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Abstract: DNA barcoding is a powerful method for the identification of lichenized fungi groups
for which the diversity is already well-represented in nucleotide databases, and an accurate, robust
taxonomy has been established. However, the effectiveness of DNA barcoding for identification
is expected to be limited for understudied taxa or regions. One such region is Antarctica, where,
despite the importance of lichens and lichenized fungi identification, their genetic diversity is far
from characterized. The aim of this exploratory study was to survey the lichenized fungi diversity
of King George Island using a fungal barcode marker as an initial identification tool. Samples
were collected unrestricted to specific taxa in coastal areas near Admiralty Bay. Most samples were
identified using the barcode marker and verified up to the species or genus level with a high degree
of similarity. A posterior morphological evaluation focused on samples with novel barcodes allowed
for the identification of unknown Austrolecia, Buellia, and Lecidea s.l. species. These results contribute
to better represent the lichenized fungi diversity in understudied regions such as Antarctica by
increasing the richness of the nucleotide databases. Furthermore, the approach used in this study is
valuable for exploratory surveys in understudied regions to guide taxonomic efforts towards species
recognition and discovery.

Keywords: Lichen-forming fungi; Admiralty Bay; DNA barcoding; diversity; Austrolecia; Buel-
lia; Lecidea

1. Introduction

Lichenized fungi are filamentous fungi (mycobionts) which associate with one or
more alga and/or cyanobacteria (photobionts) to form stable symbiotic structures known
as lichens. More than 19,000 ascomycete fungal species from several orders are obligate
lichens with polyphyletic origins [1–3]. Due to the properties conferred by the symbiosis,
lichenized fungi can be found in every major ecosystem, including those with extreme
conditions such as Antarctica [4]. In these ecosystems, lichenized fungi play important
roles as providers of numerous ecosystem functions and services [5]. For example, their
thalli can harbor a rich microbial community and are thought to be a platform for the
diversification of other fungal species [6,7].

Paramount to lichenized fungi research and diversity estimation is an accurate species
delimitation. Recently, lichen species delimitation and identification shifted towards an
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integrative approach, i.e., using multiple and complementary sources of evidence [8,9].
As a taxonomy tool, molecular data can be used to evaluate current species hypotheses
or propose putative species under a robust statistical framework, which can be further
evaluated using additional evidence [10]. The inclusion of molecular data is valuable
in scenarios where phenotypic characters are limited such as for cryptic species [9,11,12];
however, the establishment of more than 184 morphologically distinct species of the basidi-
olichen Core based on barcoding sequences exemplifies its potential for accurately assessing
the biodiversity of even well-studied macrolichens [13,14].

When used as a complementary or main identification tool, DNA barcoding has been
shown to be useful for some lichenized fungi species [15–17]. The conventional DNA
barcode marker for Fungi is the internal transcribed spacer (ITS) [18]. Despite potential
challenges arising for some groups when used as the only marker (e.g., intragenomic varia-
tion or lack of resolution for discrimination), the ITS marker remains a useful exploratory
means to assess fungi species delimitation and identification [8,19]. For many species it
may be necessary to include additional markers and interpret the phylogenetic results in
an integrative context to obtain an accurate outline of their boundaries [20].

The success of DNA barcoding for species identification is directly related to the
amount of information for a given group in a “taxonomic” setting and the area of study in
a “floristic” setting [15]. As species identification using DNA barcoding relies on a stable
taxonomy and reliable nucleotide repositories; its applicability is limited for understudied
communities and habitats [8,21]. In that regard, Antarctic lichenized fungi diversity is far
from fully characterized and early phenotypical documentations have been shown to be
imprecise in light of new molecular evidence [22]. Furthermore, apart from limited taxon
coverage, practical problems concerning sequence submissions to reference databases could
hinder the achievement of a precise identification and call for a careful, individual analysis
of sequence-based results [8,23,24].

High-throughput sequencing techniques have become increasingly common when
characterizing both mycobiont and photobiont molecular diversity [25,26]. Compared
to conventional Sanger sequencing, HTS allows for a far more reliable determination of
the sequences within a mixed sample, making it useful for studying both the main lichen
components but also the underlying thalli-associated microbiome [27–30]. DNA metabar-
coding approaches have shown a high potential for lichen biodiversity assessments [31,32];
although an additional consideration to the ones mentioned above is to take caution when
discriminating the target lichenized fungi from the “noise” generated by the presence of
secondary fungi, biological variation and sequencing artifacts [29,31,33].

Previous studies involving DNA sequencing in Antarctica have been circumscribed to
specific taxonomic groups, while others employed a “floristic” context. An early effort to
identify lichenized fungi in a molecular survey context on King George Island was unsuc-
cessful due to the limited completeness of repositories at the time [34]. Later on, molecular
species delimitations conducted across Antarctica resulted in a better understanding of
lichenized fungi diversity in this extreme environment, while at the same time contributing
to increasing their sequence representativity in the databases [26,35–37].

In this study, we explored the lichenized fungi genetic diversity on King George Island
using a floristic survey in combination with a DNA barcode obtained through Sanger
sequencing. Our methodological approach resulted in the determination of a rich lichen
diversity. The data gathered allowed us to assess whether the current information stored
in the nucleotide databases allowed a direct, exact identification of lichenized fungi in an
area without a previous phenotypic characterization. In addition, our “floristic” approach
resulted in a description of species with previously unknown barcodes, which contribute to
the enrichment of the current nucleotide databases and could lead future sampling efforts
towards the discovery of taxonomic novelties.
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2. Materials and Methods
2.1. Study Site and Handling of Samples

Samples were collected on King George Island during the XXVI and XXVII Scientific
Campaigns from Peru to Antarctica carried out in 2019 and 2020, respectively. Lichens
were collected unrestricted to their taxon using transects in three sites along the coast of
Admiralty Bay (Figure 1, Table 1). In 2019, six transects were used in the surroundings
of Machu Picchu Scientific Base (Peru; transects 1–6). In 2020, two transects were used in
each sampling site near the research stations Henryk Arctowski (Poland; transects 7 and 8),
Machu Picchu (transects 9 and 10), and Comandante Ferraz (Brazil; transects 11 and 12).
Small lichen fragments were collected, along with rocks or bryophytes cut using sterilized
tools depending on how attached they were to the substrates. Rare or scarce lichens were
not collected to avoid depleting the current lichen diversity.
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Figure 1. Sampling sites in this study. Lichens were collected in coastal areas near Admiralty Bay,
King George Island, in three sites indicated by black ovals near research stations. Numbered green
and pink points indicate transects used during scientific expeditions in 2019 and 2020, respectively.
Information about each transect is detailed in Table 1.
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Table 1. Study site information. Sample size and coordinates are indicated for each transect.

Site Name Transect
Number

Sample Size
Coordinates

Latitude Longitude Elevation
(m)

Scientific Campaign ANTAR XXVI–2019

Machu Picchu Base 1 3 62◦5′32′′ S 58◦28′9′′ W 1
2 9 62◦5′32′′ S 58◦28′15′′ W 2
3 32 62◦5′43′′ S 58◦29′19′′ W 201
4 6 62◦6′12′′ S 58◦27′46′′ W 25
5 48 62◦5′38′′ S 58◦28′25′′ W 41
6 24 62◦5′40′′ S 58◦28′26′′ W 44

Scientific Campaign ANTAR XXVII–2020

Henryk Arctowski Base 7 27 62◦9′48′′ S 58◦28′5′′ W 46
8 30 62◦9′48′′ S 58◦28′2′′ W 41

Machu Picchu Base 9 25 62◦5′36′′ S 58◦28′12′′ W 21
10 30 62◦5′36′′ S 58◦28′28′′ W 38

Comandante Ferraz Base 11 46 62◦4′51′′ S 58◦25′20′′ W 48
12 25 62◦5′7′′ S 58◦25′7′′ W 53

All samples were placed in paper bags and stored in a dry thermic box before they
were taken to the laboratory. There, the samples were sterilized using consecutive washes
with ethanol 95%, sodium hypochlorite 0.5% and ethanol 70%, dried in a clean bench
surface covered with paper towels and stored in individual sealed paper bags at room
temperature until molecular processing.

2.2. DNA Extraction from Lichen Thalli

Up to 100 mg of lichen thalli from each sample was cut into pieces or scraped from
its substrate into separate microtubes for DNA extraction with a modified protocol from
Cubero and Crespo (2002) [38]. Both vegetative and reproductive material (when present)
were used indistinctively, but small debris or substrate remains were removed. A small
portion of 300 µm glass beads proportional to at least half the volume of the sample,
and a single 5 mm steel bead were added to the microtube containing the tissue before
exposing it to nitrogen liquid and shaking in a TissueLyser II for 1 min. This cycle of
cooling and shaking was repeated two times before spinning down, adding a CTAB lysis
buffer (100 mM Tris-HCl [pH 8.0], 30 mM EDTA, 1 M NaCl, 1% CTAB, 1% w/v PVPP) and
incubating for 45 min at 70 ◦C, mixing by inversion every 10 min. For hard material such
as thalli from Usnea species, adding more glass beads or an additional shaking cycle was
needed before obtaining a fine powder. A purification step using chloroform−isoamyl
alcohol (24:1) was performed and the upper phase was transferred to a new tube. Two
volumes of CTAB precipitation buffer were added (40 mM NaCl, 0.5% w/v CTAB) and the
supernatant discarded after centrifugation. Prewarmed 400 µL of 1.2 M NaCl was added to
resuspend the pellet and then 2 µL of DNAse-free RNAse (10 mg/µL). After incubating
for one hour at 37 ◦C, a new purification step using chloroform−isoamyl alcohol (24:1)
was performed along with successive washes with isopropanol and ethanol as indicated in
the original protocol [38]. The DNA was resuspended in 50–75 µL of TE buffer (0.1 mM
Tris-HCl [pH 8.0], 0.1 mM EDTA) and stored at −20 ◦C for later use.

Genomic DNA concentration and quality was determined using a Nanodrop spec-
trophotometer and an agarose electrophoresis gel. The protocol was repeated with a higher
amount of tissue when DNA yield or purity was low (depending on the sample availability).
The DNA extraction was considered successful when at least 1 ng/µL was obtained along
a minimum 260/230 absorbance ratio of 1.5. Results were reported as median and the first
and third quartiles (Q1 and Q3, respectively).

2.3. PCR Amplification of Fungal Barcode Marker

The fungal ITS region (ITS1-5.8S-ITS2) was amplified using the fungi-specific primer
combination ITS1F and ITS4 [39,40]. The master mix conditions were optimized for the
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GoTaq® DNA Polymerase as follows: 1X GoTaq® Reaction Buffer, 200 µM of each dNTP,
1.5 mM MgCl2, 0.7 µM of each primer, and 50 ng of template DNA. The cycling conditions
in an Eppendorf thermocycler consisted in 1 cycle of 95 ◦C for 7 min; 30 cycles of 95 ◦C for
30 s, 56 ◦C for 1 min, and 72 ◦C for 30 s; and 1 cycle of 72 ◦C for 7 min. The amplicons were
visualized in 2% agarose gels and purified with the Wizard® SV Gel and PCR Clean-Up
kit, either using the PCR product or a gel fragment containing a single band. The PCR was
repeated with a higher amount of template DNA for samples showing a low-intensity band
or negative initial amplification.

2.4. Sequencing and Sequence Analysis

A subset of amplicons was sequenced in both directions using Sanger sequencing in
an external laboratory. The resulting sequences were manually edited using Sequencher
5.4.6 [41] or removed from the analysis depending on the quality of the electropherograms.
A consensus was generated for samples with both forward and reverse sequences avail-
able. All sequences were submitted to GenBank under the accession numbers OP730747–
OP830861.

Each sequence was independently subjected to a BLAST similarity search against
GenBank using the nblast algorithm with default parameters except for the maximum
number of alignments which was set to 500 [42]. Samples with sequences matching non-
lichenized fungi were discarded from further analysis. BLAST matches were filtered using
a minimum coverage and identity percentage of 80% and 95%, respectively; except for some
sequences with no high-similarity association in which the minimum identity percentage
used was 80%.

For the sequences identified as lichenized fungi in BLAST, a bootstrap consensus tree
from a maximum likelihood analysis with 1000 bootstrap iterations was constructed in
RaxML version 8 using an alignment with the ambiguous sites removed in GBlocks [43,44].
The GTR+I+G substitution model was selected for tree construction. Public sequences from
the closest Species Hypothesis (SH) in the UNITE database [45] were included for unique
samples in this dataset. As the purpose of this analysis was to cluster the samples rather
than to infer phylogenetic relationships, no outgroup was included.

2.5. Sequence-Based Grouping and Identification

The samples were grouped based on their filtered BLAST hits and maximum likelihood
analysis results. An initial identification up to the species or genus was made only for
groups with BLAST hits with high identity percentages available based on the top match
or lowest common ancestor (LCA). These identifications were verified or, in few cases,
improved a posteriori through the search of morphological diagnostic characters. On the
other hand, for groups with no high-similarity BLAST associations (i.e., samples with novel
barcodes), a morphological description of the thallus and reproductive structures was
carried out in order to establish their taxonomic classification.

3. Results and Discussion
3.1. SAMPLE Heterogeneity and Molecular Processing Performance

A total of 305 lichen samples displaying a varied morphological diversity were col-
lected on King George Island during two scientific expeditions (Figure 1, Table 1). As
the sampling was restricted to three sites in coastal areas in Admiralty Bay because of
the difficulty to access inland areas, and perceived scarce lichens were not collected, the
lichens in this study may not represent the full diversity on King George Island. Most of the
samples were recognized as small crustose lichens difficult to identify without an in-field
taxonomist. Some common lichen types such as Usnea antarctica/U. aurantiacoatra and
Placopsis antarctica were readily recognized because of their distinctive macromorphological
characteristics. Crustose or fruticose lichens with grey to white granular and squamulose
scattered thalli were recognized as either Stereocaulon or Ochrolechia species, frequently
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found on top of bryophytes and mixed with other lichens. Few foliose lichens recognized
as Umbilicaria or Xanthoria elegans were found.

The DNA extraction protocol used in this study showed a high degree of universality,
as it resulted in DNA with yields (median: 30.43 ng/µL, Q1: 9.45 ng/µL, Q3: 91.11 ng/µL)
and purity levels (median: 1.83, Q1: 1.75, Q3: 1.91) appropriate for successive assays
for 80% (244/305) of samples independently of their morphology and/or type (Figure 2).
Most of the samples from which DNA could not be extracted or which did not meet the
minimum criteria were small fragments with minimal input thalli available (<6.5 mg).
Using a more sensible method or commercial kits may be more effective for scarce samples
with a minimal amount of material for DNA extraction.
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specificity and sensitivity yielded improved results, suggesting the carryover of inhibitors 
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Figure 2. Molecular processing performance for each process applied to lichens collected in a floristic
setting. Extracted DNA not meeting the criteria indicated in the Materials and Methods section
were classified as “Low”, while the others as “High”. PCR results were classified according to their
band pattern in an electrophoresis gel; only a subgroup of positive bands was used for sequencing.
Sequencing electropherograms were classified as “Negative” when no peak was observed, “Multiple
peaks” when both forward and reverse sequences showed more than two peaks for most sites, and
“Unidirectional” and “Bidirectional” based on the observation of clear, high-quality peaks for one
or both directions, respectively. Identification results are detailed in the text. The total number of
samples for each process is indicated at the bottom of each bar in parenthesis.

PCR amplification using a fungi-specific primer combination resulted positive for 86%
(210/244) of genomic DNA samples (Figure 2). There was no apparent correlation between
either lichen characteristics or input DNA quantity or purity with PCR amplification
success; however, preliminary assays using an alternative enzyme with higher specificity
and sensitivity yielded improved results, suggesting the carryover of inhibitors after
DNA extraction for those samples with no amplification. From the PCR-positive group,
139 samples displayed a single band in an electrophoresis assay, while the remaining
showed two or more bands (Figure 2). A gel separation method was used for samples with
multiple bands, although some were too close to each other to be effectively separated. The
source of these co-amplifications were secondary fungi, either contaminants or part of their
associated microbial community.

Amplicons from 171 samples were selected for purification and sequencing by Sanger,
resulting in the barcode marker successfully sequencing in both directions for 87 samples,
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and only either forward or reverse direction for 50 samples (Figure 2). The rest of the
samples showed an intermediate to high degree of noise.

Obtaining high-quality sequences from mixed samples using Sanger sequencing can
prove challenging because of the presence of secondary targets. Previous studies addressing
the use of this technique for sequencing lichenized fungi reported similar difficulties on
many of the taxa evaluated [25,46,47]. An explanation for the low sequencing success is the
variable presence of secondary fungi conforming a mycobiome [29], but also other lichens in
the form of small fragments or spores. To effectively obtain the target mycobiont sequence,
multiple studies have used HTS techniques such as 454-pyrosequencing; however, due to
the high rate of sequencing errors, Sanger references are recommended [33,48]. Illumina
sequencing has also been used to obtain the barcode marker of lichenized fungi with a
better success in comparison to Sanger sequencing. In a previous study comparing both
techniques for historical and fresh basidiolichen Cora samples, only 58% of fresh samples
could be sequenced using Sanger sequencing, although the authors discuss their typical
overall success being 70–90% in previous attempts at sequencing fresh material [30]. These
results are similar to the 67.3% (115/171 samples) success when sequencing lichenized
fungi using conventional Sanger sequencing in this study (Figure 2); the identification
results are detailed in the next section.

It is important to note that Sanger sequencing success has been shown to be associated
with the relative abundance of secondary targets [25]; however, this can vary greatly
between taxa [25,29]. In this study, no association could be found between sequencing
outcome and recognized taxa.

Even for non-mixed samples, sequencing can be challenged by the presence of bi-
ological sequence variation. The ITS marker is a subregion of the rDNA cistron, which
is repeated multiple times across the fungal nuclear genome. This can lead to intrage-
nomic variation, which has been reported for some lichens due to incomplete lineage
sorting [17,33]. Furthermore, intra-sample rather than intragenomic variation is a possi-
bility when studying multicellular organisms. Independently of the source of variation,
this could lead to difficulties in species identification through DNA barcoding, particularly
on rapidly evolved species [49]. Since Sanger sequencing alone is limited for detecting
intragenomic sequence variation, and we included samples from a broad taxonomic range
rather than closely related species, we deemed it unlikely that these variations have a
significant effect on the initial molecular identification results.

Although in this study a gel separation technique was used for the separation of
multiple bands, some single bands still yielded low-quality sequencing electropherograms,
probably due to the presence of additional targets with similar or identical length. Ad-
ditional techniques such as molecular cloning are effective for isolating and sequencing
amplicons in mixed samples. Alternatively, target mycobionts could be isolated through
microbiological culture methods prior to DNA extraction and sequencing (e.g., [50]). While
these techniques may improve the number of sequences suitable for identification purposes
in exploratory studies, they may be costly and difficult to apply in laboratories lacking the
right equipment or infrastructure.

Another possible approach to working with mixed samples is to increase the amplifi-
cation specificity by designing taxon-specific primers; however, this was impractical in this
study as the sampling was unrestricted to specific taxa and some specimens were not easily
recognized with a macroscopical inspection.

Overall, due to the extent of the sampling and the universality of the DNA extraction,
a large number of barcodes were recovered. As the amount of material needed for molecular
processing is small, most of the samples were suitable for posterior morphological verification.

3.2. Lichenized Fungi Identification

From the 137 samples sequenced in this survey, 22 were associated in BLAST with
non-lichenized fungi entries Aspergillus (11), Athelia bombacina (1), Geltingia associata (1),
unnamed uncultured fungi (8), and an unknown basidiomycete (1) with varying degrees
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of similarity. Some of these species could be endo- or epilichenic fungi living naturally in
the lichen thalli, natural contaminants that persisted after the sterilization at the laboratory,
or contaminants originated during the manipulation of samples. For example, species
from the cosmopolitan cold-adapted fungal genus Aspergillus are abundant in the Antarctic
atmosphere and soil [51]. As discussed before, non-lichenized fungi interfered with the
sequencing as additional targets co-amplified in the PCR; however, in some cases secondary
lichenized fungi were also found as secondary products.

The remaining 115 samples were identified as lichenized fungi and were assigned
to 23 groups according to the BLAST similarity search and maximum likelihood analysis
results; samples identified as sharing a closer taxonomic level were clustered together
(Figure 3, Table 2).
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indicated in parenthesis. (a) I: Usnea aurantiacoatra (Parmeliaceae), (b) II: Ochrolechia frigida (Stere-
ocaulaceae), (c) III: Placopsis antarctica (Trapeliaceae), (d) IV-a: Polycauliona regalis (Teloschistaceae),
(e) IV-b: Caloplaca sp. (Teloschistaceae), (f) V-a: Umbilicaria decussata (Umbilicariaceae), (g) VI-a:
Rhizocarpon aff. geographicum (Rhizocarpaceae), (h) VII-a: Psoroma hypnorum (Pannariaceae), (i) VIII-a:
Lecanora polytropa (Lecanoraceae), (j) VIII-b: Lecanora sp. s.l. (Lecanoraceae), (k) IX: Lecidella carpathica
(Lecanoraceae), (l) X: Candelariella flava (Candelariaceae), (m) XI: Steinera intricata (Koerberiaceae),
(n) XII: Lepraria sp. (Stereocaulaceae), (o) XIII-a: Stereocaulon sp. 1 (Stereocaulaceae), (p) XIII-b:
Stereocaulon sp. 2 (Stereocaulaceae).

Table 2. Identification of samples (n = 106) based on a BLAST similarity search and a posterior
morphology confirmation. Minimum BLAST coverage and identity percentages were 80% and 95%,
respectively. Full list of matches available in Table S1.

Sample Group BLAST Top Hits Identity Percentage
Range

Number of
Samples Identification

I
Usnea aurantiacoatra 98.36%−100% 11 Usnea aurantiacoatra

Usnea antarctica 98.38%–100% 27 Usnea antarctica

II
Ochrolechia frigida 95.12%–100%

13 Ochrolechia frigidaOchrolechia tartarea 95.12%–100%

III
Placopsis antarctica 98.2%–100%

24 Placopsis antarcticaPlacopsis parellina 99.44%–100%

IV-a
Caloplaca regalis 99.62%

1 Polycauliona regalisGondwania regalis 99.03%–99.4%

IV-b
Gondwania sp. 97.23%

1 Caloplaca sp.Caloplaca sublobulata 96.25%
Gondwania sejongensis 96.01%

V-a
Umbilicaria krascheninnikovii 99.79%–100%

2 Umbilicaria decussataUmbilicaria decussata 95.59%–98.79%

V-b
Umbilicaria aprina 95.21%–100%

2 Umbilicaria sp.
Umbilicaria africana 95.56%–99.8%

VI-a
Rhizocarpon geographicum 95.02%–100%

3 Rhizocarpon aff. geographicumRhizocarpon nidificum 99.75%–100%

VII-a Psoroma hypnorum 95.88%–100% 2 Psoroma hypnorum

VIII-a Lecanora polytropa 99.67% 1 Lecanora polytropa

VIII-b

Lecanora polytropa 95%–98.32%

2 Lecanora sp. s.l.Lecanora cf. polytropa 95.41%–98.71%
Rhizoplaca aspidophora 100%
Lecanora fuscobrunnea 97.35%–99.1%

IX Lecidella carpathica 97.34%–99.73% 2 Lecidella carpathica

X Candelariella flava 96.79%–99.45% 2 Candelariella flava

XI Steinera intricata 95.61%–100% 7 Steinera intricata

XII

Lepraria elobata 95.71%–97.46%

1 Lepraria sp.Lepraria caesioalba 95.77%–97.45%

Lepraria granulata 97.35%

Lepraria neglecta 95.09%–97.34%

XIII-a
Stereocaulon alpinum 95.11%–100%

2 Stereocaulon sp. 1Stereocaulon grande 99.32%
Stereocaulon saxatile 96.10%–99.13%

XIII-b
Stereocaulon glabrum 97.08%–100%

2 Stereocaulon sp. 2
Stereocaulon sp. 95.01%–100%

XIV
Myriospora signyensis 95.33%–99.8%

1 Myriospora sp.
Lecanoromycetes sp. 99.37%–99.55%
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The groups with significant BLAST matches included samples spanning 15 fami-
lies, in 10 orders of the class Lecanoromycetes and one of Candelariomycetes (Figure 3;
Tables 2 and S1). As detailed above, these samples were initially identified based on their
BLAST top hits, and the identification was then verified by looking for characteristic
morphology features of the genus or species. A large proportion of samples commonly
found were identified as Usnea antarctica/U. aurantiacoatra (27 and 11, respectively) and
Placopsis antarctica (24). Samples of common fruticose muscicolous fragments with similar
grey to white granular or squamulose scattered thalli, although frequently not showing
reproductive structures, were identified as either Ochrolechia frigida (13) or Stereocaulon sp.
(4). Foliose samples were identified as Umbilicaria decussata (2) or Umbilicaria sp. (2). Al-
though the small crustose samples were difficult to recognize, the barcodes aided in the
identification of Steinera intricata (7), Rhizocarpon aff. geographicum (3), Psoroma hypnorum
(2), Candelariella flava (2), Lecidella carpathica (2), Lecanora sp. sensu lato (2), L. polytropa (1),
Caloplaca sp. (1), Polycauliona regalis (1), Lepraria sp. (1), and Myriospora sp. (1).

On the other hand, nine samples had no high-similarity BLAST associations as their
barcodes were new to GenBank (Table 3 and Table S1). A morphology evaluation of these
samples allowed the identification of Austrolecia sp. (4), Lecidea sp. sensu lato (2), Buellia sp.
sensu lato (1), Rhizocarpon sp. (1), and Psoroma hypnorum (1).

Table 3. Samples (n = 9) with novel DNA barcodes discovered in this study. These samples had no
significant BLAST associations, so the identification was made based on a morphological evaluation
of thalli and reproductive structures. Full list of non-significant BLAST matches in Table S1.

Sample
Group

Number of
Samples

Sample
Codes

Morphological
Determination

GenBank
Accession Codes

VI-b 1 51A6 Rhizocarpon sp. OP730856

VII-b 1 72A2_1 Psoroma hypnorum OP730855

XV 2 110A, 111A Lecidea sp. s. l. OP730849,
OP730850

XVI 1 24C Buellia sp. s. l. OP730848

XVII 4 94A1, 103A,
107A, 108A Austrolecia sp.

OP730851,
OP730852,
OP730853,
OP730854

3.2.1. DNA-Based Identification at the Species Level

An initial BLAST analysis with a posterior morphological confirmation allowed the
identification of eleven sample groups unambiguously at the species level (I, II, III, IV-a,
V-a, VI-a, VII, VIII-a, IX, X, XI; Table 2). All samples in group I were associated with both
Usnea antarctica and U. aurantiacoatra (38 samples). This reflects the lack of resolution of the
fungal barcode to distinguish between these known species pairs (i.e., morphs of lichens
which only differ phenotypically by their reproductive strategies [10]). In a previous study,
sequence-based data alone were insufficient to separate these species in two lineages, and
the use of microsatellite data was necessary to evidence a clear genetic distinction [52]. An
examination of the presence or absence of apothecia allowed a species-level identification
for specimens in this group (Figure 3a).

Similarly, all samples included in group II had sequences associated with both
Ochrolechia frigida and O. tartarea after the BLAST analysis (Table 2). Examining these
BLAST associations, the two entries in GenBank labeled as O. tartarea were obtained from
samples collected in Antarctica and China, and are highly similar to the other O. frigida
entries. However, previous phylogenetic studies on Ochrolechiaceae clearly separated both
species using either mitochondrial SSU and nuclear LSU markers, or ITS sequences [53–55].
It is not possible to determine whether the two O. frigida entries associated with the sam-
ples in this study were mislabeled or are outdated; however, it is reported elsewhere that
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O. frigida material showing no spines is often labeled as O. tartarea [56]. A main difference
between both taxa is in their chemistry; however, given the previously reported clear
genetic difference between both taxa, and the fact that almost all specimens showed the
characteristic spines of O. frigida (Figure 3b), we identified these samples as such.

Samples in group III readily recognized as Placopsis antarctica were associated with
entries of P. antarctica and P. parellina collected in Antarctica (Table 2). The only ITS entry in
GenBank labeled as P. parellina (AY212822) is most likely outdated as it was submitted in
2004, one year before P. antarctica was described [57,58]. In the secondary curated database
UNITE, this particular entry is yet to be renamed, although it is placed in a P. antarctica
SH at a 0.5% threshold. All 24 samples in this group were confirmed to be P. antarctica
because of their characteristic central cephalodia, whitish thallus and presence of sorediate
pits (Figure 3c). Likewise, the only sample in group IV-a only matched entries labeled
as Caloplaca regalis and Gondwania regalis (Table 2), which are currently synonyms of the
valid name Polycauliona regalis according to the Species Fungorum database (2022). This
and other species of the genus have been reported in Antarctica near bird colonies with
a fruticose habit and a usual orange thallus (Figure 3d), which reacts with K+ becoming
purple–red [59].

The group V-a included samples associated with Umbilicaria decussata and U. krascheninnikovii
(Table 2). A recent revision of the phylogenetic relationships within Umbilicariaceae
using multiple markers reported the inclusion of U. krascheninnikovii on the U. aprina
group, separated from the U. decussata group [60]. However, the U. krascheninnikovii
entry in particular, which was associated with the barcodes in group V-a (AY603134.1),
has consistently been found to be related to U. decussata in previous works [61–63] and
was subsequently revised as U. decussata in UNITE (SH1883021.08FU). The possibility of
mislabeling as well as the presence of distinctive peripheral white ridges on the upper
surface of the samples indicated that these corresponded to U. decussata (Figure 3f).

The group VI-a included three samples with sequences associated in BLAST with two
species in the Rhizocarpon geographicum complex, R. geographicum and R. nidificum (Table 2),
the latter being endemic to Antarctica [64]. This complex is included along with other three
groups of yellow species in the subgenus Rhizocarpon and has been proposed as a single
highly plastic species on the basis of molecular and phenotypic revisions; however, further
in-depth studies are needed to validate this idea [65,66]. The scarce material collected in
this study allowed the identification of the crustose yellow areoles embedded in a black
prothallus characteristic of these species (Figure 3g).

The remaining identifications at the species-level include two samples in the group VII-
a exclusively associated in BLAST, and identified as Psoroma hypnorum (Figure 3h; Table 2),
as opposed to a sample with a closely related sequence in group VII-b which matched
with different Psoroma species with a low degree of similarity (Table S1). Additionally, one
sample in group VIII-a had a sequence associated with a Lecanora polytropa entry (Figure 3i;
Table 2); two Samples in group IX matched Lecidella carpathica (Figure 3k; Table 2); two
samples in group X were associated in BLAST and identified as Candelariella flava (Figure 3l;
Table 2); and seven samples in group XI were identified as Steinera intricata with no
other significant BLAST association (Figure 3m; Table 2). For this last sample group,
some of the sequences were obtained from samples recognized as Ochrolechia frigida or
Psoroma hypnorum, raising the possibility that spores or small fragments were co-amplified
as these lichens are often found intertwined along other lichens and bryophytes.

3.2.2. DNA-Based Identification at the Genus Level

Seven sample groups were identified up to the genus, being ambiguous at the species
level (IV-b, V-b, VIII-b, XII-a, XII-b, XIII, XIV; Table 2). The ambiguous identification
of groups IV-b and XII containing one sample each, to Caloplaca sp. and Lepraria sp.,
respectively, can be attributed to a lack of information in databases, as both of these groups
matched to different species with identity percentages up to 97.5% (Table 2). General
morphological features such as thallus color and form confirmed the genus identification
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of both groups: orange lobes, mostly applanate, for Caloplaca sp., and a leprose granular
thallus without displaying any reproductive structure for Lepraria sp. (Figure 3e,n).

The sample group V-b identified as Umbilicaria included two samples with sequences
matching entries labeled U. aprina and U. africana (Table 2). Both of these species were
reported to be closely related within the U. aprina group in a phylogenetic revision of the
relationships within Umbilicariaceae [60]. This genus was readily verified due to the sam-
ples displaying the characteristic brown foliose thallus attached by an umbilicus (Figure 3f).
Similarly, the sample group VIII-b identified as Lecanora sp. sensu lato included two
samples whose sequences had significant BLAST associations with Rhizoplaca aspidophora,
Lecanora fuscobrunnea and L. polytropa. The phylogenetic relationship of Rhizoplaca being
nested within the highly polyphyletic Lecanora sensu lato group is widely documented
both using morphological and genetic information [67,68]. Given these associations with
various species within the complex, and the observation of a pale-yellow crustose thallus
of the single sample in this group, it was identified as Lecanora sp. s.l. (Figure 3j).

Four samples in group XIII had sequences matching entries of various fruticose species
from the genus Stereocaulon subgenus Stereocaulon section Stereocaulon [69]. These matches
included entries labeled as S. alpinum, S. grande and S. saxatile for the two samples in group
XIII-a, and S. glabrum and numerous unidentified Stereocaulon species for the two samples
in group XIII-b. The unresolved relationship between these and other species in the Stereo-
caulon clade was shown in previous studies examining their phylogenetic relationships, in
which additional nuclear markers were also included [69–71]. Despite the barcode marker
not being resolutive enough to attain an exact identification, a morphological evaluation
allowed us to not only verify the genus Stereocaulon, but also to differentiate two different
species corresponding with their DNA-based grouping. The sample group XIII-a had
yellowish spheroid phyllocladia (Figure 3o), while the sample group XIII-b displayed white
flattened phyllocladia (Figure 3p).

For all the groups mentioned above, the species conceptualized within each taxonomic
group may not be correlated with clearly separated lineages. Therefore, it is expected that
the barcode marker alone would not be resolutive enough to attain a species-level identi-
fication. Although we recognize that including the evaluation of additional phenotypic
markers such as chemistry would be valuable to attain a more exact identification for these
groups, our results still illustrate how an initial DNA-based approach can narrow the list of
possible options for identification and could serve as a starting point to guide the search
for specific diagnostic characters.

Lastly, the ambiguous identification of the only sample in group XIV to Myriospora
was due to its association both with M. signyensis and unidentified Lecanoromycetes entries
with high identity percentages (Table 2). This sample consisted of scattered and small black
apothecia on a rock substrate without thallus. Given that all of this scarce material had to
be collected to have a significant amount for DNA extraction (still resulting in only 3.4 mg
of tissue), a further morphological verification was not possible.

3.2.3. Unidentified Lichenized Fungi Groups

The remaining five groups could not be identified using a DNA-based approach
since none of the sequences had significant BLAST matches (Table 3 and Table S1). The
samples in groups VI-b and VII-b matched multiple species from the genus Rhizocarpon
and Psoroma, respectively. Despite the low identity percentages for these groups (below
88.9% for group VI-b, and 94.5% for group VII-b), their exclusive association in BLAST
with species from the same genus in each case indicated that they may be under that
classification. A morphological evaluation was performed for both of these groups. In the
case of group VII-b, the morphological features similar to those of the two samples in group
VII-a allowed the identification of Psoroma hypnorum (Figure 3h; Table 3)

The sample in group VI-b identified as Rhizocarpon sp. displayed a gray or light green
thallus on a notorious black prothallus, areoles scattered on the substrate, and lecideine
and sessile apothecia (Figure 4a). The gray, submuriform ascospores were 28–32 µm long,
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with up to four transverse and one longitudinal septa (Figure 4b). R. nidificum has most
of these characteristics, but the color of the thallus is a more intense green–yellow, and
the ascospores between 15 to 30 µm long. Another species with similar characteristics is
R. grande, which has a gray thallus, and a black, inconspicuous prothallus. It is described
as having submuriform ascospores, with lengths greater than 32 µm. In both cases, a
comparison of characteristics to confirm the identity of this sample was not possible, as no
pictures of the type material were found. A more detailed analysis and comparison with
the type material of both species is required for a more exact identification.
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The three remaining groups (XV, XVI, XVII) had sequences matching entries in Gen-
Bank with identity percentages below 90% and could only be recognized with a deep
taxonomic level given the variety of matches (Tables 3 and S1). These associations are
not meaningful for a recognition based solely on molecular information and, at most,
indicate that the barcodes are from lichenized fungi. A morphological evaluation of these
specimens was needed to attain a more exact identification and elucidate whether they
are previously recorded species for which there is no molecular information, or if they are
undescribed taxa.

The two samples in group XV were identified as Lecidea sp. s.l. These samples are
characterized by an areolate, reddish-brown thallus. No reproductive structures such as
apothecia, soredia or isidia were observed (Figure 5). These characteristics, as mentioned
by Øvstedal and Lewis Smith (2001) [64], suggest that these specimens are Lecidea silacea; a
taxon that was originally described in the Scandinavian region of northern Europe. It is
possible that the individuals described in Antarctica were assumed to be the same taxon
based on the similarity in color and overall shape of the thallus, therefore having a bipolar
distribution similar to other taxa. Although the samples in this study did not result in
high-similarity BLAST associations with any of the L. silacea entries already in GenBank
(Table S1), not one of those entries correspond to samples collected in Antarctica. However,
given that a misidentification could be more harmful for future identifications than an
inexact labeling, it was decided based on this morphological evaluation to identify these
two samples as Lecidea sp. s.l.
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Figure 5. Specimen (111A) in group XV. Lecideales (Lecidea s.l.). Sterile crustose thallus.

The only sample in group XVI was identified as Buellia sp. s.l. This sample is char-
acterized by having a crustose thallus with thick areoles and a cream to slightly green
color, with some darkened areas (Figure 6a). Its lecideine apothecia are flat with slightly
conspicuous edges. An important characteristic is the presence of “adult” polarilocular
ascospores, that is, with a thickened central septum, ca. 8–10 µm (Figure 6b). Both Redón
(1985) [72] and Øvstedal and Lewis Smith (2001) [64], mention that two Buellia species have
this characteristic, namely B. melanostoma and B. perlata; however, this is only found in “ju-
venile” ascospores. Later in the development, they take on the typical characteristics of the
genus, having thin ascospore septa and walls. Amandinea insperata, present in mountainous
areas of the tropics and subtropical regions [73], also have polarilocular ascospores similar
in size (16–18 µm × 6–9 µm) to those observed in the analyzed material. Additionally,
Amandinea is characterized by its elongated, bacillary conidia, while Buellia has shorter,
ellipsoidal conidia; however, these structures were not observed in the available material.
The genus Orcularia was also considered, but a notorious thalline exciple of Orcularia-type
ascospores [74] was absent, and the lack of lumens resembling small “bones” indicates
a different ascospore ontogeny. Based on the presence of polarilocular adult ascospores,
this sample would correspond to an undescribed taxon in the genus Buellia s.l. A future
study including more abundant and larger samples from King George Island is pending
to obtain a complete and detailed description of the total phenotypic characteristics to
formally propose a new taxon.
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Figure 6. Morphology features from specimen (24C) in group XVI. Caliciales (Buellia sp. s.l.).
(a) Crustose thallus, scattered areoles, lecideine apothecia at the same level as the thallus (immersed).
(b) Brown polarilocular “adult” ascospores (40×).
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Finally, the four samples from the group XVII were identified as an unknown Aus-
trolecia species. These samples are characterized by their crustose thallus dispersed on the
substrate or forming small groups and with a noticeable black prothallus; lecideine, convex
apothecia with a very thin edge, inconspicuous or even absent in some segments (Figure 7a).
The hymenium is hyaline, with a blue–greenish epihymenium, (8) simple and hyaline as-
cospores, Catillaria-type asci and hyaline subhymenium (Figure 7b). Taken together, these
characteristics indicate that the samples belong to the Austrolecia genus [64], under which
only one species, A. antarctica, is currently described [75]. A. antarctica, as mentioned by
Øvstedal y Lewis, presents several characteristics described for the samples in group X in
this study; most noticeable, the thin or absent edge in mature apothecia, and ascospores
being simple or showing a septum. However, the description also indicates a light brown
hypothecium, which was found to be hyaline for the analyzed samples. The type material
for A. antarctica, available in the digital database of the Herbarium of University of Helsinki,
through JSTOR Global Plants, also shows that A. antarctica has a thallus with areoles more
closely grouped, a less developed prothallus and more apothecia. Thus, it is possible that
the analyzed material may correspond to an undescribed taxon in Austrolecia. The lack of
a high-similarity BLAST association of these samples to any of the Austrolecia sequences
from different areas in Antarctica already available in GenBank (Table S1) highlight the
need for a thorough collection in future studies focused on this group.
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3.3. Value of Molecular Surveys in Understudied Regions

The lichenized fungi survey using DNA barcodes presented in this study resulted in a
variety of sequences from King George Island, nine of them completely new to GenBank
(Table 3). The approach used did not rely on an initial phenotypic identification, thus
allowing the posterior taxonomic efforts to be focused on the description of specimens
filling a gap on the current nucleotide databases, or potential new taxa. In that regard, this
strategy is to be considered for biological inventories unrestricted to a particular taxonomic
group, particularly in understudied regions where the potential for species discovery
is high.

The analysis of sequences from a community in understudied regions rely on a com-
plete regional nucleotide database. In that regard, we are far from having complete DNA
information in remote areas; however, the application of a DNA-based survey can lead to
further sampling expeditions toward taxonomic novelties.

While Antarctica is a relatively understudied continent because of the limitations
to exploration imposed by the harsh conditions, countries in the southern hemisphere
harboring a vast proportion of the world’s biodiversity are in an equal or even greater
need for biodiversity explorations. For these countries, the political priorities for research
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may not be in line with a thorough characterization of genetic diversity when there is no
apparent conservation or immediate application objective. Additionally, local research
groups may be discouraged from initiating such explorations and collections when there is
little incentive for exploration of biodiversity, and a lack of infrastructure and personnel
with taxonomic expertise [76].

Molecular explorations can function as a complementary tool to aid taxonomic work in
light of a taxonomic impediment, because collecting a potential new species is a step further
in reducing the taxonomic gap [77]. For example, having complete information about an
underexplored group could allow an initial delimitation of potential species based on molec-
ular phylogenies, which would be later tested with phenotypic features [9]. For this effort
to be useful, rather than detrimental, to the current taxonomic challenges, it is important
that the specimens are properly submitted to public repositories for future assessments.

Overall, these findings highlight the utility of an exploratory survey of lichenized
fungi without a prior morphological assessment, and contribute to increasing the known
genetic diversity on King George Island. Further detailed taxonomic revisions including the
potential new species from King George Island presented here will aid in future taxonomic
studies involving Antarctica’s lichenized fungi diversity.
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