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Abstract: This study presents the first data of growth and age of Schmidt’s cod Lepidion schmidti, a rare
and poorly studied member of the Moridae family (Gadiformes, Teleostei). The research was focused
on the Emperor Seamounts area with the aim of investigating the age, growth rates, and longevity of
this species. The analysis involved examining annual growth increments on sagittal otoliths. Data
were taken from longline catches in 2014 and 2016, resulting in the collection of 140 individuals and
the use of 70 otoliths for age determination. The results revealed that Schmidt’s cod can live for up to
49 years, with a mean age of 31.5 years in the catches. The relationship between body weight and
total length was described by a power function, indicating positive allometric growth. The most
suitable growth model for this species was determined to be the Von Bertalanffy growth equation.
These results provide valuable insights to add to the limited knowledge of growth and age in the
Moridae family and emphasize the long lifespan and slow growth of Schmidt’s cod.

Keywords: longline catches; biological parameters; stocks; bentho-pelagic fish; bycatch; lifecycle;
deep-sea fish; otoliths

1. Introduction

Since the development of deep-sea fishing and increased research on deep-sea fish, it
has been hypothesized that the most demersal fish species exhibit slow growth and long
lifespans. However, specific age estimates have remained controversial for many years
due to difficulties in interpreting age determinations [1–3]. Researchers have not reached a
consensus on the regularity of ring formation on fish hard structures under conditions of
large-scale temporal and spatial homogeneity of environmental factors at depths exceeding
500 m, which implies significant stability in deep-sea ecosystems [4]. By now, it has been
demonstrated that calcified structures of deep-sea fish show annual growth increments.
This has been evidenced by limited studies involving tagging and recapture of deep-sea fish,
particularly sablefish Anoplopoma fimbria [5,6], as well as more extensive studies comparing
the number of zones in otolith cross-sections with radiometric age estimates based on
the Pb-210/Ra-226 isotopes ratio [1,3,7–9]. These comparisons have helped optimize the
methodology for counting annual rings on otoliths, enabling the acquisition of reliable
age data, even for long-lived fish species, using current otolith preparation and growth
increment counting methods [6,10].
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The family Moridae (order Gadiformes) includes 18–19 genera and over 100 species,
six of which have been described in the past decade [11–13]. Lepidion is one of the old-
est genera in the family with fossil representatives recorded from the Middle Miocene
(11.6–16.0 Ma) [12,14–16], and is represented by nine valid species that live in deep waters
over the continental slopes and seamounts around the world [12,14–16]. Schmidt’s cod,
L. schmidti (Figure 1A), is a rare and poorly studied member of the genus [12,13], found in
the North Atlantic, southwestern Indian Ocean, and northern and southwestern Pacific [16–19].
On the Emperor Seamounts, it is found alongside its congener, L. inosimae [14,15]. Schmidt’s cod
lives at depths of 375–2404 m, with an optimal habitat range of 900–1200 m [20]; it does not
form dense concentrations and has no commercial value [11,21].
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mount (6.8 individuals per 1000 hooks). The fishing was done using Mustad (Gjøvik, 
Norway) bottom longlines (No. 14 hooks), with Pacific squid (Todarodes pacificus) and 
Pacific herring (Clupea pallasii) used as bait at 1:1 ratio. A total of 140 individuals were 
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Lepidion schmidti has been poorly studied, and there are currently no publications
documenting age and growth of this species. Although there are over 100 species in
this family, data on age and growth have only been published for a few, including
the common mora Mora moro [22,23], longfin codling Laemonema longipes [24], red cod
Pseudophycis bacchus [25–27], blue antimora Antimora rostrata [28–35], and Pacific flatnose
A. microlepis [36–38]. Among the nine valid species in the genus Lepidion, information on
growth and age is available for the North Atlantic codling L. eques only [33].

The objective of this study is to provide the first data on the growth and age of
L. schmidti from the Emperor Seamounts area based on the analysis of growth increments
on sagittal otoliths.

2. Materials and Methods

This study is based on the materials from the catches of Lepidion schmidti during the
longline commercial fishery off the Emperor Seamounts (Figure 2) on board the commercial
longliner “Palmer” (owned by LLC “Yuzhny Krest”, Petropavlovsk-Kamchatsky, Russia)
in May–July of 2014 and 2016 at depths ranging from 401 to 1062 m. The fishing was
conducted at seamounts: Koko, Lira, Ojin, Nintoku, Jingu, Kammu, T363 + A. L. schmidti
was only caught sporadically in 2014 off Jingu and Ojin seamounts, while in 2016 it was
caught only off Koko Seamount (24.7 individuals per 1000 hooks) and Lira Seamount
(6.8 individuals per 1000 hooks). The fishing was done using Mustad (Gjøvik, Norway)
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bottom longlines (No. 14 hooks), with Pacific squid (Todarodes pacificus) and Pacific herring
(Clupea pallasii) used as bait at 1:1 ratio. A total of 140 individuals were collected and
subjected to biological analysis on board the vessel using standard methods [39]. Due to
technical reasons, otoliths (sagittae) (Figure 1B,C) for age determination were collected
from 70 individuals. Only one pair exhibited a weakly calcified otolith with a modified
shape, while the remaining otoliths had a shape as described in the literature [40].
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Figure 2. The sites (red circles) where otoliths of Lepidion schmidti in the waters of the Emperor
Seamounts were collected.

Two species of the genus Lepidion inhabit the Emperor Seamount Chain area, namely,
L. enosimae and L. schmidti [16,41]. During the fieldwork period, significant attention was
paid to accurate species identification of the fish captured. Information from various
sources [15,17,19,21,41] was used for species identification, taking into account distinct
external morphological features of both species.

The age of L. schmidti was determined using a method specifically developed for some
long-lived deep-water fish species [6,10]. This method has been successfully used to determine
the age of other members of the Moridae family, such as Antimora spp. [30–32,34,35,37,38,42].
The otoliths were sectioned to the center, then heated in the flame of an alcohol burner,
and polished on abrasive disks with aluminum-oxide or silicon-carbide coating with a
grain size of 0.1–0.9 µm (Buehler, Lake Bluff, IL, USA). Age was determined by counting
annual rings on photographs of polished otolith cross-sections (Figure 3) using Adobe
Photoshop CS6 ver. 13.0 × 64 software (Adobe System, San Jose, CA, USA). The sections
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were photographed in glycerin under a Motic SMZ-143 microscope camera (Motic, Hong
Kong, China) at magnifications of ×2–8, depending on the size of the otolith.
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Figure 3. Cross-sections of otoliths of Schmidt’s cod Lepidion schmidti from waters of Emperor
Seamounts: (A)—TL 48.5 cm, 22 years; (B)—TL 61.5 cm, 31 years; (C)—TL 112 cm, 49 years (dots
indicate annual growth zones, TL is total length).

The differences in TL, body weight, and age values of males and females were tested
using the Shapiro–Wilk test with a significance level of p ≤ 0.05. The test results showed
that TL and body weight do not follow a normal distribution, while the age was normally
distributed. Thus, the Mann–Whitney U-test was used to compare TL and body weight,
and the Student’s t-test was used to compare age of males and females.

Based on the obtained age and length data, a size–age key was constructed [43], which
was used to estimate the age composition of the entire catch. To describe the growth of
the studied species, the most suitable function was chosen using the Akaike information
criterion (AIC) [44], comparing linear, power, and logistic functions, Gompertz curve, and
Von Bertalanffy growth equation (VBGE). The mean specific rate of linear growth was
estimated using the formula [45,46]:

C = Ln(Ln+1)−Ln(Ln)
tn+1−tn

, where Ln+1 and Ln are the mean lengths of fish at the ages of tn+1

and tn respectively.
Statistical analysis of the results was performed using MS Excel (Microsoft, Redmond,

DC, USA) and PAST version 3.14 software [47].

3. Results and Discussion

Due to the selectivity of the longline fishing gear, the catch was dominated by large
fish with a TL ranging from 40 to 112 cm, and an average of 60.7 ± 0.9 cm. The most
abundant individuals in the catch had a body length of 56 to 65 cm, while smaller fish
(<46 cm) and longer fish (>70 cm) were rare (Figure 4). Males and females had different
body length ranges and mean lengths, with males ranging from 43.5 to 85.0 cm (mean
59.0 ± 1.2 cm) and females ranging from 42.0 to 112.0 cm (mean 61.3 ± 1.3 cm). However,
no statistical differences were found between TL of males and females in the catches
(U = 2009; Z = 0.7875; p = 0.431)
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Figure 4. Size composition of Schmidt’s cod Lepidion schmidti in longline catches from off the
Emperor Seamounts.

The body weight of L. schmidti in the catches ranged from 0.5 to 14.7 kg, with mean
1.8 ± 0.1 kg. Most individuals in the catch (76.5%) had a body weight ranging 0.5 to 2.0 kg,
while fish weighing 2.0 to 2.5 kg composed 12.1% of the catches, and the other size groups
were represented by single individuals only (Figure 5). Meanwhile, the maximum and
mean body weight in the catches were larger in females compared to males, ranging from
0.5 to 14.7 kg (mean 1.9 ± 0.2 kg) and 0.5 to 4.4 kg (mean 1.5 ± 0.1 kg), respectively, but no
statistical differences were found between body weight of males and females in the catches
(U = 1915.5; Z = 1.2091; p = 0.227).
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The proportion of males in the catches was 41.8% of the total number of fish, while
females accounted for 58.2%, and immature individuals were not recorded.

The relationship (LWR) between body weight (W, g) and total length (TL, mm) of
L. schmidti is well described by a power function: W = 1.8 × 10−6 TL3.323 (R2 = 0.93) for
the total sample; W = 2.2 × 10−6 TL3.333 (R2 = 0.96) for males; and W = 1.3 × 10−6 TL3.390

(R2 = 0.94) for females (Figure 6). In all cases, the value of the power coefficient b in the
LWR equation exceeds 3, which may indicate positive allometric growth of the species in
the studied area [48]. No differences were found between LWR parameters of males and
females in the catches due to the absence of statistical differences in the TL and the body
weight between both sexes. In the literature, this relationship for the species considered is
given only for trawl catches from New Zealand waters and is described by the equation
W = 4.6 × 10−3 TL3.218 [49]. The power coefficient b is close to that for our sample, while
the values of linear coefficient a differ significantly, which is most likely due to the different
size range of fish in the samples.
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Figure 6. Relationship between body weight (W) and total length (TL) of Schmidt’s cod Lepidion
schmidti from longline catches in waters of the Emperor Seamounts.

The age of L. schmidti in our samples varied from 22 to 49 years, with a mean age of
31.5 ± 0.7 years. The minimum, maximum, and mean age values of males and females
were quite similar. Thus, the age of males ranged from 22 to 41 years with a mean value
of 31.9 ± 0.9 years, while for females these values were 22–49 years and 31.3 ± 1.0 years,
respectively. There were no statistical differences in the age of males and females in the
study sample (t = 0.39036, p = 0.697). Therefore, the longevity of L. schmidti is much longer
than what is known from the literature for its congener, L. eques, which has a maximum age
of 13 years corresponding to the total length of 33.2 cm [33]. For other representatives of
the genus, the data on lifespan and growth are lacking in the literature. However, among
representatives of the Moridae family, long-lived species are known, such as Antimora spp.
and common mora Mora moro [22,29,32,50].

The comparison of AIC values indicates that both VBGE and the linear function pro-
vide the best fit for describing fish growth in the sample, although VBGE values are slightly
higher (Table 1). The high AIC values obtained for the linear function and the significantly
overestimated L∞ values (Table 2), which represent the asymptotic length of the fish, are
likely attributed to the absence of small fish in the samples and a poorly pronounced
deceleration of growth in large mature individuals (Figure 7). Similar overestimations
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of L∞ values have been observed in studies of the age of other morids [28,30,31]. The
specific growth rates of the studied species between 30 and 45 years of age remain relatively
constant (Figure 8). The observed increase in growth rate after 45 years is probably an
artifact resulting from the small number of largest fish in the samples and warrants further
investigation. It should be noted that previous studies describing growth of morids have
used the VBGE without comparing it to results obtained using other functions [23,24,27].

Table 1. Akaike Information Criterion (AIC) values for different growth functions of Schmidt’s cod
Lepidion schmidti from the Emperor Seamounts waters (maximum AIC values are given in bold).

Function AIC

Linear: TL = at + b 3112.2
Power: TL = atb + c 2742.1

VBGE: TL = L∞
(

1 − e−k(t−t0)
)

3123.3

Logistic: TL = a
1+bect 2856.2

Gompertz: TL = aebect 2907.6

Table 2. Parameters of the VBGE and linear function for males and females of Schmidt’s cod Lepidion
schmidti from waters of the Emperor Seamounts.

Sex
VBGE Linear

L∞ k t0 R2 a b R2

All specimens
examined 2225.3 0.0007 −6.2 0.7 1.4 15.5 0.7

Males 984.5 0.0017 −5.0 0.7 1.6 9.7 0.7
Females 2758.6 0.0006 −6.4 0.7 1.6 11.1 0.7
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Emperor Seamounts.

The growth curves of males and females in the examined samples are nearly identical
(Figure 7), and the difference in L∞ values in the VBGE (Table 2) can be attributed to the
larger maximum size and age of the females. However, due to the limited number of largest
fish, it is challenging to assess the disparities in maximum size and age between individuals
of different sexes.

The analysis of the age structure of catches (Figure 9), determined via the size–age key
using selected age estimations, showed that the most abundant age groups were individuals
aged 32 and 34, each comprising 10% of the total catch. No fish younger than 22 years were
found in the catches, while individuals aged 22 accounted for slightly less than 6% of the
catch. Fish older than 39 years were only sporadically encountered in the catches.
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4. Conclusions

Schmidt’s cod Lepidion schmidti is a long-lived and slow-growing deep-water bentho-
pelagic fish. To provide a more detailed description of its growth characteristics, an analysis
of otoliths from individuals younger than 22 years and older than 40 years is necessary. The
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capture of large L. schmidti individuals from an already rare species through longline fishing
can have a negative impact on the condition of the population, as long-lived deep-water
fish species are highly vulnerable to fishing pressure due to their biological characteristics
such as long lifespan, slow growth rates, and low reproductive capacity [1,51–54].

According to the literature, the lifespan of morids can vary greatly. For example,
Pseudophycis bachus has a maximum known age of 5 years [25–27] and can be considered
a species with a short lifespan. Lepidion eques, Laemonema longipes, and Physiculus cyanos-
trophus have showed maximum lifespans of 13, 17, and 18 years, respectively [23,24,55],
and can be classified as species with a moderate lifespan. Antimora spp. and common
mora Mora moro are considered long-lived species [22,29,32]. Our data on the growth of
L. schmidti also indicate that this species belongs to the group of long-lived morids.

There are indications in the literature that within a same taxonomic group, the
metabolic rate might decrease, resulting in slowed growth and increased lifespan for
deep-water species. Some authors explain this phenomenon as a result of the extreme
conditions of the deep-sea affecting their metabolism [56–58]. However, it has been shown
for many species that low temperatures, oxygen deficiency, and other environmental factors
in mesopelagic fish are compensated by the organisms and do not affect the metabolic rate
and growth rate [59–64]. The slow metabolism, slow growth rates, and longer lifespan are
adaptations to the deep-sea environment, which can be partially explained by the „visual
interactions hypothesis,” which states that the metabolic rate decreases with decreasing
animal locomotor activity [65–70]. Undoubtedly, further research is needed to confirm this
theory with an example of morids. However, the fact that P. bachus occurs at depths ranging
from 5 to 700 m and has a significantly shorter life cycle than the deeper Antimora spp.,
M. moro, and L. schmidti may indicate the influence of the deep-sea environment on slowed
growth rates and increased lifespan in morid fish.

It is also important to highlight the significance of validating age determinations in
deep-water fish. Among all morids, age determination using otoliths has been confirmed
by radiometric methods for M. moro only [71], and the correlation between the number of
rings on vertebrae and otoliths has been shown for Pacific flatnose Antimora microlepis [42].
Therefore, to obtain a comprehensive understanding of L. schmidti growth, it is necessary
to analyze otoliths from age groups not covered in this study (younger than 22 years and
older than 40 years) and validate age determinations via radiometric methods. This, along
with studying the growth and age of other morid species, can become a promising topic for
future research.
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