Supporting Material

Article

Stereochemical Determination of Fistularins isolated from the Marine Sponge *Ecionemia acervus* and their Regulatory Effect on Intestinal Inflammation

Yeong Kwang Ji¹⁺, Seon Min Lee²⁺, Na-Hyun Kim², Nguyen Van Tu⁴, Yun Na Kim³, Jeong Doo Heo², Eun Ju Jeong^{3*} and Jung-Rae Rho^{1*}

¹ Department of Oceanography, Kunsan National University, Gunsan 54150, Republic of Korea; kwang7089@kunsan.ac.kr

² Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, 17 Jegok-gil, Munsan-eup 52834, Republic of Korea smlee84@kitox.re.kr(S.M.L.); <u>nhkim@kitox.re.kr (N.-H.K.)</u>; jdher@kitox.re.kr(J.D.H.)

³ Department of Plant & Biomaterials Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; ; yunna@gntech.ac.kr

⁴ Institute of Tropical Biology, 85 Tran Quoc Toan Street District 3, Ho Chi Minh 700000, Vietnam; nguyen.tu@itb.ac.vn

^{*} Correspondence: <u>jrrho@kunsan.ac.kr(J.-R. R.)</u>; ejjeong@gntech.ac.kr(E.J.J.); Tel.: +82 63 469 4606(J.-R.R.); +82 55 751 3224 (E.J.J.)

⁺ These authors contributed equally to this work

Contents

Figure S1. CD spectra for compounds 1–6	3
Figure S2. ¹ H and ¹³ C NMR spectra for 1 in CD ₃ OD	3
Figure S3. ¹ H and ¹³ C NMR spectra for 2 in CD ₃ OD	4
Figure S4. ¹ H and ¹³ C NMR spectra for 3 in CD ₃ OD	5
Figure S5. ¹ H and ¹³ C NMR spectra for 4 in CD ₃ OD	6
Figure S6. ¹ H and ¹³ C NMR spectra for 5 in CD ₃ OD	7
Figure S7. ¹ H and ¹³ C NMR spectra for 6 in CD ₃ OD	8
Figure S8. (A) ¹ H NMR and (B) ¹³ C NMR spectra of 3 in acetone- d_6	9
Figure S9. ¹ H NMR spectra for (A) (S)-MTPA ester	
and (B) (R)-MTPA ester of 3 in CDCl ₃ .	10
Figure S10. COSY NMR spectra for (A) (S)-MTPA ester	
and (B) (R)-MTPA ester of 3 in CDCl ₃	11
Table S1. NMR Chemical shifts for compounds 1-2 (500MHz for ¹ H, in CD ₃ OD)	12
Table S2. Calculated Carbon Shielding Tensors for Conformers of 1a	14
Table S3. Calculated Proton Shielding Tensors for Conformers of 1a	15
Table S4. Calculated Carbon Shielding Tensors for Conformers of 1b	16
Table S5. Calculated Proton Shielding Tensors for Conformers of 1b	17
Table S6. Calculation of DP4+ probability for 1a and 1b	17

Figure S1. CD spectra for compounds 1–6.

Figure S3. ¹H and ¹³C NMR spectra for 2 in CD₃OD.

Figure S4. ¹H and ¹³C NMR spectra for **3** in CD₃OD.

Figure S5. ¹H and ¹³C NMR spectra for 4 in CD₃OD.

Figure S6. ¹H and ¹³C NMR spectra for **5** in CD₃OD.

Figure S7. ¹H and ¹³C NMR spectra for **6** in CD₃OD.

Figure S9. ¹H NMR spectra for (A) (S)-MTPA ester and (B) (R)-MTPA ester of **3** in CDCl₃.

Figure S10. COSY NMR spectra for (A) (S)-MTPA ester and (B) (R)-MTPA ester of 3 in CDCl₃.

	FS-1 (1)	FS-2 (2)		
	1H	13C	1H	13C	
1, 1'	4.08, s	75.5, CH	4.08, s	75.4, CH	
2, 2'		114.2, C		114.2, C	
3, 3'		149.3, C		149.3, C	
4, 4'		122.8, C		122.9, C	
5, 5'	6.43, s	132.2, CH	6.41, s	132.2, CH	
6, 6'		92.5, C		92.5, C	
7, 7'	3.10, d (18.3)	$40.1, CH_2$	3.05, d (18.4)	$40.1, CH_2$	
	3.78, d (18.3)		3.74, d (18.4)		
8, 8'		155.3, C		155.1, C	
9,9'		161.8, C		161.7, C	
10	<mark>3.50, dd (13.7, 7.7)</mark>	43.7, CH ₂	3.77, t (8.8)	43.1, CH ₂	
	3.70, dd (13.7, 4.7)		3.82, dd (8.8, 6.4)		
11	<mark>4.22, m</mark>	70.0, CH	5.03, m	76.4, CH	
12	<mark>4.01, dd (9.3, 5.4)</mark>	76.0, CH ₂	4.19, dd (10.5, 3.9)	73.7, CH ₂	
	4.05, dd (9.3, 5.4)		4.05, dd (10.5, 4.4)		
13		154.3, C		152.7, C	
14, 14'		119.5, C		118.8, C	
15, 15'	7.65, s	131.4, CH	7.61, s	131.9, CH	
16		139.9, C		143.3, C	
17	5.61, dd (9.1, 7.1)	77.2, CH	4.76, dd (7.3, 4.6)	71.6, CH	
18	3.43, dd (9.1, 7.1)	49.1, CH ₂	3.41, dd (13.7, 7.3)	47.6, CH ₂	
	3.97, t (9.1)		3.47, dd (13.7, 4.9)		
OCH ₃	3.72, s	60.4, CH ₃	3.72, s	60.4, CH ₃	

 Table S1. NMR Chemical shifts for compounds 1-2 (500MHz for ¹H, in CD₃OD)

Table S1. ¹H NMR Chemical shifts for compounds **3-6** (500 MHz, in CD3OD)

no	FS-3 (3)	17-deoxyFS-3 (4)	11-deoxyFS-3 (5)	11,17-dideoxyFS-3
				(6)
1, 1'	4.08, s	4.07, s / 4.08, s	4.08, s	4.07, s
5, 5'	6.41, s / 6.42, s	6.41, s / 6.42, s	6.41, s / 6.42, s	6.41, s / 6.42, s
7, 7'	3.05 / 3.75, d	3.05 / 3.74, d	3.05 / 3.74, d	3.05 / 3.74, d (18.1)
	(18.3) 3.10 / 3.78,	(18.3) 3.10 / 3.78,	(18.3) 3.10 / 3.78,	3.09 / 3.77, d (18.1)
10	d (18.3)	d (18.3)	d (18.3)	3.58, t (6.9)
	3.50, dd (13.9, 7.6)	3.50, dd (13.9, 7.6)	3.58, t (7.1)	3.58, t (6.9)
11	3.71, dd (13.9, 4.7)	3.71, dd (13.9, 4.4)	3.58, t (7.1)	2.10, m
12	<mark>4.20, m</mark>	<mark>4.19, m</mark>	2.11, m	4.05, t (6.1)
	<mark>3.98, dd (9.1, 5.6)</mark>	3.98, dd (9.1, 5.4)	4.06, t (6.1)	4.05, t (6.1)
15,	4.03, dd (9.1, 5.6)	4.01, dd, 9.1, 5.4)	4.06, t (6.1)	7.47, s
15'	7.60, s	7.48, s	7.60, s	2.78, t (7.3)
17	4.76, dd (7.3, 4.7)	2.79, t (7.1)	4.75, dd (7.3, 4.9)	3.46, t (7.3)
18	3.41, dd (13.7, 7.3)	3.47, t (7.1)	3.40, dd (13.7, 7.3)	3.46, t (7.3)
	3.47, dd (13.7, 4.7)	3.47, t (7.1)	3.47, dd (13.7, 4.9)	3.72, s
OCH ₃	3.72, s	3.72, s	3.72, s	

no	FS-3 (3)	17-deoxyFS-3 (4)	11-deoxyFS-3 (5)	11,17-dideoxyFS-3
				(6)
1, 1'	75.5 / 75.5, CH	75.5 / 75.5, CH	75.4 / 75.5, CH	75.5 / 75.5, CH
2, 2'	114.2 / 114.2, C	114.2 / 114.2, C	114.2 / 114.2, C	114.2 / 114.2, C
3, 3'	149.3 / 149.3, C	149.3 / 149.3, C	149.3 / 149.3, C	149.3 / 149.3, C
4, 4'	122.8 / 122.9, C	122.8 / 122.8, C	122.8 / 122.9, C	122.8 / 122.9, C
5, 5'	132.2 / 132.3,	132.2 / 132.2, CH	132.2 / 132.3, CH	132.2 / 132.3, CH
6, 6'	CH	92.4 / 92.5, C	92.4 / 92.5, C	92.4 / 92.4, C
7,7'	92.5 / 92.5, C	40.1 / 40.1, CH ₂	40.1 / 40.2, CH ₂	40.1 / 40.2, CH ₂
8, 8'	40.1 / 40.1, CH ₂	155.2 / 155.2, C	155.1 / 155.2, C	155.2 / 155.3, C
9, 9'	155.1 / 155.2, C	161.6 / 161.8, C	161.6 / 161.7, C	161 <u>.6 / 161.6,</u> C
10	161.7 / 161.8, C	<mark>43.7, CH₂</mark>	$38.0, CH_2$	38.0, CH ₂
11	<mark>43.7, CH</mark> 2	<mark>70.0, CH</mark>	30.6, CH	<mark>30.6, CH</mark>
12	<mark>70.0, CH</mark>	<mark>75.8, CH</mark> 2	$72.2, CH_2$	72.2, CH ₂
13	<mark>75.9, CH</mark> 2	152.6, C	153.6, C	152.9, C
14, 14'	153.3, C	118.8 / 118.8, C	119.0 / 119.0, C	119.0 / 119.0, C
15, 15'	118.9 / 118.9, C	134.5 / 134.5, CH	131.7 / 131.7, CH	134.4 / 134.4, CH
16	143.3 / 143.3, CH	<mark>139.9, C</mark>	143.1, C	<mark>139.7, C</mark>
17	143.3, C	<mark>35.0, CH</mark>	71.6, CH	<mark>35.0, CH</mark>
18	71.6, CH	$41.5, CH_2$	$47.6, CH_2$	41.5, CH ₂
OCH ₃	47.6, CH ₂	60.4, CH ₃	60.4, CH ₃	60.4, CH ₃
	60.4, CH ₃			

Table S1. ¹³C NMR Chemical shifts for compounds **3-6** (125 MHz, in CD₃OD)

*Consistent chemical shifts were highlighted with the same color.

able S2. Calcul	lated Carbo	n Shielding	g Tensors fo	or Conforme	ers of 1a	
conformers	1	2	3	4	5	6
Boltzmann Distribution	0.32	0.27	0.15	0.09	0.09	0.08
1	109.7	109.4	110.6	110.1	109.7	109.9
2	47.9	48.3	46.0	47.4	46.9	47.5
3	29.7	29.8	29.9	30.0	29.8	30.3
4	40.1	40.6	39.9	39.7	39.9	40.5
5	47.9	47.6	47.2	48.2	47.7	47.5
6	91.6	91.7	91.2	92.5	92.7	92.9
7	145.0	144.8	145.0	144.7	144.5	144.5
8	25.6	25.7	24.7	24.1	24.1	24.6
9	17.8	17.9	20.1	23.6	23.6	23.7
10	140.4	140.1	146.3	144.1	143.9	144.1
11	114.1	114.2	115.1	111.9	112.3	111.9
12	113.9	113.9	109.4	110.3	110.2	110.3
13	28.3	28.4	24.7	28.3	28.3	28.4
14	45.8	44.5	44.6	44.9	45.7	44.4
14	44.4	45.8	45.5	45.9	44.6	45.8
15	51.8	53.4	46.5	51.2	51.2	52.3
15	53.8	51.8	49.7	50.8	51.8	51.5
16	41.1	41.0	43.2	43.6	43.8	43.6
17	109.6	109.7	106.6	107.1	107.2	107.6
18	135.2	134.9	138.5	133.8	134.1	134.4
9'	21.6	22.0	21.6	21.6	21.7	21.8
OCH ₃	126.4	126.3	127.4	126.5	126.4	126.6

Та

conformers	1	2	3	4	5	6
Boltzmann Distribution	0.32	0.27	0.15	0.09	0.09	0.08
1	27.58	27.53	27.94	27.66	27.60	27.62
5	25.38	25.40	25.42	25.35	25.30	25.39
7	28.63	28.58	28.82	27.60	27.52	27.61
7	27.64	27.68	28.04	28.67	28.65	28.64
10	28.08	28.07	27.80	28.33	28.27	28.31
10	27.47	27.51	27.37	27.30	27.40	27.35
11	28.03	28.02	29.01	28.02	28.00	28.01
12	27.81	27.82	27.30	27.20	27.21	27.35
12	27.09	27.02	28.60	27.79	27.70	27.62
15	24.15	23.97	24.03	23.72	24.15	23.68
15	24.04	24.14	23.58	24.16	23.75	24.11
17	26.11	26.12	26.36	26.26	26.19	26.18
18	28.46	28.38	27.89	28.54	28.63	28.62
18	27.64	27.59	27.59	27.99	28.01	27.99
OCH_3	27.86	27.87	27.98	28.23	28.23	28.26
OCH_3	27.88	27.88	27.92	27.88	27.87	27.88
OCH₃	28.25	28.20	28.19	27.92	27.90	27.91

Table S3. Calculated Proton Shielding Tensors for Conformers of 1a

1b (17*S*)

Table S4	. Calculated	l Carbon Sh	ielding Ter	nsors for Co	onformers o	f 1b
conformers	1	2	3	4	5	6
Boltzmann Distribution	0.18	0.18	0.16	0.16	0.16	0.15
1	110.1	110.0	109.5	110.2	110.0	110.4
2	47.3	47.6	47.8	47.4	47.6	47.7
3	30.5	29.9	30.3	30.0	30.2	29.8
4	40.5	40.0	40.0	40.5	40.4	39.6
5	47.9	47.5	47.4	48.0	47.8	48.0
6	92.7	92.7	92.6	92.6	92.7	92.6
7	144.5	144.6	144.4	144.5	144.4	144.8
8	24.1	24.2	24.4	23.8	23.9	23.7
9	23.8	23.9	23.6	23.7	23.8	24.0
10	143.7	143.7	143.5	143.3	143.4	143.5
11	111.9	112.0	112.1	112.4	112.5	112.1
12	110.1	110.1	110.1	110.4	110.2	110.2
13	28.4	28.3	28.9	28.5	28.6	28.2
14	44.9	45.6	44.6	45.5	45.1	44.9
14	45.5	44.9	45.3	45.2	45.7	45.5
15	51.7	50.5	52.5	51.1	52.1	51.5
15	50.8	51.4	51.6	52.1	51.2	50.7
16	43.7	43.5	43.5	43.7	43.5	43.6
17	107.0	106.9	107.5	107.3	107.5	106.9
18	134.0	133.9	134.4	134.1	134.2	133.7
9′	21.7	21.7	21.9	21.8	21.7	21.7
OCH_3	126.5	126.4	126.3	126.4	126.4	126.5

10010 00	· Curculates		ieranig i en			1 1.4
conformers	1	2	3	4	5	6
Boltzmann Distribution	0.18	0.18	0.16	0.16	0.16	0.15
1	25.36	25.37	25.37	25.36	25.38	25.29
5	27.64	27.60	27.62	27.65	27.66	27.57
7	27.63	27.51	27.58	27.60	27.59	27.57
7	28.72	28.67	28.69	28.67	28.67	28.63
10	28.35	28.35	28.29	28.30	28.30	28.31
10	27.39	27.31	27.43	27.38	27.47	27.39
11	28.01	28.03	27.98	27.99	27.96	28.00
12	27.26	27.33	27.18	27.31	27.20	27.18
12	27.76	27.70	27.73	27.66	27.71	27.75
15	24.15	23.72	23.68	23.72	24.14	23.67
15	23.71	24.14	24.13	24.13	23.70	24.16
17	26.23	26.20	26.19	26.26	26.17	26.16
18	28.00	28.02	28.01	27.99	28.01	28.01
18	28.53	28.54	28.60	28.52	28.60	28.61
OCH₃	27.86	27.95	27.93	27.90	27.89	27.83
OCH₃	28.27	28.22	28.21	28.21	28.22	28.23
OCH ₃	27.86	27.90	27.89	27.89	27.89	27.87

Table S5. Calculated Proton Shielding Tensors for Conformers of 1a

Table S6. Calculation of DP4+ probability for **1a** and **1b**

Functional	Solvent?		Basis Set		Type of Data	
mPW1PW91	PCM		6-311+	G(d,p)	Shielding	Tensors
	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
sDP4+ (H data)	100.00%	₫ 0.00%		-	-	-
sDP4+ (C data)	4 94.73%	d 5.27%		-	-	-
sDP4+ (all data)	100.00%	0.00% الله	-	-	-	-
uDP4+ (H data)	99.96%	₫ 0.04%	-	-	-	
uDP4+ (C data)	4 95.71%	4.29%	-	-	-	
uDP4+ (all data)	100.00%	₫ 0.00%	-	-		-
DP4+ (H data)	100.00%	.00%	-	-	-	-
DP4+ (C data)	99.75 %	₫ 0.25%		-		-
DP4+ (all data)	100.00%	%00.0 الله			•	

Where, Isomer 1 = 1a, Isomer 2 = 1b