 483 publications from Web of Science and Scopus from 1949 to 2023 
(as of 1 January 2023). The countries were listed based on the affiliation of the first author. 

Figure 1. The number of publications on Cryptolestes ferrugineus from different countries, compiled
using the data retrieved from 483 publications from Web of Science and Scopus from 1949 to 2023 (as
of 1 January 2023). The countries were listed based on the affiliation of the first author.



Insects 2023, 14, 590 3 of 28Insects 2023, 14, x FOR PEER REVIEW 3 of 31 
 

 

 
Figure 2. The number of publications on Cryptolestes ferrugineus at different time intervals, compiled 
using the data retrieved from 483 publications from Web of Science and Scopus from 1949 to 2023 
(as of 1 January 2023). 

The rusty grain beetle has been reported in more than 110 countries (Table 1) and can 
be found in almost any country of the world, ranging from humid to dry as well as cool 
to warm climates, due to its ability to develop in wide environmental conditions and the 
world trade. The climatic plasticity index of C. ferrugineus is 570 [3], indicating its remark-
able ability to adapt to changes in environmental conditions. Among the 195 countries 
listed in FAO [4], we could not find the sources to confirm the presence of C. ferrugineus 
in 82 countries on different continents, such as Africa (19), Asia (18), Europe (12), North 
America (12), South America (5), and Oceania (15). Considering the nature of C. ferrugi-
neus, it could possibly be established in most of those countries as well. In countries like 
Canada with cold winters, the establishment of other stored grain pests was limited. How-
ever, C. ferrugineus has been identified as one of the major grain pests in western Canada 
since the early 1940s. The species has been found in Roman archaeological excavations in 
England and Israel [5]. Since it is widely distributed in the world, researchers have exten-
sively explored its ecology, behavior, and control techniques. 

Even though C. ferrugineus can develop on botanicals such as Pimpinella anisum (L.) 
(anise), Hibiscus sabdariffa (L.) (roselle), Coriandrum sativum (L.) (coriander), Matricaria 
chamomilla (L.) (chamomile), Glossostemon bruguieri (Desf.) (mogat), and Origanum ma-
jorana (L.) (marjoram), it thrives in stored grain [6]. Cryptolestes ferrugineus mainly infests 
the following stored products: wheat, maize, barley, sorghum, oats, flour, groundnuts, 
beans, cassava, rice, sunflower seeds, palm kernels, cacao beans, and cotton seeds. They 
are found in farms, maltings, mills, warehouses, storage bins, and other storage structures 
[7]. At their optimum temperature (33 °C) [3], Cryptolestes ferrugineus can rapidly multiply 
and damage the grain, leaving the hollow grain kernels as leftovers. 

  

Figure 2. The number of publications on Cryptolestes ferrugineus at different time intervals, compiled
using the data retrieved from 483 publications from Web of Science and Scopus from 1949 to 2023 (as
of 1 January 2023).

The rusty grain beetle has been reported in more than 110 countries (Table 1) and
can be found in almost any country of the world, ranging from humid to dry as well as
cool to warm climates, due to its ability to develop in wide environmental conditions
and the world trade. The climatic plasticity index of C. ferrugineus is 570 [3], indicat-
ing its remarkable ability to adapt to changes in environmental conditions. Among the
195 countries listed in FAO [4], we could not find the sources to confirm the presence of
C. ferrugineus in 82 countries on different continents, such as Africa (19), Asia (18), Europe
(12), North America (12), South America (5), and Oceania (15). Considering the nature
of C. ferrugineus, it could possibly be established in most of those countries as well. In
countries like Canada with cold winters, the establishment of other stored grain pests was
limited. However, C. ferrugineus has been identified as one of the major grain pests in
western Canada since the early 1940s. The species has been found in Roman archaeological
excavations in England and Israel [5]. Since it is widely distributed in the world, researchers
have extensively explored its ecology, behavior, and control techniques.

Even though C. ferrugineus can develop on botanicals such as Pimpinella anisum (L.)
(anise), Hibiscus sabdariffa (L.) (roselle), Coriandrum sativum (L.) (coriander),
Matricaria chamomilla (L.) (chamomile), Glossostemon bruguieri (Desf.) (mogat), and
Origanum majorana (L.) (marjoram), it thrives in stored grain [6]. Cryptolestes ferrugineus
mainly infests the following stored products: wheat, maize, barley, sorghum, oats, flour,
groundnuts, beans, cassava, rice, sunflower seeds, palm kernels, cacao beans, and cotton
seeds. They are found in farms, maltings, mills, warehouses, storage bins, and other storage
structures [7]. At their optimum temperature (33 ◦C) [3], Cryptolestes ferrugineus can rapidly
multiply and damage the grain, leaving the hollow grain kernels as leftovers.
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Table 1. Countries where Cryptolestes ferrugineus has been recorded.

Countries References

Afghanistan [8,9]
Algeria [7,9]
Angola [10]

Argentina [7,9]
Armenia [9]
Australia [7,11,12]
Austria [9,13]

Azerbaijan [14]
Bangladesh [9,15,16]

Belarus [17]
Belgium [9,18,19]

Belize [7]
Benin [20,21]

Botswana [22]
Brazil [7,23]

Bulgaria [24]
Burkina Faso [25,26]
Cabo Verde [27]
Cameroon [28]

Canada [7,9,29–31]
Chad [32]
Chile [9]
China [7,33]

Colombia [34,35]
Congo [9]

Costa Rica [36]
Cote d’Ivoire [28,37]

Croatia [38]
Cuba [39]

Czech Republic [9,40,41]
Denmark [9,42]

Dominican Republic [28]
Ecuador [9,15]

Egypt [6]
El Salvador [43]

Estonia [44]
Ethiopia [9,15,45]
Finland [9,44]
France [46]

Gambia [7]
Germany [9,47]

Ghana [9,26,48,49]
Greece [9,50,51]
Guinea [52]
Guyana [7,9]

Hungary [53]
Iceland [54] recited from [55]
India [9,56]

Indonesia [57]
Iraq [58] recited from [59]
Iran [9,60]

Ireland [61]
Israel [9]
Italy [62]

Jamaica [7]
Japan [9,63,64]
Jordan [65]

Kazakhstan [66]
Kenya [7,9,15,67]
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Table 1. Cont.

Countries References

Lithuania [9,68]
Luxembourg [44]
Madagascar [9]

Malawi [7,9]
Malaysia [7,9]

Mali [9,12]
Malta [69]

Mexico [9,70,71]
Montenegro [44]

Morocco [7,9]
Mozambique [72]

Myanmar [7]
Namibia [73]

Nepal [74]
Netherlands [9,75]

New Zealand [7,76]
Nicaragua [9,15,77]

Niger [21]
Nigeria [9,78,79]
Norway [9,44]
Pakistan [9,80]

Peru [7,9,15]
Philippines [9,15]

Poland [9,81]
Portugal [7,9,44]

Republic of Korea [82]
Republic of Moldova [83]

Russia [7,9,84]
Saudi Arabia [9,15,45]

Senegal [85]
Sierra Leone [9,15]

Singapore [7,9,45]
Slovakia [9]
Somalia [9,86]

South Africa [7,9]
Spain [9,87,88]

Sri Lanka [7,9,89]
Sudan [7,9,12,45]

Sweden [9,90]
Switzerland [9,44]

Tanzania [7,9]
Thailand [7]

Timor-Leste [91]
Togo [26]

Tunisia [7,9]
Turkey [92–94]
Uganda [9]
Ukraine [68,95]

United Arab Emirates [9]
United Kingdom [96,97]

United States of America [98–101]
Uruguay [7,9]
Vietnam [9,102]
Yemen [9,15]
Zambia [7]

Zimbabwe [7,9,103]
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3. Taxonomic Hierarchy, Identification, and Synonyms

The rusty grain beetle, also known as the rust-red grain beetle or flat grain beetle, was
initially described by James Francis Stephens in 1831 under the name Cucujus ferrugineus.
Cryptolestes was listed as a subgenus under the genus Laemophloeus, and the insect was
referred to as Laemophloeus ferrugineus (Stephens) by Leng, whereas Casey claimed that
Cryptolestes could be referred to as an individual genus due to its distinct nature, which
was agreed upon by other researchers such as Sheppard [1]. Available synonyms are
Cucujus monilicornis (Stephens, 1831), L. concolor (Smith, 1851), L. obsoletus (Smith, 1851),
L. carinulatus (Wollaston, 1877), L. emgei (Reitter, 1887), and L. alluaudi (Grouvelle, 1906) [104].
In the mid-20th century, researchers often used L. ferrugineus (Stephens). Currently,
Cryptolestes ferrugineus (Stephens) is widely used.

The order, suborder, infraorder, superfamily, family, genus, and species of rusty grain
beetle are Coleoptera, Polyphaga, Cucujiformia, Cucujoidea, Laemophloeidae,
Cryptolestes, and Cryptolestes ferrugineus, respectively [105]. There are about 50 species in the
genus Cryptolestes Ganglbauer, 1899, but only nine are considered pests of stored products:
C. capensis Waltl, 1834; C. cornutus Thomas and Zimmerman, 1989; C. divaricatus Grouvelle,
1898; C. ferrugineus; C. klapperichi Lefkovitch, 1962; C. pusillus Schönherr, 1817; C. pusilloides
Steel and Howe, 1952; C. turcicus Grouvelle, 1876; and C. ugandae Steel and Howe, 1952.
Differentiation of C. ferrugineus from other Cryptolestes spp. could be performed by identify-
ing the morphological differences in those species as listed in Table 2. Different Cryptolestes
species could also be differentiated by examining their genitalia. For instance, the accessory
sclerite in male C. ferrugineus is intricately connected to the two robustly sclerotized lobes
located at the posterior end of the aedeagus, whereas other species like C. capensis exhibit
relatively weaker sclerotization of these lobes. The sclerotization of the posterior lobes of
the aedeagus in C. ugandae, while not as pronounced as in C. ferrugineus, is still visible [106].
Moreover, several researchers [107–109] proposed the identification of different species of
Cryptolestes (C. ferrugineus, C. pusillus, C. turcicus, C. pusilloides, and C. capensis) based on
the mitochondrial cytochrome c oxidase subunit I (COI) barcode region.

Table 2. Identification of different species of Cryptolestes [104,110].

Part Cryptolestes ferrugineus Cryptolestes pusillus Cryptolestes turicicus

Antennae Subequal in male and female; half
as long as the body

Longer in males than females;
two-third length as their body

Longer in males than females;
equal to or longer than their body

External mandibular tooth Present in male Absent in male Absent in male

Head Transverse ridge near dorsal
posterior margin is absent

Transverse ridge near dorsal
posterior margin is present

Transverse ridge near dorsal
posterior margin is present

Pronotum Narrowed posteriorly, especially
in males

Transverse, slightly narrowed
posteriorly in males Nearly quadrate

Number of rows of setae between
first and second and between
second and third elytral striae

Four Four Three

4. Biology and Development
4.1. Life Stages

Cryptolestes ferrugineus is holometabolous, which implies they undergo complete
metamorphosis and consist of four life stages, namely egg, larva, pupa, and adult.

a. Egg

The female Cryptolestes ferrugineus deposits eggs in small gaps in the grain kernels (under
the outer layer of the seed coat), between the grain kernels, in small crevices or fractures in any
structures, or in debris with the help of their substitutional ovipositor. Those caudal segments
are generally retracted in the abdomen. During oviposition, those segments protrude out to
facilitate the placement of the egg at a suitable location. The styli aid in the suitable orientation
of the egg. Each female could lay about 200 to 500 eggs [111]. The eggs appear to be white
and moderately translucent, with length and width in the range of 0.68 to 0.81 mm and 0.20
to 0.30 mm, respectively. The eggshell, after hatching, has a distinct iridescence [1].
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b. Larva

Once the egg is ready to hatch, the larva breaks the eggshell (termed ‘chorion’) through
a series of movements. The larva continuously produces those movements until its head
emerges from the egg. Then, the larva crawls out of the eggshell with the help of its legs and
a series of to-and-fro movements. Then, the larva starts its exploration of food. The larva
mainly feeds on the germ portion of the wheat but also feeds on the endosperm during
germ scarcity. The amount of food consumed depends on the environmental conditions.
Under suitable conditions, the larva stays inside a kernel of wheat and forms a burrow
through the consumption of wheat germ. It ejects the fecal material and molted exuviae
through the opening created by the female adult during oviposition or by the larvae to enter
the wheat germ [1]. The size of the larva ranges from 1 to 4 mm [111]. The average length
of the larval stage varies under varying physical, environmental, and ecological stresses.
For instance, the average length of C. ferrugineus larval stages was 56, 50, 36, and 21.8 days
(d) in white flour, bran, wheat without germ, and wheat with germ, respectively [1].

There are four instars for C. ferrugineus larvae, which implies that they molt four times
and become pupae after the fourth molting. The first, second, third, and fourth instar larval
stages last about three to four, two to five, two to five, and five to eight days, respectively,
at suitable conditions. The first instar larva is white in color, whereas the fourth instar larva
becomes light tan in color. At the end of the abdomen of the fourth-instar larvae, caudal hooks
are present, which aid in the backward movement of the larvae. The mouth parts of larvae and
adults are similar. On evaluating the bioenergetics of C. ferrugineus, Campbell and Sinha [112]
reported that the immature stages assimilated about 66% to 79% of the food consumed. They
also reported that during development, the proportion of assimilated energy converted into
tissue growth/biomass ranged from 3% (early first-instar larva) to 23% (older larva).

Before entering the next stage of development, the fourth-instar larva enters the
burrow of the wheat and seals the burrow using debris and excrement through silken
threads. Sometimes, they also pupate in other locations, such as crevices or the space
between grain kernels. Two papillae, which are slightly and distinctly noticeable in the
third and fourth instars, respectively, were reported to be responsible for the silk thread
formation [1]. Compared with other Cryptolestes species such as C. turcicus, which can
produce tough silk strong enough to produce a cocoon, C. ferrugineus forms fragile silk,
which can only hold debris, bran, and excrement in place [113].

c. Pupa

Initially, the pupa is white, and over time, it turns into a light tan color with a triangular
shape to some extent. The eyes of the pupae are dark brown in color [1]. The pupal stage
lasts about three to six days at 32 ◦C and 75% relative humidity (RH).

d. Adult

The adult that emerged from the pupa is light tan in color, which turns into a rusty
brown color in one or two days (Figure 3). Immediately after emergence, the membranous
pair of wings are stretched for a short duration, after which they fold beneath the elytra.
The length of the adult is in the range of 1.70 to 2.34 mm, and the antennal length ranges
from 0.70 to 1.14 mm [114]. A day or two after emergence, the adults start mating, the
oviposition begins, and the cycle continues. The mean life span of adults ranges from 12
to 32 weeks (wk) depending on the density, feed, and sex ratio [115]. White and Bell [115]
reported that the isolated virgin adults have a greater life span than the mated adults. The
female:male sex ratio of C. ferrugineus adults was reported to be 1:0.64 [1] and 1:0.69 [116]
on wheat and 1.1:0.8 on dates [59]. The longevity of female C. ferrugineus is longer than that
of males [117]. Vendl et al. [118] studied the tarsal and inter-claw adhesive structures of
C. ferrugineus using a scanning electron microscope and reported the following observations:
(1) the length-to-width ratio of tarsi is about 9.5; (2) the first tarsomere is short and small (al-
most the same shape as the next tarsomere); (3) the last tarsomere is the longest among other
tarsomeres; (4) the ventral side of the tarsomeres and the pre-tarsi do not have any adhesive
structures; (5) a pair of apical setae on the unguitractor is present; (6) the lateral margin of
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the terminal tarsomere contains two pairs of setae, whereas the medial part of the ventral
side of the margin is trapezoidal. The absence of adhesive structures in the tarsomeres is
responsible for this species’ inability to climb inclined and smooth surfaces. The researchers
compared the claw shapes of C. ferrugineus and Oryzaephilus surinamensis (L.) and reported
that both species had similar claw shapes; however, the claws of C. ferrugineus were com-
paratively sharper and shorter (with a radius of 1.17 µm) than those of O. surinamensis
(with a radius of 1.63 µm). This implies that C. ferrugineus has adapted its morphology to
move over rough surfaces with smaller irregularities.
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4.2. Sexual Dimorphism

Male and female C. ferrugineus can be differentiated by observing their genitalia
(Figure 4). The tarsi of female C. ferrugineus are all five-segmented (with tarsal formula
5-5-5), whereas those of males are four- and five-segmented (with tarsal formula 5-5-4). On
the other hand, in females, the styli are present on the ninth abdominal segment, whereas
they are absent in males. The male C. ferrugineus has a larger head and a wider thorax than
the female [1]. A sex difference is observed in the mandibles. Precisely, the male mandible
has a toothlike projection on the lateral ventral side near the base, while the female does
not have the projection [1,119]. Chambers et al. [120] reported that the sexual differences of
C. ferrugineus could also be identified based on the electroantennogram responses of the
adults and showed greater electroantennogram amplitude in females than males towards
the synthetic samples of the macrocyclic lactones containing aggregation pheromones.
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4.3. Effects of Various Environmental Parameters on the Biology of Cryptolestes ferrugineus

The development time, oviposition rate, and life span of the adults depend on various
environmental, physical, and ecological factors such as temperature, RH, availability of
food, type of food, pesticide exposure, presence of predators or parasitoids, and genetics.
For instance, during the first 30 d of adult life at 30 ◦C and 70% RH, the average oviposition
rate of C. ferrugineus females is 7.5 and 5.6 eggs/d in flour and wheat kernels (moisture
content 16 to 18%) consisting of 3% (weight basis) flour, respectively [122]. At most temper-
atures, temperature has the highest relative influence on insect development, followed by
moisture and diet; near the optimal temperature, moisture and diet have a stronger effect
on larval development than temperature [123]. Table 3 lists the development period of
C. ferrugineus at various temperatures, RH, and food sources.

Table 3. Development period of C. ferrugineus at different temperatures, relative humidities, and
food sources.

Food Source Temperature (◦C) Relative Humidity (%) Development Period
(Days) References

Whole maize grain
32 ± 1 75 ± 2

51.20
[124]Broken maize 58.40

Maize flour 56.10

Ground wheat: Germ (4:1, w/w) 30 ± 1 75 ± 5 28.05 [125]

Wheat germ

21.1

75

64.2

[1]

26.7 27.4
32.2 20.5
37.8 21.0

32.2

50 32.41
65 26.60
75 21.70
90 20.84

100 20.33

Half-kernel of wheat split
longitudinally, and a portion of
germ remained on each piece

32.2

60 27.0

[117]
70 27.5
80 24.0
90 23.0

4.3.1. Temperature

Al-Salihi and Al-Azawi [59] reported that the duration is 3.2 d for eggs with a hatching
rate of 96.8%, 70.3 d for larvae, 3.6 d for the pre-pupal stage, 6.1 d for the pupal stage, and
186 d for adults at 30 ◦C and 70% RH. One female can lay 558 eggs. The developmental
temperature and RH range from 20 to 40 ◦C and 40 to 95%, respectively [3]. The optimal
temperature and RH are 33 ◦C and 70 to 80%, respectively [3], whereas the preferred
temperature (the temperature towards which the insects move) is 30 to 36.5 ◦C [126].
Cryptolestes ferrugineus can also develop at temperatures ranging from 20 to 42.5 ◦C [127].
The intrinsic rates of natural increase of C. ferrugineus were the highest at 35 ◦C and 90%
RH and the lowest at 20 ◦C and 70% RH [128]. At 42.5 ◦C, larval and pupal mortality were
98% [128]. Cryptolestes ferrugineus is one of the most cold-tolerant species, with the adult
being the most cold-hardy stage [129]. Cryptolestes ferrugineus adults, after being acclimated
to temperatures of 18, 10, and 5 ◦C for one week at each temperature, took about 58 d at
−10 ◦C to reach 95% mortality, whereas C. turcicus and C. pusillus reached 95% mortality
at 39 and 11 d, respectively [130]. At temperatures below 23 ◦C, the rate of reproduction
decreases; at temperatures below 21 ◦C, the insects cannot fly [109]. On the other hand,
Cox and Dolder [131] reported that the minimum temperature for C. ferrugineus flight was
20 ◦C, whereas in laboratory-cultured strains for a period of over 20 years, one insect was
reported to fly at 17.5 ◦C. Cryptolestes ferrugineus does not lay eggs below 17.5 ◦C [128].
Under suitable environmental conditions (at 32 ◦C and 75% RH), the eggs hatch in three
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to four days [1]. Eggs do not hatch below 15 ◦C [132]. Ashby [133] reported that the rate
of respiration and development of C. ferrugineus proportionally increased with the rise in
temperature, in the range of 21 to 33 ◦C. The development rate of C. ferrugineus eggs is
linearly related to temperature (T) (Egg development rate, D = 0.0169–0.258 T) [132].

Temperature is one of the main factors that influences the population dynamics of
C. ferrugineus [134]. An extensive review of the application of temperature to control stored
product insects is available [135]. At −10 ◦C, the LT50 (lethal time for 50% of a population)
values for egg, young larva, old larva, pupa, and adult were reported to be 8, 4, 16, 11, and
91 h, respectively [130].

Acclimation

Acclimation is one of the important parameters that determines the cold tolerance
levels of insects, in addition to influencing their behavior, survival, growth, and multi-
plication. In cold-acclimated C. ferrugineus, trehalose and amino acids including proline,
asparagine, valine, lysine, leucine, isoleucine, alanine, phenyl alanine, glutamic acid, and
aspartic acid, as well as phosphoethanolamine (a phospholipid precursor), were higher
than in unacclimated C. ferrugineus [136]. Furthermore, the acclimation increased the mean
fresh weights of C. ferrugineus [137]. The acclimation temperature was found to affect the
behavior of C. ferrugineus more than the exposure time [138]. When acclimated to low
temperatures (15 to 5 ◦C) for some time, most stored-product insects were found to increase
their cold tolerance by 2 to 10 times [135]. The acclimated C. ferrugineus was reported to be
more cold-hardy than the non-acclimated ones [139]. Precisely, C. ferrugineus acclimated
at 15, 10, and 5 ◦C consecutively for two weeks at each temperature had LT50 and LT90
(lethal time for 90% tested individuals) of 24 and 42 d, respectively, at −10 ◦C, whereas
unacclimated C. ferrugineus had LT50 and LT90 of 1.4 and 2.7 d, respectively, at the same
temperature [136]. Smith [129] reported that the LT50 values of acclimated adults increased
by 9 and 56 times, respectively, at −6 and −12 ◦C compared with the unacclimated adults.
In addition, the supercooling points of C. ferrugineus adults were −16.5, −20, and −21 ◦C
for unacclimated, acclimated at 15 ◦C, and acclimated at 15 ◦C followed by acclimation
at 4 ◦C, respectively. The mean survival times of C. ferrugineus directly transferred to
9 ◦C from warmer temperatures (30 or 32 ◦C) were 4.3 weeks, whereas the mean sur-
vival times of those acclimated (about 4.5 ◦C/week) to 9 ◦C were 7.6 weeks [140]. Burks
and Hagstrum [141] examined the rapid cold hardening ability of five different species
(C. ferrugineus, O. surinamensis, Rhyzopertha dominica (Fabricius), Sitophilus oryzae (L.), and
Tribolium castaneum (Herbst)) and reported that C. ferrugineus is more capable of rapid cold
hardening than other tested species.

4.3.2. Moisture Content

Damper grains facilitate more convenient feeding than dry grains for C. ferrugineus.
The development of C. ferrugineus is limited when the moisture content of the grain or
RH is below 12% or 40%, respectively [111]. The intrinsic rates of natural increase of
C. ferrugineus were almost the same at 70 and 90% RH, whereas they were the lowest at 40%
RH [128]. Similarly, Evans [140] reported shorter insect survival at 45% RH than at 70% RH.
Throne [142] studied the progeny of C. ferrugineus at different moisture contents (11.3, 12.4,
and 14.8% at 43, 56, and 75% RH, respectively) and reported that the number of offspring
produced on damaged grain increased linearly with moisture content. Similarly, Throne
and Culik [143] reported that the corn maintained at 75% RH showed higher progeny
production and lower development time for C. ferrugineus when compared with those at
43% RH. Bishop [117] reported that the egg production and longevity of C. ferrugineus
increased with an increase in RH. However, compared with C. minutus and C. turcicus,
C. ferrugineus was less sensitive to 40% RH at 32.2 ◦C [117]. Kawamoto et al. [132] studied
the mortality and development of C. ferrugineus eggs at different RH (50, 60, 70, 80, and
90%) and reported that RH does not affect the mortality and development of eggs. With
an increase in temperature from 25 to 35 ◦C, the effect of RH on C. ferrugineus rate of
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oviposition was reported to be more pronounced [128]. Cryptolestes ferrugineus adults
preferred to lay eggs in damper grain (18% moisture content) to drier grain (14% moisture
content) [144]. They preferred the drier region (70% RH) to the moister region (85% RH) in
the absence of grain, whereas within a grain bulk, adults accumulated in the pockets of
damp grain [144].

4.3.3. Diet

Although C. ferrugineus primarily feeds on germ and is considered a secondary pest,
it is capable of infesting grain kernels with broken seed coats that are present in a sound
grain mass [3]. The type and quality of food greatly influence the survival, growth, and
multiplication of C. ferrugineus. However, certain studies found contradictory results
regarding the suitability of diets for C. ferrugineus. Larvae of C. ferrugineus have better
survival and faster development in a wheat kernel with a germ than those without a germ
or on bran or white flour [1]. Moreover, the oviposition rate on whole-wheat flour was
greater than wheat kernel at all tested densities (4, 16, and 64 pairs per vial), except for one
pair per vial [145]. Tuff and Telford [146] reported that C. ferrugineus was not able to invade
sound kernels, whereas it could infest seeds with damaged grain coats. Similarly, Throne
and Culik [143] reported higher progeny production and decreased development duration
on cracked corn compared with undamaged kernels. However, the level of cracking on the
corn did not significantly affect the survival of the immature stages of C. ferrugineus [147].
Shufran et al. [148] performed a laboratory experiment on the host suitability of pecan and
wheat for various stored-product insects and reported that C. ferrugineus were observed to
produce more immatures on unsorted pecan, cracked pecan, and nutmeats than on in-shell
pecan; however, only fewer adults were observed on different types of pecans than wheat.
This implies that pecans lack certain dietary requirements for C. ferrugineus. White and
Loschiavo [149] reported that the slower developmental time and higher larval mortality
of C. ferrugineus on oats compared with wheat were due to the nutritional insufficiency
and unpalatability of oats. Even though C. ferrugineus can survive on hemp seed and its
dockage, it does not flourish [150]. Also, C. ferrugineus prefers wheat kernels as compared
with canola and rapeseed [151]. Durum Kyle, Coulter, and Medora are suitable wheat
varieties for the oviposition and development of C. ferrugineus [149]. Jagadeesan et al. [152]
evaluated the suitability of nineteen grain-based diets on the number of live adult progeny
developed and concluded that diets containing (a) barley flour, (b) rolled oats and cracked
sorghum, (c) wheat flour and barley flour, and (d) cracked sorghum alone resulted in
higher progeny production of laboratory strains, whereas diets containing (a) rolled oats
and cracked sorghum, (b) wheat flour and barley flour, and (c) barley flour alone were
suitable for field-collected strains. They also reported that diets containing cracked sorghum
were better than those containing cracked maize or wheat. The reason might be that the
laboratory strain used was cultured in a diet containing rolled oats, cracked sorghum, and
yeast for five generations prior to the experiment; furthermore, the insects were collected
from stored sorghum. They hypothesized that the literature published on the successful
culturing of C. ferrugineus on corn [143,147] could have been collected from stored maize.
The diet also influences the cold tolerance of C. ferrugineus. For instance, the LT50 of C.
ferrugineus adults at −10 ◦C in grain, flour, and Brewer’s yeast and flour alone were 104,
79, and 42 h, respectively, and the supercooling points were −20.6, −22.9, and −19.4 ◦C,
respectively [130].

Cryptolestes ferrugineus feeds on certain fungal species as supplementary or alternative
food sources. Nevertheless, in the absence of grain, C. ferrugineus feeds mainly on fungi.
Sinha [153] reported that C. ferrugineus completed its development on 10 species of fungi
(Absidia orchidis (Vuill.) Hagem, Alternaria tenuis sensu Wiltshire, Curvularia tetramera
(McKinney) Boedijn, Fusarium moniliforme Sheld, Helminthosporium sativum P., K., and
B., Mucor sphaerosporus Hagem, Nigrospora sphaerica (Sacc.) Mason, Penicillium cyclopium
Westl., Stemphylium botryosum Wallr, and Trichothecium roseum Lk., among 23 species tested.
The shortest and longest developmental periods were about 22 and 34 d, respectively, on
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T. roseum and F. moniliforme. Similarly, Loschiavo and Sinha [154] studied the oviposition,
feeding, and aggregation of C. ferrugineus in the presence of different species of seed-borne
fungi and revealed that N. sphaerica, M. sphaerosporus, Hormodendrum cladosporiodes (Fres.)
Sacc., and C. tetramera were the most suitable fungi for oviposition and feeding. The
differences in responses of C. ferrugineus were observed for different species from the same
genus. For instance, P. terrestre was not suitable for oviposition and feeding, whereas P.
cyclopium and P. funiculosum were moderately suitable. On the other hand, C. ferrugineus was
observed to feed moderately on Aspergillus flavus and did not lay eggs; however, they were
observed to lay a few eggs and feed slightly on A. fumigatus. Aggregation of C. ferrugineus
was observed on grain kernels containing mycelia and spores of N. sphaerica [154].

Overall, C. ferrugineus can feed on more than 65 commodities, including but not limited
to wheat, paddy, sorghum, barley, flax, black pepper, cocoa bean, coffee bean, cassava root,
palm kernel, peanut, chili, hemp, sunflower seed, oat, bamboo leaf (dried), bark, animal
feed, beam cake, wheat flour, wheat product, barley (pearl), yam, rice, cashew, raisin, date,
fennel seed, fig, broad bran, cassava root flour, chili pod (dried), peanut product, soybean
paste, and vegetable (preserved) [155], but do not actively multiply on products such as
wood, fiber, and textile.

4.3.4. Insect Density

Crowding plays a significant role in the population dynamics of C. ferrugineus since
crowding can encourage fighting and cannibalism, which results in high egg damage and
high mortality [134]. At 30 ◦C and 70% RH, the number of eggs produced per female per
day was 6.4 and 1.5 when 1 and 64 pairs of adults, respectively, were present in a vial
containing 0.5 g flour, whereas in a 1 g wheat kernel, the number of eggs produced per
female per day was 5.6 and 0.75 in the presence of 1 and 64 pairs of adults, respectively [145].
Development times (egg to adult) on 0.5 g flour were 24 and 87.1 d, with an initial larval
count of 1 and 32, respectively, per vial. Smith [145] also found that the mortality of the
insects increased with density. White and Bell [115] reported that the amount of energy
outflow and the physical injury during copulation affect the survival of insects at different
densities and at different sex ratios. Studies on the population dynamics of C. ferrugineus
revealed that the population dynamics of the species are influenced by patch size and
temperature [134,156]. Moreover, they also reported that the total insect number and kernel
infestation percentage were positively correlated. All these studies concluded that density
affects the oviposition, development, and mortality of C. ferrugineus.

5. Ecology and Behavior
5.1. Refuge-Seeking Behavior

Some of the review articles covered the refuge-seeking behavior of stored grain in-
sects [157,158]. Refuge-seeking behavior is the ability of the stored grain pests to hide in
the structural cracks and crevices of the storage structure, which contain grain residues.
The refuge provides food and shelter to the insects, in addition to protecting them from
insecticide treatments. The hidden insects emerge and reinfest nearby grain when the
conditions are favorable. Even in the absence of food, C. ferrugineus was reported to be
attracted to the refuge, possibly for the physical contact around their bodies. This could
also be the reason for their occurrence near the container boundary during laboratory
experiments [159].

On analyzing the samples obtained from structural cracks and surfaces from 34 empty
storage structures in the Prairie provinces of Canada (Manitoba, Saskatchewan, and Al-
berta), C. ferrugineus was identified in 36% of the sampled structures [29]. The effects
of different temperatures, refuge contents, food availability, and different strains on the
refuge-seeking behavior of C. ferrugineus have been evaluated by Cox et al. [160] and Cox
and Parish [159]. Cox et al. [160] observed the refuge-seeking behavior of different strains
of C. ferrugineus at different temperatures (15, 20, 25, and 30 ◦C) and reported that about
45% and 20–30% of the insects were found to remain inside the refuge at the end of 2 wk
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for C. ferrugineus strains that were reared in the laboratory for over 25 years (yr) and those
obtained from grain stores and mills in the UK, respectively. Moreover, they also observed
that the refuge-seeking behavior of different strains of C. ferrugineus varied with varying
temperatures. The refuge-seeking behavior of C. ferrugineus females was greater than that
of males, and that of adults 0–3 wk old was greater than that of 10–12 wk and 16–18 wk old
adults [161]. This was because the refuge would have attracted females for oviposition and
younger adults since oviposition is greater in younger adults than older ones [128].

5.2. Flight Activity

The flight activity of insects determines their ability to infest the stored grains in
different bins. The level of infestation inside a grain bin varies with the number of in-
sects immigrating into the bin. The flight activity of C. ferrugineus depends on external
factors such as air temperature, wind direction, wind speed, and day length [162,163].
During a flight activity study of C. ferrugineus in southern New South Wales, Australia,
Holloway et al. [163] observed no flight activity during the winter months (June, July,
and August). Cryptolestes ferrugineus, captured on glue boards installed in and around the
warehouses of Kansas and Nebraska, U.S., reached a peak in early September and declined
through early November [164]. Hagstrum [165] studied the immigration of insects in
34 bins with varying capacities (36 to 238 t) containing hard red winter wheat on 12 farms
from July to December 1998 in Kansas, U.S., and found the immigration of C. ferrugineus
in all the 34 bins. The drop in immigrated insect count was reported when the ambient
temperature dropped below 20 ◦C. Thus, C. ferrugineus shows seasonal variation in flight
activity and immigration. This is because the minimum temperature for their flight initia-
tion is 20 ◦C [131]. Hagstrum [99] observed the distribution of C. ferrugineus on three farms
in Kansas, U.S., and reported that most of the C. ferrugineus infestation occurred after the
grain was loaded into the bin. In addition, the number of insect counts decreased in the top
layers. Hagstrum [99] concluded that C. ferrugineus adults fly to the top of the bin and then
distribute it to other parts of the grain inside the bin.

5.3. Mating Behavior

Male and female adults of C. ferrugineus start mating within one or two days after
they emerge. When a male identifies a potential female, the male adult turns and follows
the female. Boukouvala et al. [119] performed an experiment to evaluate the lateralization
of males during courtship and mating and reported that most (41%) C. ferrugineus males
showed a left-biased approach (turning 180◦ to their left) towards females, whereas 34%,
14%, and 11% approached females from the right side, back side, and front side, respec-
tively. Moreover, they also revealed that the left-biased males showed shorter durations of
mate recognition and chasing as well as lower copulation attempt durations, with higher
successful mating attempts compared with the right-biased males. The male follows the
female by nudging the tip of the female’s abdomen with the male’s head. Once the female
stops, the male strokes the female elytra with its antenna. The male continues its efforts
to succeed by crawling on the back of the female and turning. Only the flickering of the
female’s antenna was reported during the process. Once the male and female are coupled,
the first copulation was observed to last for 105 min, followed by separation for 20 min.
Then, the second and third copulations were observed for 35 and 95 min, respectively.
During coition, the male and female are firmly attached since the aedeagus is inserted
deeply into the female’s genital tract [1].

5.4. Chemical Ecology
Pheromones

Pheromones are chemical substances produced by insects that affect the behavior
of other individuals of the same or other species. Cryptolestes ferrugineus males produce
pheromones, namely (E, E)-4,8-dimethyl-4,8-decadien-10-olide (ferrulactone I) and (3Z,11S)-
3-dodecen-11-olide (ferrulactone II) [166]. The pheromones are produced in the alimentary
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canal and/or the Malpighian tubules. Researchers have shown the possibility of isolating
the aggregation pheromones (ferrulactone I and II) from C. ferrugineus [167]. The natu-
rally produced ratio of ferrulactone I to ferrulactone II by C. ferrugineus was 1.6:1.0 [168].
Adults of mixed sex and age responded to the odor of mixed-sex adults, frass, pentane
extracts of frass, and Porapak Q-captured volatiles from adults or frass [166]. More-
over, they also observed responses from both sexes to the volatiles in males. Similarly,
Currie et al. [169] reported that in the absence of air currents and food for feeding, male
and female C. ferrugineus were attracted to a single male in an apparatus of 10 cm length;
when grain was present, a single male was not enough to attract C. ferrugineus. However, a
significant number of females were attracted to 50 males.

According to Oehlschlager et al. [170], the aggregation pheromones produced by
C. ferrugineus can act alone as well as synergistically. Moreover, the C. ferrugineus species is
not cross-attracted to the pheromones produced by other species such as Oryzaephilus mercator,
O. surinamensis, C. turcicus, and C. pusillus (Schonherr) [170]. Chambers et al. [120] analyzed
the electroantennogram (EAG) responses of the males and females of C. ferrugineus and
reported that females produced EAG with higher amplitude. Thus, the greater response of
females to the pheromones produced by males implies the importance of pheromones in
mate identification and courtship. While determining the flight activity of C. ferrugineus
in farms in south-eastern Australia, Holloway et al. [163] reported that more females
were trapped in traps with pheromone (female:male ratio of 3:1), whereas in passive trap-
ping, the female:male ratio caught was 1:1. Similarly, during a seasonal flight activity
study at grain storage sites in South Carolina, U.S., Throne and Cline [100] observed more
C. ferrugineus females at all the tested sites. These results further confirm the higher
attraction of females towards the pheromone.

5.5. Heat Production

Heat production of 4 wk old adults and second, third, and fourth instar larvae was
in the range of 0.72 to 21.47 µW/insect and 0.37 to 17.53 µW/larvae, respectively, at the
tested temperatures (15, 20, 25, 30, and 35 ◦C) and moisture contents (12, 15, and 18% wet
basis) [171,172]. The maximum rate of heat production was observed in adults over the age
of 4 wk. Cofie-Agblor et al. [171,172] also found heat production of adults: (1) varied with
insect density; (2) exponentially increased with increase in temperature from 15 to 35 ◦C;
(3) increased with increase in moisture constant; however, the rate of increase from 15 to 18%
was lower than that from 12 to 15%; and (4) increased with increase in level of wheat breakage;
however, the rate of increase from 10 to 20% breakage was lower than that from 0 to 10%.

Cryptolestes ferrugineus multiplication is associated with grain heating; however, at low
density (less than five adults/kg), they cannot initiate heating [173]. Smith [174] added
water to increase the moisture content of wheat stored in a metal granary and reported
that the increase in moisture content led to the heating of the grain as well as a rapid
increase in the C. ferrugineus population. Thus, the high multiplication of C. ferrugineus is a
consequence of grain heating and not the cause.

5.6. Movement and Distribution Inside Grain

The movement of insects inside grain can be random (non-directional) or biased
(non-random or directional). Under uniform environmental conditions, insects tend to
wander inside the grain randomly and reach biologically suitable locations. On the other
hand, individual insects move in a non-random direction in search of food, refuge, a
mating partner, to escape predators, or due to non-uniform environmental conditions in
stored grain structures [158]. The biased movement is also influenced by pheromones,
host stimuli, the presence of other organisms such as parasitoids and predators, and
other physical stimuli such as temperature, moisture content, gas concentration, dockage,
foreign materials, light, and radiation [175]. The tendency of the insects to move towards
a particular environment could be due to (a) behavioral response to physical stimuli,
(b) physical response, wherein the rate of their metabolic activities changes at different
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environments, and (c) survival response, wherein the insects avoid extreme temperatures
unsuitable for their survival, growth, and multiplication [175]. More detailed information
on the factors influencing the movement and distribution of C. ferrugineus [2] and other
stored-product insects [176] is available elsewhere. From those review articles, it can
be noted that C. ferrugineus detects cues and resources and tends to move towards an
environment for their growth and multiplication. For instance, Cryptolestes ferrugineus
adults prefer warmer grain to their surrounding cooler grain in the absence of other factors,
and the adults could detect the temperature gradient in less than 1 h [177,178]. They
detected a temperature difference of 1 ◦C in 24 h in a tested cylinder of diameter 56 cm and
height 9 cm [177]. Cryptolestes ferrugineus prefer damp and mold-infected grain rather than
dry grain since damp grain is soft and easy to oviposit into, and they could feed on the
mold itself [144]. While determining the spatial and temporal distributions of C. ferrugineus
adults inside a grain bin containing 1.5 t of wheat, Jian et al. [179] reported that the level of
aggregation decreased with an increase in insect density. This is because at lower density,
aggregation would increase their possibility of meeting mating partners. White et al. [180]
reported that C. ferrugineus adults prefer to move towards elevated carbon dioxide levels,
whereas prolonged exposure to higher levels of carbon dioxide is lethal to the insects.

The one- and two-dimensional (D) movements of C. ferrugineus have been extensively
studied at various environmental conditions, such as temperature, moisture contents, and
their gradients, in the laboratory [126,178,181–183]. Recently, Bharathi et al. [184] developed
an experimental setup consisting of 343 metal-based mesh cubes arranged inside a wooden
box to study the movement of insects in three dimensions. The researchers concluded that
the 3D movement and distribution patterns were similar to those in 1D and 2D [184,185].
However, the 3D movement of C. ferrugineus was observed only in uniform environmental
conditions. Bharathi et al. [186] observed the movement and distribution of C. ferrugineus
inside a grain bin filled with 300 t of wheat for 26 months in Winnipeg, Canada. They reported
that C. ferrugineus inside the grain bin followed a movement and distribution pattern similar
to those reported in the laboratory experiments under similar environmental conditions.
The activity of C. ferrugineus inside a 300 t wheat grain bin was reported to reduce near the
boundary when the temperature dropped during the winter (especially when the temperature
dropped below 2.5 ◦C) and resume when the temperature increased above 4.5 ◦C [186,187].

Briefly, temperature gradients and moisture differences are the predominant factors
that influence the movement and distribution of C. ferrugineus, whereas the presence of
mold, type of food, dockage, intergranular grain spaces, and ventilation are trivial factors
that influence the movement and distribution of C. ferrugineus adults [2]. Based on limited
research, the carbon dioxide gradient also seems to be a significant factor [180], but more
research is required on the movement of insects under carbon dioxide gradients. Thus,
the behavior of C. ferrugineus is the result of exploration for a location that is biologically
suitable and physically comfortable for their survival, growth, and multiplication.

6. Interaction with Other Organisms
6.1. Interspecific Interaction

The interaction of C. ferrugineus with the following stored grain insects in the lab-
oratory has been studied: C. turcicus, C. pusillus, T. castaneum, Lasioderma serriocorne,
and S. oryzae (Table 4). Few studies explored the interspecific interaction of different
stored-product insect species in field conditions. For instance, Nansen et al. [188] sampled
wheat from 129 grain silos in Kansas in 1999–2001, analyzed the densities of R. dominica,
C. ferrugineus, and T. castaneum, and reported the intra- and inter-specific interactions of
the insects. The researchers observed that the presence of C. ferrugineus reduced the den-
sity of both R. dominica and T. castaneum. However, the populations of T. castaenum and
R. dominica did not influence the insect count of C. ferrugineus. These studies imply that the
interspecific interaction of species depends on various factors such as the availability of
food, cannibalistic behavior, environmental conditions, whether the insect is a primary or
secondary feeder, and its predative nature.
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Table 4. Interspecific interaction of C. ferrugineus with other stored grain insects.

Insect Grain Experimental Conditions Observation/Conclusion Reason References

Tribolium castaneum

Wheat and wheat feed Temperature: 30 ◦C
RH: 60%

C. ferrugineus restricted the survival
of T. castaneum.

The immature stages of C. ferrugineus stay hidden under the
seedcoat, making it difficult for T. castaneum to discover them and

prey on them, whereas C. ferrugineus preys effectively on the
exposed stages of T. castaneum, such as eggs, larvae, and pupae

[189].

[190]

Ground wheat Temperature: 25 and 30 ◦C
RH: 70%

Both species were cannibalistic in nature;
however, T. castaneum adults were more
effective cannibals than C. ferrugineus.

T. castaneum adults (weighing about 2 mg) were larger in size than
C. ferrugineus (weighing about 0.2 mg). [189]

Wheat

Insect densities: 250, 500, and
1000 adults/kg

Moisture contents: 12%
Temperature: 30 ◦C

Significantly lower C. ferrugineus adult
population when reared alone, as

compared with that of the combination, at
all the tested densities.

The smaller-sized first-instar larvae of C. ferrugineus could have had
difficulty penetrating the wheat germ in dry grain, whereas, in

combination, T. castaneum could have damaged the grain and made
it easier for C. ferrugineus larvae to enter and feed.

[191]

Insect densities: 250, 500, and
1000 adults/kg

Moisture contents: 15%
Temperature: 30 ◦C

C. ferrugineus reared alone had a higher
adult population than those in

combination.

In damp grain, the larvae would have penetrated easily, and the
adults would have fed well.

Cryptolestes turcicus Wheat
feed

Temperature: 27.5 ◦C
RH: 90%

C. turcicus adult survival in the presence
of C. ferrugineus depended on the initial
number of C. turcicus, while the survival

of C. ferrugineus depended majorly on the
environment.

In the presence of C. turcicus larvae at higher density, C. ferrugineus
show delayed induction of pupation and in some cases, the delay in

pupation could lead to loss in its pupation ability. Moreover, the
metamorphosing stage of C. ferrugineus is susceptible to cannibalism

since their cocoon contains little silk and is fragile, whereas
C. turcicus forms a tough silk cocoon and is protected inside it.

[113]

Cryptolestes pusillus

- C. pusillus was attracted to the
pheromones of C. ferrugineus. - [120]

Cracked wheat or cracked
maize

Temperature: 20, 25, 30, and
35 ◦C

RH: 70%
Insect density: 20 adults/100 g

C. ferrugineus multiplied better at warmer
temperatures (30 and 35 ◦C on wheat and

35 ◦C on maize), whereas C. pusillus
multiplied better at colder temperatures

(20 ◦C).

Optimal developmental temperature range for C. ferrugineus is 20 to
42.5 ◦C, whereas for C. pusillus, it is 17.5 to 37.5 ◦C. At warmer

temperature (35 ◦C), the egg production and development rate of
C. ferrugineus are at their maximum. Moreover, the mortality of

C. pusillus at warmer temperature (35 ◦C) was higher than that of
C. ferrugineus.

[127]

Sitophilus oryzae Wheat and wheat feed Temperature: 30 ◦C
RH: 60%

The presence of C. ferrugineus in wheat
inhibited the growth of S. oryzae.

The limited resources led to competition between the species, and
C. ferrugineus could have outcompeted S. oryzae. [190]

Lasioderma serricorne (F.) Wheat and wheat feed Temperature: 30 ◦C
RH: 60%

The presence of C. ferrugineus restricted
the survival of L. serricorne in limited

wheat feed. On the contrary, the presence
of L. serricorne in wheat encouraged the

growth of C. ferrugineus.

L. serricorne is a primary pest, and C. ferrugineus is a secondary pest,
so the damage to wheat kernels by L. serricorne could have led to

easy access to food for C. ferrugineus.
[190]



Insects 2023, 14, 590 17 of 28

6.2. Nature Enemies

Wasps such as Habrobracon hebetor (Say) (Hymenoptera: Braconidae), Cephalonomia waterstoni
(Gahan) (Hymenoptera: Bethylidae), Brachymeria sp., Anisopteromalus calandrae (Howard)
(Hymenoptera: Pteromalidae), Lariophagus distinguendus (Förster) (Hymenoptera: Pteromal-
idae), Holepyris sylvanidis (Brèthes) (Hymenoptera: Bethylidae), and Theocolax elegans (West-
wood) (Hymenoptera: Pteromalidae), have been identified as parasitoids on stored grain
pests and are used as biological control agents [73,155,192,193]. Among these, the most
common parasitoid of C. ferrugineus is C. waterstoni [155]. Adult females of C. waterstoni
paralyze, feed, and oviposit on their hosts. Cryptolestes ferrugineus larvae paralyzed by
C. waterstoni cannot advance into the next developmental stage, and as a result, those larvae
are available as oviposition sites for a minimum of 2 wk [194]. Cephalonomia waterstoni has
been identified as one of the best biological control agents because it effectively follows
the kairomonal trail inside the grain [195], has the ability to feed on all larval instars,
has a generation time half that of the host, and is extremely host-specific [194]. Flinn
and Hagstrum [196] developed a model to predict the phenology of C. waterstoni and
C. ferrugineus in relation to grain temperature and reported that the effect of the parasitoid
on the host is the highest when released during the first production of fourth-instar larvae.
The combined application of an insecticide and a parasitic wasp could result in effective con-
trol of C. ferrugineus. Flinn et al. [197] reported that the combined application of transgenic
avidin maize powder and the parasitoid wasp T. elegans drastically reduced the population
of C. ferrugineus in maize compared with T. elegans alone, even though C. ferrugineus did
not grow well in maize samples as compared with other insect species considered in this
study such as S. zeamais and T. castaneum.

Mites such as Acarophenax lacunatus (Cross and Krantz) [198] and Cheyletus eruditus
(Schrank) [199] have been identified as biological control agents of C. ferrugineus.
Acarophenax lacunatus was observed to prey on the eggs and reduce the larval popula-
tion of C. ferrugineus. Thus, these parasitic mites were able to successfully reduce the
instantaneous rate of C. ferrugineus increase [200].

Entomopathogenic fungi such as Beauveria varroae, B. bassiana, and Purpureocillium
lilacinum were found to be associated with C. ferrugineus in wheat and maize samples in
Central and South Anatolia in Turkey [92]. Similarly, Wakil et al. [80] explored the naturally
occurring entomopathogenic fungi infecting stored grain insects in Punjab, Pakistan, and
reported fungal species such as Alternaria alternata, A. solani, Aspergillus flavus, A. fumigatus,
A. parasiticus, A. niger, Bipolaris oryzae, C. lunata, Fusarium oxysporium, Helminthosporium oryzae,
P. capsulatum, P. chrysogenum, Phomopsis sp., and Rhizopus stolonifers. Among the insect
species tested, C. ferrugineus (0.1% occurrence) was less affected by entomopathogenic
fungi than Tribolium castaneum (Herbst) (0.3% occurrence) and Sitophilus oryzae (L.) (0.2%
occurrence). However, C. ferrugineus eggs are resistant to B. bassiana infection [201]. In
1988, Isabelle I. Tavares identified an undescribed fungal parasite species in the genus
Dimeromyces (Ascomycetes: Laboulbeniales) on the last visible abdominal segment near
the ovipositor base of C. ferrugineus [202]. Lord et al. [203] reported that Nosema oryzaephili
microsporidia at 106 spores/g of diet resulted in about 99% infection of C. ferrugineus larvae
after three weeks of exposure.

Ünal and Koçak [204] reported the association of endosymbionts such as Wolbachia,
emphRickettsia, and Spiroplasma with C. ferrugineus. Mattesia oryzaephili and M. dispora
were reported to be two of the pathogens that infect C. ferrugineus. Lord [205] reported that
at a dose rate of 105 oocysts/g of diet, the mortality and infection rates of the fourth instar
of C. ferrugineus were higher with M. oryzaepili than with M. dispora. Thus, the presence of
these two Mattesia species could lead to a decline in C. ferrugineus populations.

7. Mathematical Models Developed

Several mathematical models, focusing primarily on the population dynamics and
movement behavior of C. ferrugineus, have been developed. Some of the models are listed in
Table 5. These models highlighted the importance of factors such as temperature, moisture
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content, and the distribution pattern of C. ferrugineus within the storage facilities. The
models also considered the effects of various environmental conditions on the survival,
development, and multiplication of C. ferrugineus, providing insight for pest management
strategies. To enhance the accuracy of predictions, a few models emphasized the incorpora-
tion of feedback mechanisms, heat production, and insect movement. Thus, these models
help us understand the complex interactions between C. ferrugineus and its environment,
facilitating the development of effective pest management strategies.

Table 5. Developed mathematical models of population dynamics and movement of Cryptolestes ferrugineus.

Model Input Parameters Highlights References

Population
dynamics -

Development and survival rate,
fecundity, and energy budget at

known environmental conditions.

• Predicted the number of insect life stages and
bioenergetic variables similar to the observed
values during population growth phase.

[206]

Potential number of
generations
simulation

Combination of population
dynamics and heat transfer

model

Initial grain/harvest temperature,
storage time, and daily ambient

temperature.

• Data from 1952 to 1990 for each crop district in
the three prairie provinces of western Canada
was used.

• The number of generations and level of infesta-
tion mainly depend on the initial storage tem-
perature.

• Using harvest temperature and date, the dis-
tricts with potential outbreaks of C. ferrugineus
could be predicted.

[207]

Spatial model
Combination of population

dynamics and bin
temperature model

Grain temperature, moisture
content, bin diameter, grain depth,

type of grain, bin wall material,
latitude, hourly temperature data,

wind speed, dew point
temperature, barometric pressure,
solar radiation, and initial insect

density (number of insects
immigrated into the bin).

• The model was validated using field data from
a bin situated in Kansas, U.S.

• The predicted grain temperatures were accu-
rate at all locations except the center-top loca-
tion.

• Due to convective air movement, the tempera-
ture at the center top portion was 8 ◦C higher
than the predicted temperature during Decem-
ber.

[208]

Hot spot model

Combination of (a) a heat
transfer model

(three-dimensional, finite
element), (b) population
dynamics model, (c) heat

production model, and (d)
insect movement model

Grain bin properties (size, shape,
emissivity), grain properties (grain

depth, temperature, moisture
content, specific heat, thermal

conductivity, and bulk density),
weather data (ambient

temperature, wind velocity, and
solar radiation), initial insect

density, and introduction location.

• Predicted the adult population, grain tempera-
ture, and location of insects, and hence the de-
velopment of hot spots.

• Center of the grain bulk was identified as be-
ing more prone to hot spot development since
it was the most suitable location for insect mul-
tiplication.

[209]

Comparison
between hot spot
model [209] and

spatial model [208]

-

Based on Winnipeg, Canada, and
Topeka, Kansas, weather data

(Same input parameters as
reported by Flinn et al. [208] and

Mani et al. [209]).

• Hot spot model included feedback from the in-
sect model to the temperature model, whereas
spatial model did not include feedback.

• Hot spot model is better (realistic) than spatial
model in predicting the grain temperature and
insect population since it considers the effects
of insect movement and heat production as well
as the variable heating around the bin wall.

[210]

Ecosystem model
Coupled insect distribution

model with temperature
model

Ambient weather data, grain bin
properties, initial insect number,

type of grain.

• Based on weather data for Winnipeg, Canada,
in 1990.

• Predicted that a higher percentage of adults
remain at the center of the bin when high-
temperature gradients and low temperatures in
the boundary exist.

• The insect distribution mainly depends on the
introduction location and the temperature dis-
tribution inside the bin.

[211]

Time-varying
distributed delay

model
- Temperature, moisture content,

and chronological time.

• Predicted the aging rate of insects at constant or
transient temperatures with various RH.

• Predicted the surviving rate of insects under dif-
ferent environmental conditions.

• The predicted results were compared with
the experimental data from two granaries for
4 months and showed no significant difference.

[212]
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Table 5. Cont.

Model Input Parameters Highlights References

Calculation of
two-dimensional

diffusivity
Analytical solution

Initial number of insects
introduced, size of the grain

chamber, movement period, and
insect number in each section of a
two-dimensional wheat chamber

under constant environmental
conditions.

• Two-dimensional movement of insects follows
a diffusion pattern.

• Diffusivity increased with increase in tempera-
ture and insect numbers and decrease in mois-
ture content and movement period.

[183]

Population
redistribution model

Modeled by transport
equations and solved by finite

difference method

Insect number in each section of
wheat column and chamber, initial
number of insects introduced, size
of the grain column and chamber,

and movement period.

• Compared the insect redistribution in one- and
two-dimensional wheat columns and cham-
bers, respectively, and reported that there was
no significant difference between the recovered
numbers and those predicted by finite differ-
ence (numerical) and analytical methods.

[213]

Phenology model

Model to correlate the
biological age of insects with

their aging, development,
and multiplication

Development rate of insect at a
given environmental condition,
mean lifespan of the insect at
given condition with minimal
stress, and chronological time.

• Introduced a new term called ‘Physi-Biological
time’ to normalize the distribution of insect de-
velopment under different environmental con-
ditions.

[214]

8. Directions for Future Research

Despite the significant progress made in understanding the biology, ecology, and
behavior of C. ferrugineus, complete knowledge on several aspects of this species is still
lacking. The following studies could be considered avenues for future research:

• Studies on the genetic basis of traits related to C. ferrugineus ecology and behavior,
such as resistance to insecticides and reproductive behavior.

• Understanding the specific mechanism responsible for the adaptability of C. ferrugineus
to various environmental conditions.

• Interspecific interaction of C. ferrugineus with other insects and organisms in storage
facilities and in the wider landscape.

• Identification and development of effective and sustainable management strategies to
control the spread and multiplication of C. ferrugineus.

• Investigation of the role of microbes in the ecology, behavior, and control of C. ferrugineus.
• Application of molecular markers and population genetic approaches to understand

the phylogeography and evolutionary history of the insect.
• Development of integrated management strategies under climate change conditions

involves the integration of knowledge from various aspects such as ecology, behavior,
biology, and economics.

• Development and validation of mathematical models that consider time-dependent
spatial distributions of temperature, moisture, CO2, and biological agents such as
insects and molds on insect numbers throughout the grain mass.

9. Remarks

A large number of studies performed by researchers around the world on the ecology
and behavior of C. ferrugineus demonstrate the global importance of this species. Its ability
to thrive in a wide range of environments and feed on a variety of food sources highlights its
significance in the ecosystem. The complex behavior of C. ferrugineus adds to its uniqueness
and highlights the importance of further research in the area. However, with the increasing
impact of environmental factors such as climate change and resistance to insecticides, it is
significant to explore the potential impact of C. ferrugineus populations and their role in the
ecosystem and develop a sustainable pest management strategy to control the population.
Thus, this study aids in understanding the biology, ecology, and behavior of C. ferrugineus
and provides a foundation for the development of sustainable practices to ensure the
preservation of biodiversity moving forward.
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