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Abstract: Myctophids are an ecologically important mesopelagic species in the eastern Pacific Ocean.
Due to the wide distribution, great diversity and variable biological characteristics of the species,
there is a lack of reliable information regarding their spawning and nursery grounds in the Kuroshio
extension region. In this study, we identified a total of 110 myctophid individuals using DNA barcod-
ing and morphological techniques, among which, the dominant genus was Ceratoscopelus, comprising
37.27% of the entire catch. The abundance of each sampling station was calculated, and its relationship
with environmental variables was analyzed. Tweedie-Generalized Additive Model (GAM) analysis
showed that copepod density, oceanic dynamic processes, and sea surface temperature were the
primary factors influencing the distribution pattern of larvae and juvenile myctophid fish. The results
further indicate that the Kuroshio extension plays a dominant role in the biological processes of these
fish in this region. These findings provide crucial dynamic information for the scientific conservation
and exploitation of myctophids, which could have significant implications for the management of
these fish populations.

Keywords: early life stage of myctophid fish; Kuroshio extension; Tweedie-GAM; distribution pattern

1. Introduction

Myctophidae (Myctophiformes), commonly known as lantern fishes, are the most
abundant species of mesopelagic fish found in oceans [1]. The Myctophidae family com-
prises about 252 species in 34 genera [2]. Due to their large biomass and availability, lantern
fishes are considered as a potentially important economic species and have been a target
of exploratory fisheries for several years [3,4]. More importantly, they occupy a vital po-
sition in the energy transfer within the mesopelagic ecosystem, linking low-trophic-level
species to higher marine predators such as fishes, squids and marine mammals [5]. More
importantly, myctophids contribute to the matter and energy cycle through their metabolic
behavior during vertical migration and the top-down control of zooplankton [6,7]. Their
larvae and juveniles have also been reported as the dominant species in the ichthyoplankton
assemblage in epipelagic waters [8]. Most lantern fishes spawn all year in mesopelagic
waters, and their eggs hatch during the rise to the surface [9]. Larvae develop in epipelagic
waters, and their swimming ability gradually increases [10]. It has been reported that the
myctophid larvae are primarily distributed in the vertical direction between 0 and 200 m.

The larval and juvenile stage is the most vulnerable and sensitive period during the
life history of fish, with external environmental factors having a significant impact on their
growth and survival rates [11,12], and the mortality rate of larval and juvenile fish largely

J. Mar. Sci. Eng. 2023, 11, 898. https://doi.org/10.3390/jmse11050898 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11050898
https://doi.org/10.3390/jmse11050898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse11050898
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11050898?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 898 2 of 12

determines their recruitment and population dynamic [13]. Larvae and juvenile fish play
an important role in the stability and resilience of marine ecosystems, and their assemblage
structure is an essential indicator of community succession and fishery resources’ statuses.
Physical and biological environmental processes, such as mesoscale hydrodynamic features,
upwelling [14], surface currents [15], climate model [16], frontal regimes [17,18] and the
distribution of the prey and predator [19–21], can largely determine their spatial distribution
and transport.

The Kuroshio merges with a portion of flows of the Oyashio current near southern
Japan (about 35◦ N), then turns to the east and extends to 160◦ E, forming what is known
as the Kuroshio extension (KE) region. Due to the opposite characteristics of the Kuroshio
and Oyashio in terms of temperature, salinity and nutrients, the spatial and temporal
differences in the distribution of environmental conditions in the KE region are significant.
The interactions of the two currents promote mesoscale eddy activity in the KE region,
temporarily affecting the structure of physical and chemical features in the upwelling
waters [22]. Furthermore, the exchanges of heat between the ocean and atmosphere in
the KE region are the most extensive in the extratropical North Pacific, and the long-time-
scale sea surface temperature (SST) and subsurface temperature in this region exhibit
strong interannual variability [23]. These complex hydrodynamic processes are known
to impact the primary productivity changes and fuel regional phytoplankton blooms in
the open sea [24–26]. In the winter and spring, the Kuroshio–Oyashio transition region,
KE and its adjacent regions serve as important spawning and nursery grounds for pelagic
species, such as Japanese sardines (Sardinops melanostictus), Pacific saury (Cololabis saira),
the Pacific stock of chub mackerel (Scomber japonicus) and Neo flying squids (Ommastrephes
bartramii). Previous studies have suggested that environmental variables in the KE region
may influence the dynamics of these species [27]. It has been reported that the winter SST
in the KE and its southern recirculation area is correlated with the recruitment of Pacific
saury [28,29], and the population dynamics of Japanese sardine were strongly associated
with changes in the KE Front and the Oyashio Front [30].

Numerous investigations have revealed that there are more than 40 species or types of
larval and juvenile myctophid fish distributed in the Kuroshio and Oyashio currents,
as well as their transition region [8,31,32]. However, due to incomplete data of lar-
val and juvenile taxonomy, it has often been challenging to accurately identify myc-
tophid fish larvae and juveniles at the species level using morphological characteristics
alone. Fortunately, the development of DNA barcoding has provided a powerful tool
for the precise identification of fish at any developmental stage [13,33,34]. The Barcode
of Life Data System (BOLD) currently contains DNA barcodes for more than 25,000 fish
species (including Actinopterytidae, Chondrichthidae, Hagprey and Cephalocrustaceans)
(http://www.barcodinglife.org, accessed on 30 March 2023), while the Fish Barcode of
Life Campaign (FISH-BOL, http://www.Fishbol.org/, accessed on 30 March 2023) has
been designed to collect fish DNA barcodes. Moreover, local BLAST Databases of DNA
Barcode libraries can be constructed by adult fish samples. For example, Paola et al. [35]
compared the morphological and molecular identification results of 28 specimens of larval
myctophids in the Gulf of Mexico, improving the accuracy of identification and facilitating
the accumulation of morphological characteristics in early larval stages of Myctophidae.
Pappalardo et al. [36] applied cytochrome c oxidase subunit I (COI) as DNA barcode se-
quences to delimit 45 Myctophidae larvae samples which were ambiguous or impossible
to be identified to 5 species. Ayala et al. [37] identified at least 32 myctophid species
in approximately 3500 specimens collected in the Subtropical Convergence Zone of the
Sargasso Sea using morphological and DNA barcoding identification techniques.

To comprehend the spatial distributions of larval and juvenile myctophid fish and
their relationship with environmental heterogeneity in the KE region in greater detail, we
collected ichthyoplankton samples in the winter of 2020. Our study utilized both DNA
barcodes and morphologies to identify fish larvae and juveniles, with a focus on describing
the distribution pattern of myctophid specimens during the winter season. Additionally,

http://www.barcodinglife.org
http://www.Fishbol.org/
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our study analyzed the linkages between abundances and corresponding hydrographical
and biological information using the generalized additive model (GAM) [38]. Given the
ecological importance and potential economic value of this fish family, our study aimed to
enrich our knowledge of resource situations and ultimately enhance our understanding of
the dynamics and biogeographical distributions of myctophids.

2. Materials and Methods
2.1. Sample Collection

Myctophid larvae and juveniles were obtained from ichthyoplankton and zooplankton
samples collected during the investigation trip by the Shanghai Ocean University’s oceanic
fisheries survey cruise of “SongHang” in the KE region (146.00–156.00◦ E, 29.00–35.00◦ N)
from 6 to 19 December 2020 (Figure 1). Horizontal ichthyoplankton samples were collected
with zooplankton nets (0.8 m in diameter, 2.7 m long, and 505 mm mesh, with a cod-end
container mesh of 400 mm) at the surface (20 min at about 2 knts), and vertical samples were
collected with Bongo nets (0.57 m in diameter, 2.8 m long, and 200 mm mesh, with a cod-end
container mesh of 200 mm) towed vertically for about 10 min from a maximum depth of
200 m up to the surface; both nets were equipped with General Oceanic flow meters. Half
of the specimens were quickly moved into sea water with 75% ethanol–solution and then
preserved in <−20 ◦C for molecular identification; the other half of the samples was stored
in 4% buffered formaldehyde for morphological identification.
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2.2. Laboratory Analysis

Sample individuals of ichthyoplankton from each station were picked out using
a stereomicroscope, and each individual was photographed using a Zeiss microscope
(Axioplan 2 imaging E). Copepods in zooplankton specimens were selected and counted
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with a stereomicroscope for further analysis. Fish larvae and juveniles were identified
through the combined use of the morphological identification and DNA barcodes. DNA
extraction, primer selection and PCR processes were conducted as Hou et al. did in their
study [39]. Cytochrome c oxidase subunit I (COI) was used to identify specimens to the
lowest taxonomic level based on the Barcode of Life Data (BOLD) system, and the blast
search criteria followed the initial proposal of Hebert [40].

2.3. Data Analysis

The abundance of larval and juvenile myctophid fish was standardized in the following
formula [41]:

G = N/(S·L·C) (1)

where G is the number of individuals per unit volume of water (ind./1000 m3), N is the
number of individuals collected per tow (ind.), S is the net mouth area (m2), L is the
revolution of flow meter, and C is the number of flow meter correction (C = 0.3).

Due to the large number of low values, true zeroes and occasional large values in the
abundance data, Tweedie-GAM was used to statistically evaluate the effect of environ-
mental factors [42,43]. Previous studies have shown the sensitivity of larval and juvenile
myctophid fish to a variety of environmental factors [8,44,45]. This study selected sea
surface temperature, sea surface salinity (SSS), sea level anomaly (SLA), concentration of
chlorophyll a (Chl−a), eddy kinetic energy (EKE) and copepod density (Dc) as key envi-
ronmental factors. SST, SSS, SLA and Chl−a data corresponding to the sampling stations
were from OceanWatch (https://oceanwatch.pifsc.noaa.gov/, accessed on 1 January 2023);
velocities data of the current (U and V) were obtained from Copernicus Marine Service
(https://data.marine.copernicus.eu/products, accessed on 1 January 2023). The EKE value
was estimated as follows [46]:

EKE =
1
2
(U2 + V2 ) (2)

where U and V represent the horizontal and vertical velocities of the current, respectively.
The variance inflation factor (VIF) was used to exclude collinearity variables for the five

environmental factors to avoid the co-curvilinear problem in model fitting. It is generally
believed that when

√
VIF < 2, there is a multicollinearity problem between variables.

The probability density function of the Tweedie distribution is expressed in the follow-
ing formula [47]:

f (y : µ, σ2, p ) = a (y : σ2, p ) exp{− 1
2σ2 d (y : µ, p )} (3)

where µ is the location parameter; σ2 is the diffusion parameter; p is the power parameter.
Different power parameters p correspond to different types of distribution. When the
power parameter p is 0, 1, 2 and 3, it corresponds to Normal, Poisson, Gamma and inverse
Gaussian distributions, respectively. When 1 < p < 2, the distribution is expressed as the
Gamma–Poisson distribution. 

X ∼ TWP (θ, ϕ)
M = E(X)

ln(µ) = X·α + s (F)
(4)

where X is the abundance of larval and juvenile myctophid fish (ind./1000 m3); θ is the
specification parameter; ϕ is the dispersion parameter; p is the power parameter; µ is the
expected value of X; ln(µ) represents the contact function using natural logarithms; α is the
estimated parameter in model; s is the natural smooth spline; F is the variable factor.

The Tweedie-GAM expression in this study is as follows:

X = s(SST) + s(SSS) + s(SLA) + s(Chl − a) + s(EKE) + s(Dc) (5)

https://oceanwatch.pifsc.noaa.gov/
https://data.marine.copernicus.eu/products
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The “vif” function in the “car” package was used to test for the multicollinearity of
environmental factors. The “tweedie.profile” in “Tweedie” package was used to determine
power parameter p, and then, we built the model using the “mgcv” package. The restricted
maximum likelihood (REML) was calculated using the smoothing parameter of model, and
the Akaike Information Criterion (AIC) was used to determine the best-fitting model.

3. Results
3.1. Species Identification and Abundance

A total of 110 larval and juvenile myctophid fishes were identified from ichthyoplank-
ton specimens: 27 individuals were identified to six species (Benthosema suborbital, Diaphus
anderseni, Lampanyctus alatus, Nannobrachium fernae, Symbolophorus rufinus and Ceratoscopelus
townsendi) (Figure 2), 40 individuals were identified to two genera (Ceratoscopelus and Lo-
bianchia), and 43 individuals were identified to myctophidae, including four taxa; the
neighbor-joining tree based on COI is shown in Appendix A Figure A1 (Ceratoscopelus
townsendi was identified via its morphology). Ceratoscopelus contributed 37.27% to the
total abundance. In vertical and horizontal tows, the mean total abundance of larval and
juvenile myctophid fish was 0.85, 0.96 ind./1000 m3, and the max abundance was 17.75,
5.78 ind./1000 m3, respectively. The region with high abundance was concentrated in the
western part of the sampling area.
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Figure 2. Photographs of identified species: (a) Benthosema suborbital, (b) Diaphus anderseni,
(c) Lampanyctus alatus, (d) Nannobrachium fernae, (e) Symbolophorus rufinus, (f) Ceratoscopelus townsendi.

3.2. Model Performance

The multicollinearity tests showed that the
√

VIF values of all six predictor factors
were less than 2. There were no significant multicollinearity problems, so all of them were
adopted for further analysis (Table 1). Log-likelihood function values were calculated with
changing power parameters; when p = 1.431 and 1.780, the log-likelihood function values
were maximized in horizontally and vertically hauled net tows, respectively. Hence, the
data distribution type of X of both tows were Gamma–Poisson distributions, and p values
were used to build Tweedie-GAM.

The best combination of factors in horizontal tows was the copepod density and EKE
(Table 2), and the deviation explanation rate of each factor was 45.1% and 24.3%, respec-
tively, while both factors were significant (p < 0.05), and the copepod density contributed
the most explanation (45.1%). The best combination of factors in vertical tows was the
copepod density, SST and Chl−a The deviation explanation rate of each factor was 22.1%,
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50.3% and 8.8%, respectively, all three factors were significant (p < 0.05), and the SST
contributed the most explanation (50.3%). For brevity, the best model based on horizontal
tows was called Horizontal-GAM, and another was called Vertical-GAM.

Table 1. Variance inflation factor among explanatory variables.

Explanatory Variable SST SLA SSS Chl−a EKE Density

VIF 2.20 1.15 1.11 1.96 1.30 1.16

Table 2. Results of the optimal Tweedie-GAM model fitting and parameter analysis of influ-
encing factors.

Model Explanatory
Variable AIC Value Cumulative Deviance

Explained
Deviance Explanation of

Each Factor p

Horizontal-
GAM

+density 99.42 45.1% 45.1% <0.001 ***
+EKE 80.69 69.4% 24.3% 0.005 **

Vertical-
GAM

+density 60.54 22.1% 22.1% <0.001 ***
+SST 38.75 72.4% 50.3% <0.001 ***

+Chl−a 32.48 81.2% 8.8% 0.04 *

Note: * means p < 0.05, ** means p < 0.01, *** means p < 0.001.

3.3. Results of Model

In the results of Horizontal-GAM, the abundance of larval and juvenile myctophid fish
(X) increased and then decreased with the increasing copepod density, with the maximum
of abundance of copepod density at 17.5 ind/m3, but the data points were concentrated in
0–14 ind/m3, and the positive correlation was significant in this range (Figure 3a). In the re-
lationship between abundance and EKE, the abundance increased and then decreased when
EKE was between 0 and 0.1 m2/s2, with one peak occurring when EKE was 0.03 m2/s2,
and the other one occurring when EKE was 0.4 m2/s2 (Figure 3b). However, there were
only three data points when EKE was larger than 0.1 m2/s2, and the fitting of the curve
may be affected by extreme values.
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figure represents the effect, and the dotted line represents the 95% confidence interval of the effect.

In the results of Vertical-GAM, ranging from 0 to 25.7 ind/m3 of copepod density,
the relationship between the copepod density and X was linearly positive (Figure 4a). In
the relationship between X and SST, ranging from 20 to 25.3 ◦C, X showed a fluctuating
decrease with two peaks occurring at 22 ◦C and 24.7 ◦C (Figure 4b). In the range of
0.1–0.41 mg/m3, the X increased and then decreased with the increase in copepod density
(Figure 4c).

3.4. Relationship between Abundance and Environmental Factors

The copepod density had significant gravity of distribution, with the highest density
occurring at around 148◦ E, 33◦ N and gradually decreasing in regions far away from the
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center (Figure 5a). The suitable copepod density range was 15–20 ind/m3. There were
three obvious mesoscale eddies and a part of the KE (Figure 5b). The highest abundance
station was located on the edge of the KE, and the highest abundance was distributed in
the low EKE region. In vertical tows, the highest abundance was distributed in the region
with the high copepod density (Figure 6a). As shown in Figure 6b,c, overall, the Chl−a was
significantly higher in the north than in the south of the sampling region, while SST in the
north was lower than that in the south, and the highest abundance was distributed in the
transition zone of Chl−a and SST.
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4. Discussion
4.1. Species Composition and Abundance

Myctophids are one of the most diverse families in the northwest Pacific Ocean, with
over 80 species [8]. Due to their ecological importance and potential economic value, their
life history has been the subject of contemporary research. However, the migration and
reproduction strategies of myctophids, particularly those found in open oceans, have been
little studied due to the sampling challenges posed by their long-distance horizontal and
vertical migration. In previous research, myctophids were found to be abundant in the
Kuroshio and transition region [48,49], and their spawning grounds were determined by
the investigation of mature adults, eggs, larvae or juveniles [14,50,51]. These findings
suggest significant spatial and temporal differences in the composition of myctophid
ichthyoplankton assemblages. The present study reports the distribution and abundance
of larval and juvenile myctophid fish in the KE and its adjacent regions in the winter for
the first time. We identified Ceratoscopelus as the dominant genus, present at the majority
of sampling stations. As a typical Myctophid species, Ceratoscopelus accounted for almost
30% of larval myctophid fish specimens in the Kuroshio Countercurrent region, with a
few individuals occurring on the onshore side of the Kuroshio and Kuroshio–Oyashio
transition region [32,52,53]. In addition, the mean total abundance of vertical tows was
slightly larger than that of horizontal, and the distribution patterns of their abundance
were not synchronized, regardless of sampling errors and extreme values, which may be
due to the enhanced swimming ability of the larval and juvenile myctophid fish for vertical
migration and responding to environmental factors.

4.2. Effect of Biological Factors

In this study, the abundance of fish larvae and juveniles was positively correlated with
the density of copepods but negatively correlated with Chl−a. Although high primary
productivity in the KE is essential to maintain the energy intake of larval and juvenile fish,
considering the lagging effect of Chl−a on the ecosystem, the relationship between Chl−a
and abundance in this study still needs further study. Intriguingly, fish in the early life
history stages did not rely on phytoplankton to receive the energy required for growth and
development; instead, they primarily fed on copepods of varying sizes and developmental
periods, depending on the size of the fish mouth [54–56]. For example, Bernal et al. [57]
indicated that myctophid larvae off the coast of western Australia feed predominantly on
nauplii and copepodites. Contreras et al. [58] showed that copepods dominated the larval
diet of Diaphus vanhoeffeni, Hygophum macrochir and Myctophum affine in the equatorial
and tropical Atlantic. The feeding pattern of larvae and juvenile fishes regulated their
energy intake and consumption during feeding, which directly affected their growth and
development. Thus, larvae and juvenile fishes employed numerous strategies to optimize
their feeding efficiency, which led to their unique spatial and temporal distribution adaption
patterns. For instance, trends in the abundance of larvae and juvenile fishes were consistent
with the changes in zooplankton [20,59], but competition for prey between species was
also an important factor for their distribution, especially in the KE region, an important
spawning ground for a variety of species. Actually, different larvae and juvenile fish
species reduced the overlap of trophic niches through staggered vertical migration patterns,
distribution patterns, predation times and the differential selection of feeding targets [54,60].

4.3. Effect of Physical Factors

In addition to biological factors, ocean dynamic processes and environmental factors
were critical drivers of the distribution of larvae and juvenile myctophid fish. Based on
EKE, the ocean dynamic processes that were the focus of our study were the Kuroshio and
mesoscale eddies in this study. Firstly, the abundance at the sampling stations near the KE
was much higher than others, and considering the role of the Kuroshio in the transport of fish
eggs and larvae, myctophid larvae and juveniles may enter the slow flow area at the Kuroshio
bend after being transported by the Kuroshio. Secondly, the effect of mesoscale eddies on
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the early life history stages of fish was primarily reflected in the influence of environmental
factors such as temperature, salinity and nutrients in the area controlled by eddies, as well as
the accumulation and transportation of eggs, larvae and juvenile fish by water flows. With
the growth of fish, the distribution patterns of fish larvae and juveniles of different species
in mesoscale eddies were significantly biased [55,61,62]. On the sea surface, the myctophid
larvae and juveniles preferred to be distributed in the low EKE areas that were remote from
eddies. However, there was no significant correlation between distribution patterns and EKE in
vertical tows, mainly due to the significant structure of the physical properties of the mesoscale
eddy in the vertical direction, and sea surface EKE was insufficiently representative of the flow
characteristics of all the water. Moreover, temperature influences the distribution of larvae
and juveniles mainly through its effects on the metabolism and locomotion of fish [63,64].
This study revealed a non-linear negative correlation between abundance and temperature
at 20–25.5 ◦C, which confirmed that prolonged high temperature may be detrimental to the
growth of juvenile fish and may cause increased mortality. The Kuroshio and its extension
region were transitional regions for sea surface temperature [65]. Due to the sensitivity of
ichthyoplankton to temperature, larvae and juvenile myctophid fishes were predominantly
distributed in the northern region where the water temperature was relatively low.

5. Conclusions and Future Work

The fluctuation of community structure and the spatial and temporal distribution of
larval and juvenile fish is a comprehensive response to biological and physical factors. Under
the background of climate anomaly, habitat degradation and fishery resource exploitation,
the survival conditions of potentially economically important fish species in the early life
history stage have attracted more and more attention. Although our investigation region
and density of sampling station were limited, we addressed the issue of model fitting ability
with more zero-valued data by using Tweedie-GAM. This allowed us to explore the influence
of environmental factors in the Kuroshio extension on the abundance of larval and juvenile
myctophid fish during the winter season. According to our findings, copepod density, ocean
dynamic processes and SST were the most influential determinants on the distribution pattern
of larvae and juvenile myctophid fish, and the dominant role of the Kuroshio extension in this
process was described. However, the environmental conditions in the KE region are known to
be variable, with significant interannual and inter-monthly fluctuations, and the role of the
Kuroshio in the transport of ichthyoplankton needs to be further verified by expanding the
sampling area. Therefore, the objective of future research is to investigate long time series
and to expand survey stations to the Kuroshio flow region. In addition, considering the prey
selection of larval and juvenile fish and the dietary shift during development, as well as the
potential food sources, feeding ecology research could be used to support how biological
factors affect larval and juvenile fish.
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