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Abstract: While research on frog chytrid fungus Batrachochytrium dendrobatidis (Bd), an infectious
disease that threatens amphibian diversity, continues to advance worldwide, little progress has been
made in Japan since around 2010. The reason for this is, which we pointed out in 2009, that the origin
of frog chytrid fungus may be in the East Asian region, including Japan based on the Bd ITS-DNA
variation, and as few cases of mass mortality caused by this fungus have been observed in wild
amphibian populations in Japan, the interest of the Japanese government and the general public in Bd
has waned. However, we believe that organizing the data obtained so far in Japan and distributing
the status of frog chytrid fungus in Japan to the world will provide useful insight for future risk
management of this pathogen. We collected more than 5500 swab samples from wild amphibians
throughout Japan from 2009 to 2010. Then, we investigated the infection status using the Nested-PCR
method. We sequenced the obtained DNA samples and constructed a maximum-parsimony (MP)
tree to clarify the phylogenetic diversity of Bd. We detected Bd infection in 11 (nine native and two
alien) amphibian species in Japan and obtained 44 haplotypes of Bd ITS-DNA. The MP tree showed
a high diversity of Bd strains in Japan, suggesting that some strains belong to Bd-GPL and Bd-Brazil.
Except for local populations of the Japanese giant salamanders Andrias japonicus in Honshu Island
and the sword tail newts Cynops ensicauda in Okinawa Island, the Bd infection prevalence in native
amphibian species was very low. The alien bullfrog Aquarana catesbeiana had high Bd infection rates
in all areas where they were sampled. No Bd infection was detected in other native amphibians in
the areas where giant salamanders, sword tail newts, and bullfrogs were collected, suggesting that
many native amphibians are resistant to Bd infection. The sword tail newt of Okinawa Island had
both the highest infectious incidence and greatest number of haplotypes. The giant salamanders also
showed relatively high infection prevalence, but the infected strains were limited to those specific to
this species. These two Caudata species are endemic to a limited area of Japan, and it was thought
that they may have been refugia for Bd, which had been distributed in Japan Islands for a long time.

Keywords: chytrid; Batrachochytrium dendrobatidis; nested PCR; ITS; Cynops ensicauda

1. Introduction

The global pandemic of a disease of amphibians caused by the chytrid fungus Ba-
trachochytrium dendrobatidis is a serious threat to the conservation of biodiversity. Since
its discovery by Berger et al. [1], chytridiomycosis due to B. dendrobatidis (Bd) has been
proposed as the infectious disease responsible for declines in wild frog populations in
Mesoamerica, South America, and Oceania countries [1–9].

Because of the importance of the problem, clarifying the geographic source of Bd
and the mechanism of its spread has become the focus of intense research. Until now,
two hypotheses have been proposed to account for the emerging nature of Bd around the
world. The first is the “novel pathogen hypothesis”, which states that the spread of Bd into
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new geographical areas by global trade of amphibians [1,10,11]. This hypothesis has been
supported by the evidence of low genetic variation Bd around the world or reduction of
genetic diversity of in Bd from recently infected amphibian populations, based on the data
of multilocus sequence typing or microsatellite analysis [12–15].

The second is the “endemic pathogen hypothesis”, which states that the emergence
of chytridiomycosis has been caused by amphibian hosts becoming more susceptible to
pre-existing infections as a consequence of environmental changes [16–19]. This hypothesis
has received some support from data showing that Bd presented in global amphibian
populations many decades ago: by 1933 in Cameroon [20], 1934 in Kenya [21], 1938 in
South Africa [8], 1961 in Canada [19], 1894 in Brazil [22], 1888 in USA [23], and 1894–1929
in Mexico [24].

Subsequently, Farrer et al. [25], Schloegel et al. [26], and Rosenblum et al. [27] se-
quenced whole genome of Bd and discovered that at least three major lineages of Bd exist
in the world; the Cape lineage (Bd-Cape), the Swiss lineage (Bd-CH), the Brazil lineage
(Bd-Brazil), other than the Global Pandemic lineage (Bd-GPL), which has been considered
the pathogen of worldwide amphibian decline.

Moreover, later, using phylogenetic analysis of a complete DNA dataset of 234 Bd
isolates collected and cultured over nearly 20 years, O’Hanlon et al. [28] showed that the
Korean Bd lineage, Bd-ASIA-1, shows ancestral relationships with other lineages, and that
the Bd-ASIA-1 lineage shares more diversity with the global Bd population than any other
lineage, suggesting an East Asian origin for Bd.

Furthermore, in a recent study by Byrne et al. [29], multilocus genotyping for swab
samples confirmed the results of O’Hanlon et al. [28] and identified a new lineage, Bd-
ASIA-3, found in East Asia (Philippines, Indonesia, and China). The complete absence
of lethal outbreaks or population declines due to chytridiomycosis in Asia, despite the
widespread occurrence of Bd, was considered evidence of the endemic nature of host-
pathogen interactions [30].

On the other hand, Byrne et al. [29] pointed out that their own method that select
samples for genotyping based on the positive results of qPCR may introduce sampling
bias and detect only Bd-GPL genotypes. Therefore, the currently estimated diversity of Bd
may still be greatly underestimated, suggesting that many undiscovered Bd strains are still
latent, especially in Asia where the number of samples is small.

In Japan, Asia’s first case of chytridiomycosis was confirmed in December 2006 in
an exotic frog, Ceratophrys ornata, which was being kept in captivity [31]. Then, it became
a major topic of discussion that endemic amphibians might become extinct due to a pan-
demic of this disease, and many researchers began to investigate. From 2007 to 2008, our
research team promoted a nationwide survey and analyzed the genetic variation of Bd
using the ITS-DNA region. The results showed that the Japanese endemic giant salamander
is infected by a specific lineage and that the Okinawa Island newts possessed the most
diverse lineage in the world at that time [32].

At that time, there was very little information on frog chytrid fungus in the Asian
region, so our findings highlight the importance of the Asian region in the search for the
origin of Bd. However, as our results indicated that Bd was likely to be an endemic pathogen
in Japan, and as there was little evidence of damage to native species in Japan, the sense of
urgency about Bd diminished within the Ministry of the Environment and among many
researchers in Japan. Our research team also had to deal with more important invasive
alien species such as fire ants, and the frog chytrid research project was discontinued.

On the other hand, researchers all over the world are focusing on the diversity and
endemism of Bd in East and Southeast Asia, where phylogenetic studies have been lagging
behind. Naturally, the Bd of the Japanese archipelago is also an important subject of
investigation for clarifying the origin and diversity of Bd in Asia and the world.

We have accumulated the ITS-DNA sequences of Bd from all around the Japan Islands
as a continuance of our previous study in order to grasp the Bd infection state in wild
amphibians since 2009 to 2010. The only data we have are ITS-DNA sequences of frog
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chytrid fungi collected from various parts of Japan, which are very short sequences for
phylogenetic analysis of Bd, but we believe that they are useful for estimating the diversity
of Bd lineages in Japan. In particular, there are very few data for the Japanese archipelago,
even in the global-scale Bd diversity studies mentioned above.

In this paper, we analyze the data we have ever obtained to summarize the infection
prevalence and the diversity of Bd lineages in various amphibians from Japan.

2. Materials and Methods
2.1. Swab Samples from Wild Amphibians in Japan

As in our previous study [32], we collected swab samples from various species at
a range of sites in all prefectures of Japan’s four main islands (Hokkaido, Honshu, Shikoku,
and Kyushu Island) and from Japan’s southwestern islands (Amami, Okinawa, Ishigaki,
and Iriomote).

We surveyed a total of 950 collection sites, adding 14 new sites to our previous
collection sites [32], and obtained 5517 new samples, representing 47 native species and
2 alien species. The landscape of the sampling points varied from agricultural fields to
native forests. Amphibians were captured between June 2009 and July 2010 and were
handled individually by using a new pair of disposable plastic gloves for each specimen to
avoid contamination of samples. Immediately after we captured the wild specimens, we
collected fungal samples by swabbing the ventral surface, legs, and feet of each amphibian
with a sterile cotton swab (Men-tip 1P1501, Nihon-Menbo Co., Tokyo, Japan). We then
released each amphibian at the sampling point. All swab samples were stored at −28 ◦C
until analysis. Batrachochytrium dendrobatidis DNA was extracted from swab samples
according to the same procedure used previously [32].

2.2. Nested PCR Assay

We used the nested PCR assay developed in our previous study [32] to detect Bd.
A region of the 5.8S ribosomal RNA gene as well as the ITS1 and ITS2 regions were amplified
by using a nested PCR assay involving two pairs of primers. During the first-round PCR am-
plifications, the outer primers Bd18SF1 (5′-TTTGTACACACCGCCCGTCGC-3′), and Bd28SR1
(5′-ATATGCTTAAGTTCAGCGGG-3′) amplified the DNA fragment between the end of the
18S rRNA gene and the start of the 28S rRNA gene; DNA extracted from swab samples
was used as template. During the second-round amplification, the target ITS1–5.8S–ITS2
regions were amplified from the first-round PCR products by using the primers Bd1a (5′-
CAGTGTGCCATATGTCACG-3′) and Bd2a (5′-CATGGTTCATATCTGTCCAG-3′), both of
which were designed to be specific for Bd [33]. Thus, we obtained sufficient specific and
highly concentrated PCR product to sequence of the amplified DNA fragments.

PCR assays were conducted according to the same procedure described previously [32].
Each product of the second-round amplification was sub-cloned into a vector plasmid by
using a pT7 Blue Perfectly Blunt Cloning Kit (Novagen, EMD Bioscience, San Diego, CA,
USA) and transferred into Escherichia coli in accordance with the manufacturer’s protocol.
The cloned fragments in 3 positive clones for each nested-PCR product were sequenced
by using the T7 promoter and U19 reverse primers and an ABI3730 Sequencer (Applied
Biosystems, Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Phylogenetic Analysis of the ITS Gene

To clarify the genetic divergence of Bd in Japan, we constructed a phylogenetic tree
by using the ITS-DNA haplotypes detected in the present study and in our previous
study [32]. For this analysis, we included Bd ITS-DNA sequences obtained from other
countries: China [34], North and South America [26,32], and Italy [32], as the lineage
comparators. We used ITS-DNA sequences from 6 other species of chytrids (AUS_3,
ITA2590, AUS_8, AUS_9, AUS12, ITA2633, and ITA2580; see Goka et al. [32]) as outgroups.
The tree was constructed in the maximum-parsimony method, as done previously [32].
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We aligned Bd sequences with those from the selected outgroups by using ClustalX [35].
The alignment results were modified manually to minimize the numbers of insertions and
deletions (indels). The phylogenetic relationship of ITS haplotypes of B. dendrobatidis
was analyzed by using the maximum-parsimony method. We used PAUP* 4.0b [36] to
reconstruct trees. All characters were weighted equally; all indels were coded as binary
data (sequence present = 1, sequence absent = 0). The maximum-parsimony analysis was
conducted through a heuristic search with the TBR branch-swapping option. To identify
multiple islands of equally most-parsimonious trees, 100 rounds of random sequence addi-
tions were performed [37]. Bootstrap analysis [38] with 10,000 replications was performed
by using the same program and analysis setting.

3. Results
3.1. Infection Status and Haplotype Variation of Bd in Japan

The present survey identified 207 infected wild amphibians among the 5517 sampled,
leading to an incidence of infection of 0.038, which is similar to that of our previous study
(0.041 (87 of 2103 animals)). We detected Bd on all of the islands we surveyed except
Hokkaido, Ishigaki, and Iriomote (Figure 1).

Buergeria choui 0/36
Fejervarya sakishimensis     0/41
Microhyla kuramotoi 0/4

Aquarana catesbeiana 7/35 : A (3), D (1), Bd27(1), Bd31(2)
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Dryophytes japonicus 0/58
Fejervarya limnocharis     2/326 : A (1), C (1) 
Glandirana rugosa 0/73
Hynobius nebulosus 0/5
Pelophylax nigromaculatus 1/45 : A (1) 
Rana japonica 0/10
Rana ornativentris 0/1
Rana tagoi 0/6
Rana tagoi yakushimensis 0/5
Rana tsushimensis 0/5
Rana sp. 0/9
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Buergeria japonica 1/71: Bd39 (1)
Cynops ensicauda 6/134: C (5), Bd48 (1)
Fejervarya limnocharis 0/13
Hyla hallowellii  0/6
Microhyla okinavensis 0/8
Odorrana amamiensis 0/69
Odorrana splendida 0/30
Zhangixalus amamiensis 0/4

Buergeria choui 0/2
Fejervarya sakishimensis 0/4
Kurixalus eiffingeri 0/1
Microhyla kuramotoi 0/2
Polypedates leucomystax 0/14
Rhinella marina 0/13

Andrias japonicus 23/46 : K (23)
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Buergeria buergeri 0/18 　
Bufo japonicus                0/52 　
Bufo torrenticola  0/11 　
Cynops pyrrhogaster 0/81 　
Dryophytes japonica 1/517 : A (1)
Fejervarya limnocharis    3/329 : A (2), Z (1)
Glandirana rugosa 2/218 : E (1), F (1)
Hynobius hidamontanus 0/6 　
Hynobius kimurae 0/10 　
Hynobius lichenatus 0/14 　
Hynobius nigrescens 0/2 　
Hynobius sematonotos 0/1 　
Hynobius setouchi 0/8 　
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Glandirana rugosa 0/15
Hynobius retardatus 0/3
Pelophylax nigromaculatus 0/16
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   Hokkaido Is.
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Buergeria japonica 0/542 　
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                                                    Bd41(1), Bd42(1), Bd43(1), Bd44(1), Bd45(1), Bd46(1), Bd47(1), Bd48(7), Bd49(1), Bd50(1), 　
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Microhyla okinavensis 0/43 　
Oddorana narina 1/11: C(1)
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Aquarana catesbeiana 0/3
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Glandirana rugosa 0/40
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Shikoku Is.
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Figure 1. Distribution of Batrachochytrium dendrobatidis in amphibians across Japan. The incidence of infection in each
amphibian species is defined as the number of infected animals/the number of sampled animals; the haplotype code is listed
after each species. The number in parentheses represents the number of animals carrying the haplotype of interest. The
circles on the map show the sampling points of swabs. Each colored circle indicates the sampling points of each amphibian
species that were found to be infected.



J. Fungi 2021, 7, 522 5 of 11

We detected Bd infection in 11 amphibian species (Table 1), adding 3 native species to
the results of Goka et al. [32]. Nine species were native, and the remaining 2 were alien
(Aquarana catesbeiana and Xenopus laevis). The giant salamander (A. japonicus) of Honshu
Island and the sword-tail newt (Cynops ensicauda) of Okinawa Island showed the highest
prevalence of infection in both our previous [32] and the current (23 of 46 (0.500) and
87 of 137 (0.635), respectively) study. Notably, the C. ensicauda population in Amami Island
showed lower prevalence (6 of 134 samples (0.045)).

Table 1. Prevalence of Bd infection in amphibian species in Japan.

Distribution Species Number of
Animals Tested

Number of
Animals Infected

Prevalence of
Infection

Honshu Is. Andrias japonicus 46 23 0.500

Honshu, Shikoku, Kyushu and
South-Western Is. Fejervarya limnocharis 987 6 0.006

Hokkaido, Honshu, Shikoku and
Kyushu Is. Dryophytes japonicus 700 1 0.001

Honshu, Shikoku, and Kyushu Is. Pelophylax nigromaculatus 656 2 0.003

Honshu Is. Pelophylax porosus 188 3 0.016

Honshu, Shikoku, and Kyushu Is. Glandirana rugosa 346 2 0.006

Amami Is. (endemic)
Buergeria japonica 71 1 0.014

Cynops ensicauda ensicauda * 134 6 0.045

Okinawa Is. (endemic)
Cynops ensicauda popei * 137 87 0.635

Odorrana narina 11 1 0.091

Alien species Aquarana catesbeiana 260 67 0.258

Xenopus laevis 24 8 0.333

* Sub-species of Cynops ensicauda.

The prevalence of Bd infection of all other native amphibian species was low (Table 1).
The 4 native species (Fejervarya limnocharis, Dryophytes japonicus, Pelophylax nigromaculatus,
and Glandirana rugosa) showing low prevalence in our previous study [32] again demon-
strated low prevalence in the present study (6 of 987 (0.006), 1 of 700 (0.001), 2 of 656 (0.003),
and 2 of 346 (0.006), respectively) despite an increase in the number of samples.

In addition, among the species newly identified as Bd-infected, Pelophylax porosus from
Honshu Island and Buergeria japonica from Amami Island had remarkably low prevalence
of Bd infection (3 of 188 (0.016) and 1 of 71 (0.014), respectively). In contrast, the new Bd
host, O. narina of Okinawa Island, had a relative high prevalence of Bd infection (0.091),
but the sample size (n = 11) was small. The two naturalized alien species—A. catesbeiana
and X. laevis—showed relatively high prevalence values (approximately 0.3).

In the present study, we detected 44 haplotypes (A through L, N through P, S, T, W,
Y, Z, and Bd27 through Bd50) from wild amphibians (Figure 1). Of these 44 haplotypes,
24 (Bd27 through Bd50; GenBank accession numbers, AB723963 through AB723986) were
discovered during the present study. The native species had 33 haplotypes, whereas alien
species carried 17 haplotypes.

The most frequently detected haplotype was A (94 of 207 samples (0.454)). Except for
the K haplotype, which is unique to the giant salamander, the next most frequent haplotypes
were E (13 of 207 (0.063)) and C (7 of 207 (0.034)). Each of the other 41 haplotypes was
detected in only 1 or a few animals (Figure 1).

In mainland Japan, the amphibian species carrying highest diversity of Bd haplotypes
was the American bullfrog (A. catesbeiana), which carried 17 haplotypes. However, the
sword-tail newt (C. ensicauda) on Okinawa Island had much higher Bd haplotype diversity,
carrying as many as 28 haplotypes.
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Almost all infected animals carried only 1 haplotype. Among 207 samples, only
8 A. catesbeiana and 2 C. ensicauda popei carried 2 haplotypes each. Therefore only 5% of
infected samples showed polymorphic ITS-DNA of Bd.

3.2. Phylogenetic Analysis of ITS-DNA Haplotypes in Bd

We inferred 37 indels from the results of the multiple alignment and included these in
the phylogenetic analysis as binary data. Among a total of 359 characters, 35 (including
25 indels) were parsimony-informative among Bd accessions. We obtained 6164 most
parsimonious (MP) trees of 298 steps in a single island, at a CI of 0.79 (CI excluding
uninformative characters, 0.74) and an RI of 0.91.

As a result, four major groups were recognized in all MP trees (Figure 2). One (Group I)
comprised three haplotypes (B, J, and K) with a high bootstrap value (99%), and the other
was composed of all remaining haplotypes. The result that Bd lineage specific to the giant
salamander constitutes a unique clade is consistent with our previous study.
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Figure 2. Phylogenetic tree of the ITS haplotypes of Batrachochytrium dendrobatidis, generated by using maximum-parsimony
analysis. The numbers under the branches are the parsimony bootstrap support values for values greater than 50%.
The numbers above the branches represent the lengths of the branches. Red text indicates haplotypes detected in Japan
(50 types); blue text indicates sequences detected in China (21 types) [34]. Green text indicates sequences detected in North
and South America (31 types) [26]; black text indicates sequences detected in the USA, Ecuador, and Italy (12 types) [32].
The red arrows indicate haplotypes of Bd ITS-DNA on C. ensicauda (30 types), indicating that all group strains of Bd except
group I have been detected from the newt.

This second group was split into three subgroups in all MP trees: two (groups II and
III) were formed by 16 Japanese haplotypes and haplotypes from other countries that were
assigned to Bd-Brazil [26], and the remaining subgroup (group IV) comprised all remaining
Japanese haplotypes and all haplotypes from other areas and assigned to Bd-GPL [26].
Thus, the topology of the MP phylogenetic tree suggested that the Japanese Bd lineage
encompasses the globally distributed lineages Bd-GPL and Bd-Brazil. The sward-tailed
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newts (C. ensicauda) of Okinawa Island carried Bd strains belonging to Groups II, III, and IV.
On the other hand, the sward-tailed newts of Amami Island and other native amphibian
species except of the giant salamander carried only Group IV Bd strains. The alien bullfrogs
(A. catesbeiana) also carried strains belonging to Groups II, III, and IV (Figure 1).

4. Discussion

Adding the six haplotypes (M, Q, R, U, V, and X) that have been detected only in
amphibians bred in pet shops and institutions [32] to the haplotypes detected in the
present study, we have identified 50 haplotypes of Bd in Japan to date. Interestingly, most
of the infected amphibians carried a single Bd haplotype, as same as the result of our
previous study [32], and only 5% of infected amphibian samples showed polymorphic
(two haplotypes) ITS-DNA of Bd. In contrast, Bai et al. [34] found much higher hetero-
geneity of Bd in individual amphibians in China. In their study, 26 of 66 infected samples
each carried a single haplotype, and 30, seven, and three animals carried two, three, and
four haplotypes, respectively, indicating that as many as 60.6% of infected amphibians
carried multiple Bd haplotypes in China. Such a difference in the number of Bd haplotypes
infecting a single amphibian between Japan and China is of great interest and may become
a key factor for revealing the co-evolutionary history between amphibians and Bd. Perhaps
Bd was introduced into China recently, allowing multiple haplotypes to infect a single
amphibian simultaneously; Bd in Japan may have inhabited each amphibian strain or
population for a long time, resulting in a one-to-one relationship between host and Bd
races. Although this scenario is of course only one possibility, investigating the geno-
typic relationships between host and Bd in various host species and geographic regions
merits attention.

Based on the MP tree of the Bd ITS-DNA haplotype, the lineages infecting the gi-
ant salamander A. japonicus form a phylogenetically unique group, suggesting a special
relationship with the host giant salamander. In particular, the Bd of the Japanese giant
salamander was detected in a specimen from 1902 [32], which has been the oldest case of
Bd infection in Japan. The ITS-DNA of the same sequence as that of the Japanese giant
salamander-specific Bd lineage has been reported from one frog species native to China [34],
but no other case has been reported so far. This giant salamander-specific Bd strain is ex-
pected to be a key in investigation of the origin and evolution of the chytrid fungus in Asia.
In the future, we should establish an isolation culture of this strain and analyze the detailed
genetic and pathological information.

Three other phylogenetic groups were divided in the MP-tree, two of which were
presumed to be the Bd-Brazil lineage and the other one the Bd-GPL lineage, suggesting
that the Japanese Bd lineage encompasses the globally distributed lineages Bd-GPL and Bd-
Brazil. All Bd strains carried by native Japanese amphibians other than the giant salamander
and the sward-tailed newt belong to the Bd-GPL strain. On the other hand, the sward-tailed
newt from Okinawa Island were infected with both Bd-Brazil and Bd-GPL strains. The
Bd-GPL strain has been reported worldwide, but Bd-Brazil has only been reported from
the North America, Korea, and Brazil so far. Moreover, Bd-Brazil has been found in native
amphibians only in Brazil [26,28,39,40]. Our results indicate that Bd-Brazil has infected
an isolated endemic amphibian, the sward-tailed newt C. ensicauda, on a remote Japanese
island, that would be the first case of native species with Bd-Brazil outside Brazil.

Furthermore, the sward-tailed newt of Okinawa Island had the highest Bd infection
rate in Japan and was the host infected with the most diverse Bd strains, meaning that this
species is the core of Bd diversity in Japan.

These results strongly suggest that sward-tailed newt in the Okinawa Island is a very
important species for exploring the origin and history of genetic differentiation of Bd not
only in Asia but also worldwide. The earliest data on Bd traces in Brazil suggest that
Bd was invading or inhabiting the country as early as 1894, and it appears that the early
invasion was by Bd-Brazil, followed by a secondary introduction of Bd-GPL into Brazil in
the 1970s [22,40]. The first Japanese immigration from Japan to Brazil is officially recorded
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to have been in 1908, and even before that, a group of Japanese immigrants in Hawaii is
considered to have gone to South America [41,42]. It is possible to envision a scenario in
which these historical flows of people and trade led to the Bd-Brazil spillover from Japan.
In order to explore the history of Bd in Japan and around the world, accumulating detailed
genetic information on Bd itself as well as tracing the history of international immigration
and trade may provide important insights.

Interestingly, the incidence of infection in the sword-tail newt population of Amami
Island, was quite low (six of 134 animals (0.045)), compared to those in the newt population
of Okinawa Island. The two island populations of the sward-tailed newt have been
considered to have a sub-species relationship [43]. Later, Tominaga et al. [44] showed
the presence of remarkable genetic differentiation between the Okinawa and Amami
Islands populations of the newt based on phylogenetic analysis of the mitochondrial
cytochrome b gene, supporting the validity of the subspecies relationship between them.
Moreover, recently, The Herpetological Society of Japan named the Amami and Okinawa
Islands populations of the sward-tailed newt as subspecies; Cynops ensicauda ensicauda and
C. ensicauda popei, respectively (see http://herpetology.jp/wamei/index_j.php (accessed
on 29 June 2021)).

These sword-tail newt sub-species have been separated for 3 to 5 million years, ac-
cording to molecular phylogeny by Tominaga et al. [44]. Such genetic differentiation likely
affected the evolution of resistance or immunity against Bd. Ecologic, physiologic, and envi-
ronmental characteristics may be the keys to elucidating the mechanisms of differentiation
in Bd infection between these two sub-species of sword-tailed newts.

In addition, only a few amphibian species other than newts were found to be infected
in the entire Southwestern Islands, and it is necessary to increase the number of samples
to investigate the infection status in these islands in detail. The fauna of the Southeast
Islands of Japan is characterized by a high ratio of endemic taxa and genetically diverged
populations, most of which have supposedly been isolated from their relatives as a result
of island formation, e.g., [45–47]. These islands are also likely to be important research
points for exploring the diversity of Bd fungus.

On the other hand, the exotic bullfrog had a high infection rate in all areas where it
was captured. This result is consistent with previous foreign studies [39,48] that suggest
that bullfrogs act as boosters of Bd and contribute to the spread of Bd throughout the
world [26,29,40,49,50].

The infection rate of native amphibians was low, even in the vicinity where bullfrogs
live and on the Okinawa Island where the highly infected sword-tailed newts inhabit,
suggesting that native amphibians have some mechanisms of resistance to Bd infection
as a lot of studies inspected [28,51]. In South Korea, a neighboring country of Japan, it
has been reported that there are few cases of infection or disease in native amphibians,
and laboratory experiments using cultured strains of the fungus have shown that native
amphibians have resistance to the fungus [30]. It is likely that many Japanese amphibians
have also developed this resistance through coevolution with Bd. It is suggested that some
lineages of Caudata, such as the giant salamanders and sword tail newts, are refugia for Bd
in the Japanese Islands.

Already, research on further Bd genetic diversity is continuing throughout the world,
and analysis at the genome level is making great progress [40]. Based on the genome
analysis to date, it is presumed that the key lineage for the origin of Bd exists in East and
Southeast Asia [28,29]. It cannot be denied that the data presented here is only a small
amount of information on DNA of a small base length and has little direct contribution
to genetic analysis on a global level. Nevertheless, our results show that the Japanese
archipelago is a very important area to explore Bd diversity in the Asian area, and that it
is an area that has been left behind in Bd research. There are still many very interesting
subjects to be discovered, such as whether the recently discovered lineage of Bd, Bd-ASIA1
and Bd-ASIA3, exist in the Japanese archipelago, and what is the position of Bd in Japan
in the biogeography of Bd in Asia as a whole. In the future, it is necessary to restart the
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research project in Japan and to promote the investigation of Bd strains in the whole Asian
region including Japan under the international collaboration system.
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