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Abstract: Primary percutaneous angioplasty (pPCI), represents the reperfusion strategy of choice
for patients with STEMI according to current international guidelines of the European Society of
Cardiology. Coronary no-reflow is characterized by angiographic evidence of slow or no anterograde
epicardial flow, resulting in inadequate myocardial perfusion in the absence of evidence of mechanical
vessel obstruction. No reflow (NR) is related to a functional and structural alteration of the coronary
microcirculation and we can list four main pathophysiological mechanisms: distal atherothrombotic
embolization, ischemic damage, reperfusion injury, and individual susceptibility to microvascular
damage. This review will provide a contemporary overview of the pathogenesis, diagnosis, and
treatment of NR.

Keywords: myocardial infarction; no-reflow; percutaneous coronary intervention; acute coronary
syndrome

1. Introduction

Cardiovascular diseases and, in particular, acute myocardial infarction with ST-
segment elevation (STEMI) represent a major cause of mortality in industrialized countries.
Primary percutaneous angioplasty (pPCI) represents the reperfusion strategy of choice for
patients with STEMI according to current international guidelines of the European Society
of Cardiology (ESC) [1]. However, even after the restoration of culprit vessel patency,
suboptimal coronary reperfusion, less than three according to the Thrombolysis in Myocar-
dial Infarction (TIMI) score, may occur, with slow, incomplete, or absent coronary flow in
the affected coronary artery [2]. This phenomenon, which can regress spontaneously in
about half of the cases, is called “no-reflow” (NR) or microvascular obstruction (MVO),
and can complicate up to 60% of STEMI cases [1,3]. NR can occur in both the setting of
acute coronary syndrome and in the stable patient and is due to a structural and functional
alteration of the coronary microcirculation. In addition, it is associated with an increased
incidence of rehospitalization, negative ventricular remodeling, malignant arrhythmias,
and heart failure and is an independent predictor of myocardial infarction and death [4–6].
Among the risk factors, we can list cardiovascular risk factors such as: an age over 65 years,
hypertension, smoking, dyslipidemia, diabetes, renal failure, inflammatory processes, and
a history of atrial fibrillation, and procedure-related factors such as: the presence of an
increased thrombotic load, delayed presentation, high-pressure inflations, and the use of
debulking devices [7,8].

2. Pathophysiological Mechanisms

NR is related to a functional and structural alteration of the coronary microcircula-
tion and we can list four main pathophysiological mechanisms: distal atherothrombotic
embolization, ischemic damage, reperfusion injury, and individual susceptibility to mi-
crovascular damage [9] (Figure 1). A complex atherosclerotic plaque can lead to distal
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embolization phenomena both during the acute and procedural phases, leading to in-
creased distal vascular resistance and additional microinfarcts that promote the release of
pro-inflammatory and vasoconstrictive substances [10,11]. The severity of ischemic injury is
directly proportional to the duration of ischemia time. Ischemic damage results in the death
of cardiomyocytes, endothelial cells, and formation of interstitial edema with impaired
nitric oxide production and subsequent microcirculation obstruction favored by vascu-
lar endothelial growth factors (VEGF) release that increase vascular permeability [12,13].
Reperfusion injury, on the other hand, is caused by the abrupt restoration of blood flow
at the level of the damaged microcirculation, causes direct cardiomyocyte damage with
an influx of inflammatory neutrophils during reperfusion that promotes the production
of inflammatory cytokines, free oxygen radicals, vasoactive substances, and proteolytic
enzymes [14,15]. The presence of preexisting endothelial dysfunction or genetic mutations,
such as the 1976TC polymorphism of the gene for adenosine receptors and various ion
channels, increases the susceptibility to microvascular dysfunction and no-reflow [16,17].
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3. Diagnosis of No-Reflow

Coronary angiography during pPCI is the most frequently used diagnostic method
for the diagnosis of NR that, thanks to the use of TIMI flow classification, allows to classify
coronary flow on a scale from 0, absence of flow, to 3, presence of normal flow [2]. Next
to this, we also have the TIMI frame count that evaluates the number of frames required
for the contrast agent to fill the distality of the coronary arteries. An increased number of
frames constitutes an indirect index of NR [18]. However, because of the poor sensitivity
and specificity of this, another angiographic assessment was subsequently introduced by
evaluating the degree of myocardial “blush” (MBG). Blush, in fact, assesses the intensity of
myocardial tissue radiopacity obtained by injection of contrast medium into the epicardial
coronary arteries and the rapidity with which this impregnation decreases [19] (Table 1).
MBG also ranges from 0 to 3 and is diagnostic of NR for values of 0–1 [1].

Instead, a more accurate invasive assessment is possible through flow parameters or
resistance parameters. Coronary flow reserve (CFR), in fact, through the ratio of coronary
flow during maximal hyperemia to coronary flow at rest, provides information about the
microcirculation in the absence of epicardial stenosis. A value < 2.0 was associated with the
presence of MVO with a sensitivity of 79%. In addition, the measurement of coronary blood
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flow velocity using intracoronary Doppler guidance allows for the detection of the typical
flow pattern associated with NR, characterized by early retrograde systolic flow and rapid
deceleration of diastolic flow [20,21]. The microvascular resistance index (IMR), based
on the principle of thermodilution, is defined as the product of distal coronary pressure
and the mean transit time of a bolus during maximum hyperemia using a dual pressure
and temperature guide, and provides an assessment of microcirculation independent of
hemodynamic parameters. IMR values > 25 correlate with the presence of MVO, and
a post-procedure IMR > 40 units has been associated with a higher rate of in-hospital
adverse events, mortality, and readmission for heart failure at 1-year follow-ups [22,23].
Alternatively, IMR under conditions of maximal hyperemia incorporates Doppler flow
velocity to estimate flow, and values > 2.5 mmHg/cm/s are predictive of MVO [21,24].
Recently, angiography-derived IMR (IMRangio) has been studied, with good diagnostic
accuracy in predicting both IMR > 40 units and the presence of large MVOs on cardiac MRI
being documented [25]. Another new technology is CorFlow Therapy™ (CoFl™), which
combines real-time microvascular assessment with the ability to administer intracoronary
drugs [26]. This device determines transient coronary occlusion by balloon inflation, incre-
mental infusions of crystalloid at a predefined flow rate, and simultaneous measurement
of distal pressure beyond balloon occlusion. The flow and pressure quotient can be used to
derive dynamic microvascular resistance and have real-time diagnosis of microvascular
dysfunction. Initially validated in a porcine model, early results from the MOCA I trial are
encouraging in terms of safety, applicability, and the ability to detect MVO immediately
after pPCI [27].

Gadolinium-enhanced cardiovascular magnetic resonance imaging (MRI) is certainly
the “gold standard” for NR diagnosis [1]. A 1% increase in the extent of MVO is associ-
ated with a 1.14-fold increased risk of 1-year mortality [6]. Coronary microvasculature
becomes occluded due to the presence of erythrocytes, neutrophils, and cellular debris
resulting in a lack of gadolinium enhancement in the endocardial nucleus [28]. The cardiac
magnetic resonance (CMR) allows the visualization of myocardial damage through the
use of different techniques including delayed gadolinium contrast enhancement (DGE)
and T2-weighted images [29]. In addition, new parametric mapping techniques allow for
the accurate quantification of myocardial damage based on changes in T1, T2, T2* release
times and the assessment of extracellular volume [29]. T2 sequences, in addition to being
critical for discriminating between acute and chronic myocardial infarction (generally,
edema dissolves in approximately 4–6 weeks after infarction), allow for the identification
of areas of intramyocardial hemorrhage (IMH) [30,31]. IMH is a strong predictor of left
ventricular remodeling independent of infarct area, and it is closely associated with ad-
verse outcomes. On T2-weighted images, areas of IMH appear of attenuated signal within
high-signal edematous areas because of the presence of hemoglobin degradation products.
The identification of areas of MVO requires the use of the contrastographic technique [32].

Gadolinium has an extravascular and extracellular distribution, so its wash-out is
delayed in areas of increased extracellular/interstitial volume, such as areas of necrosis (in
the acute phase) and fibrosis (in the chronic phase) [33]. DGE is assessed in T1-weighted
images 10–15 min after gadolinium administration and is used to visualize the MVO, which
appears as a dark, hypointense area surrounded by the hyperintensity of necrotic my-
ocardium [32]. Alternatively, early contrastographic impregnation is a contrast-dependent
technique in which T1-weighted acquisitions are performed just after contrast medium
administration (after 1–3 min). Low-signal areas represent areas of MVO or thrombus.
Finally, the first-pass perfusion (FPP) method is another contrast-dependent technique
that allows the detection of even small areas of MVO [34]. FPP is a dynamic study and is
based on the visualization of the time distribution of the bolus of the paramagnetic contrast
agent during the first pass at the level of the myocardial microcirculation [33]. A perfusion
defect is thus manifested as a region of contrastographic failure to impregnate myocardial
tissue due to altered capillary microcirculation. However, the prognostic value of FPP is
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not as strong as for DGE, presumably in view of the fact that it also detects small areas of
MVO [34].

ECG may also allow for a diagnosis of NR to be made. A resolution of ST-segment
elevation <50% or <70%, depending on the cut-off used, after 60 to 90 min after reperfusion
is indicative of NR [35,36].

Other diagnostic techniques used to assess NR are contrast-enhanced echocardiogra-
phy and nuclear imaging with positron emission tomography and single-photon emission
computed tomography [37–39]. Contrast-enhanced echocardiography is an examination
that can be performed at the patient’s bedside in which microbubbles of inert gas are typi-
cally administered intravenously, and NR is identified by areas of hypoperfusion [39,40].
However, the lack of sensitivity and/or the complexity of implementation make these
techniques less attractive for the evaluation routine assessment of NR [1,41].

Table 1. Summarizes the main diagnostic methods available and their limitations.

Diagnostic Methods Study Design Results Limitations

Coronary Angiography
(MBG) [42]

777 prospectively enrolled
patients who underwent pPCI
during a 6-year period.

MBG can be used to describe the
effectiveness of myocardial
reperfusion and is an independent
predictor of long-term mortality.

Interobserver and intraobserver
variabilities associated with
subjective angiographic
assessments.

Coronary Flow Reserve
(CFR) [43]

89 prospectively enrolled patients
who underwent pPCI during a
4-year period and subsequent
physiologic study.

A CFR value ≥ 2.0 is considered
normal.
Complimentary assessment of
microcirculation by the IMR and
CFR may be useful to evaluate
myocardial viability and predict the
long-term prognosis of STEMI
patients.

Possible significant variability of
tracings between different beats.
Does not distinguish between
epicardial and microvascular
components of coronary
resistances. Requires maximal
hyperemia using adenosine.

Microvascular resistance index
(IMR) [44]

288 prospectively enrolled
patients with STEMI during a
11-year period.

An IMR > 40 is a multivariable
associate of left ventricular and
clinical outcomes after STEMI,
regardless of infarct size.
IMR has superior clinical value for
risk stratification.

Manual injection of saline may be
a source of variability. It requires
achievement of maximal
hyperemia and the use of
adenosine.

Electrocardiogram (ECG) [36] 180 prospectively enrolled
patients with a first acute STEMI.

Residual ST-segment elevation and
the number of Q waves on the ECG
shortly after pPCI have
complementary predictive value on
myocardial function, infarct size
and extent, and MVO.

Discordance between resolution
of ST-segment elevation and the
angiographic indices of NR.

Myocardial Contrast
Echocardiography (MCE) [40]

110 prospectively enrolled
patients who underwent pPCI in a
multicenter study.

Among patients with TIMI 3 flow,
MVO extension, as detected and
quantified by MCE, is the most
powerful independent predictor of
LV remodeling after STEMI
compared with persistent
ST-segment elevation and degree of
MBG.

Operator-dependent and limited
by the possible poor acoustic
window.

Cardiac Magnetic Resonance
(CMR) [6]

Pooled analysis using individual
patient data from seven
randomized primary PCI trials

The presence and extent of MVO
measured by CMR after primary
PCI in STEMI are strongly
associated with mortality and
hospitalization for HF within 1 year.

Usually performed 2 to 7 days
after pPCI. Not widely available
locally. Not performable in all
patients.

Positron Emission Tomography
(PET) [37]

Seven porcine model with left
anterior descending coronary
artery occlusion/reperfusion
underwent PET-CT within 3 days
of infarction.

Increased regional FDG uptake in
the area of acute infarction is a
frequent occurrence and indicates
tissue inflammation that is
commonly associated with MVO.

Expensive and difficult to obtain
locally.

pPCI, Primary Percutaneous Coronary Intervention; MBG, Myocardial Blush Grade; STEMI, ST-Elevation Myocar-
dial Infarction; NR, No-Reflow; CMR, Cardiac Magnetic Resonance; MCE, Myocardial Contrast Echocardiography;
TIMI, Thrombolysis in Myocardial Infarction; MVO, Microvascular Obstruction; LV, Left Ventricular; HF, Heart
Failure; PET, Positron Emission Tomography; PET-CT, Positron Emission Tomography/Computed Tomography;
and FDG, 2-Deoxy-2-[18F]Fluoro-D-Glucose.
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4. Management of No-Reflow

Although NR has been a known phenomenon for many years, the efficacy of therapies
in animal models has only partially translated to humans with benefits on surrogate
endpoints but no impact on endpoints such as cardiovascular mortality. To date, the main
treatment of NR is based on the use of intracoronary drugs that can result in vasodilation
in the coronary arteries. Several studies have shown possible efficacy for vasodilator drugs,
such as adenosine, calcium channel blockers, and sodium nitroprusside, used singularly or
in combination, and antiplatelet drugs such as glycoprotein IIB/IIIA inhibitors. Alongside
these, nonpharmacologic treatment strategies such as coronary post-conditioning, remote
ischemic conditioning, or tools to reduce the embolization of thrombotic material and
increase coronary flow have also been investigated in several trials, but there is still no
therapy, single or in combination, aimed at reducing ischemia/reperfusion injury that is
clearly associated with improved clinical outcomes [1,45].

In the following paragraphs, we will review the main treatment strategies currently
available and future ones under evaluation in different trials.

5. Pharmacological Treatment
5.1. B-Blockers

The effect of this class of drugs has been primarily studied in terms of cardiomyocyte
protection and infarct extension. In some animal models, however, metoprolol, before
reperfusion, reduced the size of the infarct area and the occurrence of NR with an anti-
inflammatory action through inhibition of neutrophil-platelet aggregate formation [46].
In the METOCARD-CNIC (Effect of Metoprolol in Cardioprotection During an Acute
Myocardial Infarction) study, metoprolol, administered before pPCI and through a time-
dependent action, reduced the extent of infarction, prevented adverse left ventricular
remodeling, preserved systolic function, and reduced the rate of rehospitalization for
heart failure [47]. A sub analysis of this study also documented an interaction between
metoprolol and neutrophil count with a modulating effect of metoprolol on neutrophil
impact on MVO [48].

Less encouraging data, however, are from the EARLY-BAMI (Early-Beta Blocker Ad-
ministration Before Reperfusion Primary PCI in Patients With ST-Elevation Myocardial
Infarction) trial, which failed to document a reduction in infarct extension at 1 month in
patients treated with intravenous metoprolol before pPCI [49]. Reasons given included
different drug dosage, timing of administration, and the patient population under investi-
gation [48].

In contrast, other molecules such as carvedilol and nebivolol have demonstrated
protection of the coronary microcirculation in preclinical studies [19].

Current guidelines from ESC recommend the use of intravenous beta-blockers in
STEMI patients undergoing pPCI without signs of acute heart failure and with systolic
blood pressure > 120 mmHg (recommendation class IIa, level of evidence A) [1].

5.2. Calcium Channel Blockers

Calcium channel blockers (CCBs) (verapamil, diltiazem, nicardipine) are used to treat
no-reflow through various mechanisms. Through channel binding on vascular smooth
muscle, cardiac myocytes, and nodal cells, they result in smooth muscle relaxation and
coronary vasodilation. Several studies, with numerous limitations of selection and mea-
surements, have demonstrated benefits in NR treatment for verapamil and diltiazem with
better outcomes in those treated intracoronary [50–52]. In particular, nicardipine has doc-
umented better outcomes in combination with rotational atherectomy for the prevention
of no-reflow [53]. However, to date, data on CCBs are insufficient to show significant
beneficial effects on no-reflow.
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5.3. Adenosine

Adenosine is a purine nucleoside with a short half-life (<2 s) and numerous pleiotropic
effects including vasodilation of the coronary microcirculation via binding to A2 receptors
and smooth muscle relaxation. It also has anti-inflammatory properties against neutrophils
and inhibition of platelet aggregation, promotes ischemic preconditioning by limiting
reperfusion injury, and exhibits anti-apoptotic and pro-angiogenic effects. Side effects
include bradycardia with atrioventricular block, hypotension, dyspnea, bronchospasm,
and flushing [54].

The REOPEN-AMI (Intracoronary Nitroprusside Versus Adenosine in Acute Myocar-
dial Infarction) trial documented a significant improvement in MVO and peak troponin
compared with placebo or sodium nitroprusside, leading to a reduction in major cardiovas-
cular events and favorable left ventricular remodeling at 1 year after the event [55].

Data in contrast to early studies on the use of adenosine after pPCI, (AMISTAD [56]
and AMISTAD-II [57]) which documented a reduction in infarct size in adenosine-treated
patients without significant differences in clinical outcomes and from the REFLO-STEMI
(Reperfusion Facilitated by Local Adjunctive Therapy in ST-Elevation Myocardial Infarc-
tion) study, also showed potential harmful effects [58].

5.4. Sodium Nitroprusside

Sodium nitroprusside is a non-selective drug metabolized to its active form, nitric
oxide, that acts as a potent vasodilator in the coronary and peripheral microcirculation
and by inhibiting platelet aggregation. Its latency of action appears to be more prolonged
than other vasodilators [59,60]. Furthermore, in comparison with drugs such as tirofiban, it
has demonstrated a lower rate of adverse events, an improvement in TIMI frame count, a
more rapid resolution of ST-segment elevation, and a higher rate of left ventricular ejection
fraction without achieving a significant difference in TIMI grade [61]. Although there are
no data to support the preventive capacity of NR, nitroprusside, at 6-month follow-up,
documented lower rates of revascularization, myocardial infarction, or death compared
with placebo-treated patients. However, further studies are needed for a more accurate
assessment of the ability of nitroprusside to prevent NR [62].

5.5. Epinephrine

Among the pharmacological alternatives available is also intracoronary epinephrine,
a drug with limited experience compared to others [63,64] but which has recently shown
encouraging results for the treatment of NR refractory to other therapies or where these
could not be used. In 2020, the RESTORE trial, a multicenter observational study, was
published to evaluate the safety and efficacy of epinephrine in NR during STEMI compared
with conventional therapy. Navarese et al. documented a significant improvement in
coronary flow, left ventricular ejection fraction, ST-segment resolution, and clinical events
at 30 days in STEMI patients with refractory NR compared with the control group [65]. More
recently, the COAR trial, an open-labeled study that randomized patients to intracoronary
epinephrine vs. adenosine, was published, demonstrating improved end coronary flow and
relative safety of epinephrine in normotensive patients with acute coronary syndrome [66].
The main side effect of epinephrine is the risk of developing malignant arrhythmias [67].
Figure 2 represents a case of no refractory reflow management handled at our center.

5.6. Nicorandil

Nicorandil is a vasodilator drug that acts through potassium channels and intracellular
cGMP concentrations. It is used for the treatment of angina pectoris during acute coronary
syndromes in Japan and some other Asian and European countries because it showed
improved coronary perfusion and lower no-reflow rates in a previous meta-analysis [68].
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Figure 2. A case of refractory no-reflow management managed at our center. A 93-year-old patient
with inferior-posterior STEMI and thrombotic sub occlusion of left circumflex coronary artery (A).
After successful thrombus aspiration and stenting (B), no-reflow phenomenon refractory to the use of
adenosine and sodium nitroprusside with development of bradycardia and hypotension (C) resolved
after administration of intracoronary epinephrine (D).

5.7. Antiplatelet Therapy

With regard to the major antiplatelet drugs, no NR or myocardial perfusion benefits
were documented from sub-analysis of the PLATO (Study of Platelet Inhibition and Patient
Outcomes) in the ATLANTIC (Administration of Ticagrelor in the Cath Lab or in the
Ambulance for New ST Elevation Myocardial Infarction to Open the Coronary Artery)
study and in the REDUCE-MVI (Reducing Micro Vascular Dysfunction in Acute Myocardial
Infarction by Ticagrelor) study [69–71]. The PLEIO study, however, recently showed
superior recovery of microcirculation function in patients treated with ticagrelor compared
with clopidogrel [72]. This is in line with a previous meta-analysis that demonstrated
a greater benefit of ticagrelor over clopidogrel in reducing NR and incidence of MACE
without significantly increasing the risk of bleeding [73].

Among novel antiplatelet agents, we are awaiting data from the Platelet Inhibition
to Target Reperfusion Injury (PITRI) trial, which evaluated the ability of cangrelor, admin-
istered before reperfusion, to reduce the size of acute myocardial infarction and MVO by
CMR [74].

Glycoprotein IIB/IIIA inhibitors are potent antiplatelet agents that inhibit platelet
aggregation and have demonstrated benefit in the era before the routine use of dual an-
tiplatelet therapy [1]. To date, there have been no studies showing convincing benefits
of glycoprotein IIB/IIIA inhibitors in addition to standard therapy [75]. However, the
On-TIME-2 (Ongoing Tirofiban in Myocardial Infarction Evaluation 2) study showed that
prehospital initiation of bolus tirofiban could result in ST-segment resolution and improve
clinical outcome after pPCI [42]. Additional conflicting data are those regarding the route
of administration, intracoronary or intravenous. Although the CICERO trial (Compari-
son of Intracoronary Versus Intravenous Abciximab Administration During Emergency
Reperfusion of ST-Segment Elevation Myocardial Infarction) and INFUSE-AMI study (In-
tracoronary Abciximab and Aspiration Thrombectomy in Patients with Large Anterior
Myocardial Infarction) reported benefits in terms of reduction of infarct area after intra-
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coronary administration of abciximab, the AIDA STEMI study (Abciximab Intracoronary
versus intravenous Drug Application in STEMI) documented similar rates of major adverse
cardiovascular events after 90 days and 1 year between the two modalities of administra-
tion [76–78]. Recently, in a series of 71 STEMI cases treated with pPCI, the combined use
of glycoprotein IIB/IIIA inhibitors along with aspiration and balloon inflation resulted in
decreased NR rates [79].

Finally, according to current ESC guidelines, GP IIb/IIIa inhibitors should be con-
sidered (class of recommendation IIa, level of evidence C) if there is evidence of NR or
thrombotic complication [1].

5.8. Intracoronary Fibrinolysis

The role of fibrinolytic therapy is also still under study. In fact, although some initial
encouraging data documented benefits, in terms of myocardial reperfusion, subsequent
studies have not confirmed these data [80]. Among them, the randomized T-TIME trial
recently demonstrated that low-dose intracoronary alteplase does not improve MVO [81].
Therefore, at present, current data do not support its use as adjuvant therapy to improve
NR [48]. Recently, however, a meta-analysis by Alyamani et al. showed that a targeted
thrombolytic IC approach seems safe and able to increase the efficacy of pPCI [82].

5.9. Statins

Statin therapy, probably through pleiotropic effects independent of the effect on lipid
metabolism, also seems to have beneficial effects in the treatment and prevention of NR [9].
In the STATIN STEMI (Efficacy of High-Dose AtorvaSTATIN Loading Before Primary
Percutaneous Coronary Intervention in ST-Elevation Myocardial Infarction) study, high
doses of statins improved angiographic MVO but not infarct extension, compared with low
doses [83]. Data was also confirmed by the SECURE-PCI (Statins Evaluation in Coronary
Procedures and Revascularization) study, which showed an almost 50% reduction in
cardiovascular events at 30 days with high-dose atorvastatin compared with placebo [84].
In addition, statin therapy already on board at the time of the event reduced NR rates,
improved myocardial functional recovery at follow-up, and reduced the extent of infarction
compared with naive patients.

All the main pharmacological treatments of NR and their side effects are resumed in
Table 2.

Figure 3 shows an algorithm of management and treatment of the no-reflow phe-
nomenon applied at our center.
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Table 2. Main drugs and dosages for the treatment of No-Reflow.

Medication Dosage Side Effects

Adenosine Intravenous: 70 µg/kg/min infusion
Intracoronary: 100–200 µg bolus

Bradycardia, hypotension, chest pain,
dyspnea

Sodium Nitroprusside Intracoronary: 60–100 µg bolus Bradycardia and hypotension

Verapamil Intracoronary: 100–500 µg bolus (max 1 mg) Bradycardia, transient heart block

Diltiazem Intracoronary: 400 µg bolus (max 5 mg) Bradycardia, hypotension

Nicardipine Intracoronary: 200 µg (max 1 mg) Bradycardia, hypotension

Epinephrine Intracoronary: 80–100 µg bolus Malignant arrhythmias

Nicorandil 500 µg (max: 5 mg) Malignant arrhythmias

Streptokinase 250 kU over 3 min Bleeding

Tenecteplase 5 mg (max: 25 mg) Bleeding

Tissue plasminogen activator
(tPA) 0.025–0.5 mg/kg/h Bleeding

Abciximab 0.25 mg/kg bolus, then 0.125 µg/kg/min (max
10 µg/min) infusion for 12 h Bleeding

Eptifibatide

180 µg/kg bolus, then further 180 µg/kg bolus
10 min later, then 2 µg/kg/min infusion for up

to 18 h.
If CrCl < 50 mL/min, reduce infusion by 50%

Bleeding

Tirofiban
25 µg/kg over 3 min, then 0.15 µg/kg/min

infusion for up to 18 h
If CrCl < 30 mL/min, reduce infusion by 50%

Bleeding

CrCl: creatinine clearance.

6. Non-Pharmacological Treatment
6.1. Ischemic Conditioning

Ischemic preconditioning is the most powerful endogenous mechanism capable of
reducing the extent of myocardial infarction by cycles of coronary balloon occlusion and
reperfusion [5]. However, although the recent CONDI-2/ERIC-PPCI study did not demon-
strate the efficacy of ischemic preconditioning on clinical endpoints [85], as already shown
in other large trials [26], a recent randomized trial showed encouraging results regarding
the incidence of NR by prolonged balloon inflation during stent deployment [86]. Although
ischemic postconditioning has been shown to reduce no-reflow in small studies [87], larger
randomized trials of POST, DANAMI-3-iPOST, POSTEMI, and LIPSIA CONDITIONING
have not supported its choice in clinical practice [26].

6.2. Thrombus Aspiration

Thrombus aspiration or coronary filters are tools designed to reduce distal emboliza-
tion injury, which is one of the etiopathogenetic mechanisms of NR [41].

However, the routine use of thrombus aspiration, initially associated with better
clinical outcomes in STEMI patients [48], has been progressively downgraded because
of its inability to reduce 30-day mortality in trials in subsequent years [88,89]; it is even
contraindicated as a routine maneuver in the most recent ESC guidelines (recommendation
class III) [1].

Another mechanical approach to reduce distal embolization during STEMI consists
of the placement of filters, devices placed before stent deployment, which, however, have
never documented an effective improvement in microvascular flow, infarct extension, or
clinical outcomes [41].

Among the devices tested, we also find the pressure-controlled intermittent coronary
sinus occlusion (PICSO). This is a device of transient occlusion of the flow in the coronary
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sinus with the aim of increasing cardiac venous pressure and thus improve the perfusion
of the microcirculation [90]. The OxAMI-PICSO (Oxford Acute Myocardial Infarction-
Pressure-Controlled Intermediate Coronary Sinus Occlusion) trial tested the use of PICSO
prior to stent release in patients with IMR > 40, demonstrating less extension of infarction
at 6 months in patients treated with PICSO compared with the control group [91].

6.3. Future Perspectives

Among the techniques being tested in recent years, we can list therapeutic hypother-
mia, which has shown favorable results in animals but controversial results in humans [92].
Although CHILL-MI, the VELOCITY trial, and COOL-AMI EU showed no benefit but
rather an increase in adverse events without a reduction in infarct size or MVO, we are
awaiting data from the randomized EURO-ICE trial to further evaluate the efficacy of
alternative cooling technologies in NR [93–96].

Another technique is hyperoxemic reperfusion, recently approved by the FDA, which
consists of the administration of supersaturated oxygen for 90 min after completion of
PCI in patients with STEMI. This technique, evaluated in the AMIHOT I and AMIHOT
II studies, documented a reduction in final infarct size in spite, however, of an increase
in bleeding [97,98]. Therefore, in a more recent trial, the IC-HOT study, an infusion of
hyperoxygenated blood at the origin of the left main with a duration of about 60 min was
used [99].

New therapeutic targets could also be those represented by the modulation of the
inflammatory response. Possibly, a “tailored” anti-inflammatory approach in patients with
evidence of myocardial edema at CMR could benefit this subgroup of individuals [9].

Finally, other possible “cellular” approaches could be represented by pericytes, which
are responsible for vasomotility in the coronary microcirculation [100], and by stem cells,
exploiting the photobiostimulatory effects of low-level laser therapy that promotes the
recruitment of mesenchymal stem cells into the myocardium [101].

7. Conclusions

NR is an event that complicates approximately 30–60% of pPCI and is associated with
adverse clinical events in patients with STEMI. It is a complex phenomenon, dependent on
several etiopathogenetic mechanisms, often combined, that puts a strain on the interven-
tional cardiologist. Although it is a known phenomenon and has been studied for several
years, there is currently no treatment that has demonstrated clear efficacy in terms of reduc-
tion of clinical adverse events. Given its multifactorial nature, a combined approach, using
both pharmacologic and nonpharmacologic treatments, could be the strategy to pursue to
improve the prognosis of these patients.
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