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Abstract: This review considers available data on the composition of the extracellular matrix (ECM)
in echinoderms. The connective tissue in these animals has a rather complex organization. It
includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors.
Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have
been found in echinoderms. There are enzymes for the synthesis of structural proteins and their
modification by polysaccharides. However, the ECM of echinoderms substantially differs from
that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and
proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and
metal peptidases identified among them. Their active centers have a typical structure and can break
down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase
inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently
explain the complexity of the mechanisms responsible for variations in the mechanical properties
of connective tissue in echinoderms. These mechanisms probably depend not only on the number
of cross-links between the molecules, but also on the composition of ECM and the properties of
its proteins.

Keywords: echinoderms; extracellular matrix (ECM); mutable collagenous tissue; collagen; proteoglycan;
glycoprotein; tensilin

1. Introduction

The extracellular matrix (ECM), the most important innovation in the evolution of
Metazoa, made it possible to form and maintain multicellularity [1]. In extant animals,
connective tissue performs a wide variety of functions, from conducting cell–cell signals to
creating support structures. In echinoderms, the ECM constitutes a substantial portion of
tissue. Its composition, structure, and renewal play an important role in the physiology
of these animals. The echinoderm connective tissue is capable of changing its mechanical
properties. For this reason, it is referred to as mutable collagenous tissue (MCT) [2], or catch
connective tissue [3]. Echinoderms use this ability for maintaining a posture (the catch
state) [4,5], in case of autotomy [6,7], and in asexual reproduction [8–11]. Nevertheless,
to date, the mechanisms changing the ECM strength and the substances involved are
incompletely known [12,13].

The echinoderm connective tissue consists of proteins and polysaccharides, which are
mostly homologous to those of other animals, especially vertebrates [14]. Its major part
is composed of various types of collagens, glycoproteins, and proteoglycans. Although
echinoderms and vertebrates have descended from a common ancestor and both belong
to the Deuterostomia, they differ significantly in their connective tissue composition. In
particular, echinoderms lack the tropoelastin gene and, accordingly, the ECM does not
contain elastin. Unlike many other ECM proteins, elastin emerged within the vertebrate
group and is absent from agnathans and lower chordates, as well as from invertebrates [15].
An assumption has been made that the tropoelastin gene was formed on the basis of the
fibrillin gene [16].
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One of the major mechanisms of origin and evolution of connective tissue proteins is
the domain shuffling of pre-existing domains [1]. In this regard, identifying ECM proteins
of non-model species often poses a challenge, since their domain composition may differ
from the “typical” one. Examples of such proteins are tenascins and fibronectins. These play
an important role in the structural integrity of ECM in vertebrates [17,18]. Echinoderms
have proteins that contain domains characteristic of tenascin and fibronectin such as FBG,
EGF, TILa, and FN3 [19,20]. However, all these domains are ancient in origin and are found
in a variety of animals. As a combination typical of tenascins and fibronectins, these are
observed only in chordates [1,21].

ECM components are undoubtedly involved in the mechanisms changing the MCT
properties. In this regard, addressing the question as to how the echinoderm ECM and
its associated “adhesome” has evolved as a system and what the differences are from the
vertebrate ECM is important for understanding its normal functions and mechanisms re-
sponsible for changing the mechanical properties of connective tissue. In this review, which
incorporates our own previously unpublished analysis (for methods, see Section 5), we at-
tempted to identify the major proteins that constitute connective tissue and can potentially
be involved in the mechanisms changing its mechanical properties in echinoderms.

2. Structural Components of Connective Tissue
2.1. Collagens

Collagens are a superfamily of proteins that are the key structural components of
ECM. In vertebrates, this superfamily comprises 28 members [22]. Collagens are homo-
or heterotrimers consisting of the so-called collagen alpha chains. Humans have 44 genes
encoding alpha chains [22]. The major characteristic feature of collagens structure is
the presence of a collagen domain containing triple-helix (Gly-X-Y) motifs, where X is
most frequently proline, and Y is hydroxyproline [23]. The number and organization of
these motives varies greatly between different members of the family. Collagens are also
distinguished by the presence of various domains that impart various properties to them.
The most common domains are the N-terminal signaling peptide, thrombospondin (THBS)
domain, von Willebrand factor type A domain (vWA), and Fibronectin type-3 repeat (FB3).
The THBS domain performs a regulatory function, while vWA and FB3 are responsible for
binding to other proteins and adhesion [24]. To date, six groups of collagens have been
identified in mammals: fibril-forming collagens, fibril-associated collagens with interrupted
triple helices (FACITs), network-forming collagens, collagens VI, VII, XXVI, and XXVIII,
membrane collagens and multiplexins [22]. Collagens of all groups have been found in
echinoderms except for membrane collagens.

2.1.1. Fibril-Forming Collagens

Fibril-forming collagens, or fibrillar collagens, are the most widespread type of col-
lagens. These include collagens I, II, III, V, XI, XXIV, and XXVII. Such collagens perform
a structural function in all animals. Echinoderms have from four to six proteins of this
type. In the constructed phylogenetic tree of fibrillar collagens, four protein groups can be
distinguished (Figure 1, Supplementary File S1). The first includes two subgroups: one is
formed by collagens of echinoderms, the other by collagens I, II, III, VA2 of vertebrates and
hemichordates. This division probably indicates a significant divergence of these collagens
in echinoderms after the separation of Ambulacraria.
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Figure 1. Phylogenetic tree showing the relationships of fibril-forming collagens of vertebrates, 
hemichordates, and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria 
miniata)—red color; echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Aposti-
chopus japonicus/Eupentacta fraudatrix)—blue color; hemichordates (Saccoglossus kowalevskii); verte-
brates (Homo sapiens)—black color. Groups of proteins (I–IV) are marked with colored areas. 

The second group comprises homologues of type V and XI collagens. This group of 
echinoderm proteins can be designated as collagens V/XI. The third one contains se-
quences found only in members of Ambulacraria. No homology with any types of fi-
bril-forming collagens of vertebrates can be found for them due to the significant diver-
gence and/or loss of the ancestral gene by chordates. The fourth group contains homo-
logues of human collagens XXIV and XXVII. Thus, the phylogenetic analysis indicates 
that homologs of all types of fibrillar collagens characteristic of vertebrates are present in 
echinoderms. 

The molecules of fibril-forming collagens of vertebrates and echinoderms contain 
one main triple-helical domain and a C-terminal propeptide (Figure 2). Many fibrillar 
collagens bear the THBS domain at the N-terminus [25]. As in COL5A3 of H. sapiens, in 
some fibrillar collagens of echinoderms, the furin-activated motif (R-X-R/K-R) is located 
at the boundary of the triple-helical site and C-terminal propeptide. It suggests that the 
propeptide can be removed using furin [26]. 

Figure 1. Phylogenetic tree showing the relationships of fibril-forming collagens of vertebrates,
hemichordates, and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria mini-
ata)—red color; echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Apostichopus
japonicus/Eupentacta fraudatrix)—blue color; hemichordates (Saccoglossus kowalevskii); vertebrates
(Homo sapiens)—black color. Groups of proteins (I–IV) are marked with colored areas.

The second group comprises homologues of type V and XI collagens. This group of
echinoderm proteins can be designated as collagens V/XI. The third one contains sequences
found only in members of Ambulacraria. No homology with any types of fibril-forming
collagens of vertebrates can be found for them due to the significant divergence and/or
loss of the ancestral gene by chordates. The fourth group contains homologues of human
collagens XXIV and XXVII. Thus, the phylogenetic analysis indicates that homologs of all
types of fibrillar collagens characteristic of vertebrates are present in echinoderms.

The molecules of fibril-forming collagens of vertebrates and echinoderms contain one
main triple-helical domain and a C-terminal propeptide (Figure 2). Many fibrillar collagens
bear the THBS domain at the N-terminus [25]. As in COL5A3 of H. sapiens, in some fibrillar
collagens of echinoderms, the furin-activated motif (R-X-R/K-R) is located at the boundary
of the triple-helical site and C-terminal propeptide. It suggests that the propeptide can be
removed using furin [26].
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Figure 2. Domain structure of fibril-forming collagens of echinoderms. The length sizes of proteins 
and domains in the image reflect the lengths of their amino acid sequences. Crinoids (Anneissia ja-
ponica)—purple color; asteroids (Patiria miniata)—red color; echinoids (Strongylocentrotus purpu-
ratus)—green color; holothurians (Apostichopus japonicus/Eupentacta fraudatrix)—blue color; hemi-
chordates (Saccoglossus kowalevskii); vertebrates (Homo sapiens)—black color. Groups of proteins 
(I-IV) are marked with colored areas. 

Some fibrillar collagens of the sea urchin S. purpuratus and the sea star P. miniata 
contain the N-terminal domain von Willebrand factor type C (vWC) which is found nei-
ther in vertebrates’ fibrillar collagens nor in other collagens of echinoderms. Although 
vWA, a similar domain, is characteristic of the groups FACITs and collagens VI, VII, 
XXVI, and XXVIII of vertebrates, the sequences bearing it are identified by BLASTp as 
fibrillar collagens and contain the C-terminal propeptide of this group. 

An analysis of the domain structure and phylogenesis of fibrillar collagens shows 
that the genes of echinoderms of group I are homologous to the genes encoding verte-
brate collagens I, II, and III. Apparently, they arose on the basis of one ancestral gene as a 
result of its duplication and divergence. At the same time, proteins with the vWC domain 
are probably a late acquisition of echinoderms and were formed after the separation of 
Asterozoa and Echinozoa. These collagens form a separate subgroup. It includes the E. 
fra protein197 i0. Since it was not the genome that was used but the transcriptome of E. 
fraudatrix, it is possible that the transcript of Efra.gene197_i0 is incomplete. In this regard, 
echinoderm proteins belonging to group I can be referred to as collagens I/II/III. 

2.1.2. FACITs 
The FACITs group comprises collagens IX, XII, XIV, XVI, XIX, XX, XXI, and XXII. In 

the studied echinoderm species, one FACITs gene was found. In the phylogenetic tree, 
they form a separate group, which indicates a significant divergence of FACITs of deu-
terostomes (Figure 3a, Supplementary File S2). The major structural feature of FACITs is 
the presence of several short triple-helical domains flanked by non-collagenous sites, 
which imparts flexibility to the molecule (Figure 3b). Most vertebrate FACITs contain 

Figure 2. Domain structure of fibril-forming collagens of echinoderms. The length sizes of proteins
and domains in the image reflect the lengths of their amino acid sequences. Crinoids (Anneissia
japonica)—purple color; asteroids (Patiria miniata)—red color; echinoids (Strongylocentrotus purpura-
tus)—green color; holothurians (Apostichopus japonicus/Eupentacta fraudatrix)—blue color; hemichor-
dates (Saccoglossus kowalevskii); vertebrates (Homo sapiens)—black color. Groups of proteins (I-IV) are
marked with colored areas.

Some fibrillar collagens of the sea urchin S. purpuratus and the sea star P. miniata
contain the N-terminal domain von Willebrand factor type C (vWC) which is found neither
in vertebrates’ fibrillar collagens nor in other collagens of echinoderms. Although vWA,
a similar domain, is characteristic of the groups FACITs and collagens VI, VII, XXVI,
and XXVIII of vertebrates, the sequences bearing it are identified by BLASTp as fibrillar
collagens and contain the C-terminal propeptide of this group.

An analysis of the domain structure and phylogenesis of fibrillar collagens shows
that the genes of echinoderms of group I are homologous to the genes encoding vertebrate
collagens I, II, and III. Apparently, they arose on the basis of one ancestral gene as a result
of its duplication and divergence. At the same time, proteins with the vWC domain
are probably a late acquisition of echinoderms and were formed after the separation of
Asterozoa and Echinozoa. These collagens form a separate subgroup. It includes the E.
fra protein197 i0. Since it was not the genome that was used but the transcriptome of
E. fraudatrix, it is possible that the transcript of Efra.gene197_i0 is incomplete. In this regard,
echinoderm proteins belonging to group I can be referred to as collagens I/II/III.

2.1.2. FACITs

The FACITs group comprises collagens IX, XII, XIV, XVI, XIX, XX, XXI, and XXII.
In the studied echinoderm species, one FACITs gene was found. In the phylogenetic
tree, they form a separate group, which indicates a significant divergence of FACITs of
deuterostomes (Figure 3a, Supplementary File S2). The major structural feature of FACITs
is the presence of several short triple-helical domains flanked by non-collagenous sites,
which imparts flexibility to the molecule (Figure 3b). Most vertebrate FACITs contain
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vWA and THBS domains at the N-terminus, while some have FB3 repeats separating these
structures [27]. In the echinoderm species studied, FACITs contain only the THBS domain
and are closest in structure to collagens IX of H. sapiens. In this regard, this group of
echinoderm collagens can be conventionally referred to as collagens IX. A characteristic
feature of FACITs is the cysteine-containing site GXCXXXXC at the C-terminus [28]. This
site is required for trimerization of polypeptide chains [28]. Echinoderm FACITs have been
found to have a similar site (GXCXXC) in this region, which is aligned with human FACITs
(Figure 4, Supplementary File S2). FACITs do not form fibrils but are associated with fibrillar
collagens and other proteins, acting as a link between different ECM components [27]. In
this regard, echinoderm collagens IX may be involved in the processes changing the
mechanical properties of MCT.
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Figure 3. FACITs of echinoderms. (a). Phylogenetic tree showing the relationships of FACITs of
vertebrates, hemichordates, and echinoderms. Groups of proteins (I–IV) are marked with colored
areas. (b). Domain structure of FACITs of echinoderms. The length sizes of proteins and domains
in the image reflect the lengths of their amino acid sequences. Crinoids (Anneissia japonica)—purple
color; asteroids (Patiria miniata)—red color; echinoids (Strongylocentrotus purpuratus)—green color;
holothurians (Eupentacta fraudatrix)—blue color; hemichordates (Saccoglossus kowalevskii); vertebrates
(Homo sapiens)—black color.
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Figure 4. MUSCLE (Ugene) alignment of amino acid sequences of FACITs cysteine-containing sites
of vertebrates, hemichordates, and echinoderms.

2.1.3. Network-Forming Collagens

Collagens IV, VIII, and X form a group of network-forming collagens. The former two
support the structure of basement membranes, while collagen X is presumably involved in
bone mineralization during the embryonic development of vertebrates [29]. Collagen IV is
distinguished by the length and organization of the alpha chain that has a large number of
interruptions. Network-forming collagens also differ in C-terminal sites: collagens X and
VIII end with the C1q domain, which is necessary for proper folding and protein–protein
interactions [30]; collagens IV end with the duplicated C4 domain, an important component
of basement membranes [31]. Echinoderms have two genes from this group, and, judging
by the presence of a C-terminal duplicated domain in all of them, these are homologs of
collagens IV (Figure 5a). This is also confirmed by the phylogenetic analysis (Figure 5b,
Supplementary File S3).

Collagen IV is a fundamental component of basement membranes. The latter are
ancient and highly conserved forms of ECM [32]. Therefore, the main functions of their
components in different animal phyla, including echinoderms, should be similar. It is
worth mentioning that a number of genes encoding proteins of the basic set of “basement
membrane ECM toolkit” (collagens IV and XV/XVIII, laminin, nidogen, and perlecan)
shared by protostomes and deuterostomes [14], increase their expression in the body wall
of Cladolabes schmeltzii during fission of individuals, which indicates a substantial role of
the components of this structure in the processes of connective tissue rearrangement [20].

2.1.4. Collagens VI, VII, XXVI, and XXVIII

Collagens VI, VII, XXVI, and XXVIII are important components of basement mem-
branes and microfibrillar networks [33–35]. The domain organization of these collagens is
similar between vertebrates: besides the collagen domain, all have vWA, and some have
fibronectin repeats and the C-terminal Kunitz domain, which is cut off during protein
maturation [22]. The exception is collagen XXVI, which contains only two triple-helix sites
and the EMI domain [36]. In this group, only one gene was found in echinoderms. Its prod-
ucts contain one EMI and one or two triple-helix domains (Figure 6a). In the phylogenetic
tree, these are grouped with human collagen XXVI, in connection with which they can be
referred to as collagens XXVI (Figure 6b, Supplementary File S4). The function of collagen
XXVI remains unclear. In vertebrates, it is known to be expressed in testes and ovaries and
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is presumably involved in the development of these organs [37]. The presence of the EMI
domain required for the multimerization of proteins indicates the ability of collagen XXVI
to bind to other ECM components that contain such domains as laminin-type EGF-like,
collagen-like, etc. [38].
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Figure 5. Network-forming collagens of echinoderms. (a). Domain structure. The length sizes of
proteins and domains in the image reflect the lengths of their amino acid sequences. (b). Phylogenetic
tree showing the relationships of network-forming collagens of vertebrates, hemichordates, and
echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria miniata)—red color;
echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Eupentacta fraudatrix)—blue
color; hemichordates (Saccoglossus kowalevskii); vertebrates (Homo sapiens)—black color. Groups of
proteins (I–III) are marked with colored areas.
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Figure 6. Collagens VI, VII, XXVI, and XXVIII of echinoderms. (a). Domain structure. The length
sizes of proteins and domains in the image reflect the lengths of their amino acid sequences. (b). Phy-
logenetic tree showing the relationships of collagens VI, VII, XXVI, and XXVIII of vertebrates,
hemichordates, and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria
miniata)—red color; echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Eupentacta
fraudatrix)—blue color; hemichordates (Saccoglossus kowalevskii); vertebrates (Homo sapiens)—black
color. Groups of proteins (I, II) are marked with colored areas.

2.1.5. Multiplexins

Multiplexins are a special group of collagens that includes two proteins: collagens
XV and XVIII. These have sequences for attaching heparan sulfate and chondroitin sulfate
side chains and are proteoglycans by their structure [39,40]. Their molecules consist of
9–11 intermittent triple-helix sites, a signal peptide, and the THBS domain at the N-terminus
and the Endostatin domain at the C-terminus. The echinoderms that we studied have one
multiplexin gene with a similar structure. Most of them are referred in the NCBI database
to as Collagen type I. A BLASTp analysis showed the best hits among network-forming and
fibrillar collagens. However, their domain organization is close to vertebrate multiplexins
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(Figure 7, Supplementary File S5). It would probably be more correct to refer to collagens
of this group in echinoderms as collagens XV/XVIII.
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Figure 7. Multiplexins of echinoderms. (a). Domain structure. The length sizes of proteins and
domains in the image reflect the lengths of their amino acid sequences. (b). Phylogenetic tree showing
the relationships of Multiplexins of vertebrates, hemichordates, and echinoderms. Crinoids (Anneissia
japonica)—purple color; asteroids (Patiria miniata)—red color; echinoids (Strongylocentrotus purpu-
ratus)—green color; holothurians (Eupentacta fraudatrix)—blue color; hemichordates (Saccoglossus
kowalevskii); vertebrates (Homo sapiens)—black color. Groups of proteins (I, II) are marked with
colored areas.

Collagens XV and XVIII are important components of basement membrane required
for maintaining its integrity [39]. Due its specific structure, their molecule has a com-
plex “knot/figure-of-eight/pretzel” configuration, which allows forming links with other
connective-tissue fibrils [40]. In addition to the structural function, these collagens are
involved in the development and carcinogenesis of many tissues [41,42]. For instance, the
Endostatin domain is capable of inhibiting migration, proliferation, and causing apoptosis
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of endothelial cells [43,44]. The possible involvement of multiplexins in the transformation
of the body-wall ECM has been reported for holothurians. Expression of collagen XV/XVIII
increases in case of asexual reproduction in C. schmeltzii [20].

2.1.6. Unknown Collagens

One gene that encodes collagen-like short-length (563–753 aa) proteins was found in
each of all the studied echinoderms. The NCBI database contains homologous sequences
of other echinoderms with similar lengths and structures. All the found proteins consist of
three to six discontinuous triple-helical domains (Figure 8, Supplementary File S6). These
collagens mostly resemble FACITs in the number of such sites and their length. However,
these proteins lack the THBS domain and cysteine-containing site characteristic of FACITs.
Thus, echinoderms have collagens that are clearly different from those of vertebrates and
do not fit into any of the groups. It is likely that these proteins are an ancestral form
of deuterostome collagens or evolved in echinoderms on the basis of FACITs or fibrillar
collagens through a loss of some domains.
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2.2. Proteoglycans

Proteoglycans and glycoproteins are multifunctional components of connective tis-
sue which mediate adhesion, proliferation, differentiation, and migration of various
cells [45–47]. The difference between them is relatively arbitrary. In this review, we
differentiate them according to Hynes and Naba [48]. The presence of proteoglycans in
MCT has been shown for different classes of echinoderms [49]. Presumably, these, along
with stiffening proteins like tensilin and NSF, are a link between neighboring collagen fibrils
and are involved in MCT transformation [50]. Our analysis showed that echinoderms lack
genes of a number of proteoglycans characteristic of vertebrates such as aggrecan, versican,
brevican, neurocan, and decorin.

2.2.1. Syndecans

The syndecan (SDC) family includes transmembrane proteoglycans that form homod-
imers and perform function of co-receptors of cell surface proteins such as integrins [51].
Mammals have four genes of this family, while only one has been found in echinoderms
(Figure 9, Supplementary File S7). The domain structures of echinoderm and mammalian
syndecans are similar and include a signal peptide, an extracellular domain represented by
glycine-serine motifs and the transmembrane and C-terminal cytoplasmic domains [52].
The exception is the presence of the SEA domain in the central region of the syndecans in
some echinoderms. It is reliably detected by NCBI CD Search and SMART in the holothuri-
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ans E. fraudatrix and A. japonicus. SMART also identifies SEA in H. leucospilota and the sea
stars A. rubens and P. miniata, but below the probability threshold.
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Figure 9. Syndecans of echinoderms. (a). Domain structure. The length sizes of proteins and do-
mains in the image reflect the lengths of their amino acid sequences. (b). Phylogenetic tree showing
the relationships of Syndecans of chordates, hemichordates, and echinoderms. Crinoids (Anneissia
japonica)—purple color; asteroids (Patiria miniata)—red color; echinoids (Strongylocentrotus purpu-
ratus)—green color; holothurians (Eupentacta fraudatrix)—blue color; hemichordates (Saccoglossus
kowalevskii) and chordates (Ciona intestinalis, Branchiostoma belcheri and Homo sapiens)—black color.
Groups of proteins (I, II) are marked with colored areas.

The extracellular domain can bind various glycosaminoglycans (GAGs), which deter-
mine the function of entire molecule, by means of glycine-serine motifs [53–55]. Depending
on the type of GAGs, syndecan can interact with growth factors, cytokines, enzymes, and
other ECM molecules [52]. The transmembrane domain is required for the formation of ho-
modimers by syndecans. The cytoplasmic domain is involved in intracellular interactions.
By means of two conservative sites (C1 and C2), it can bind both to kinases for signal trans-
mission and directly to cytoskeletal proteins [52]. Thus, syndecan is potentially capable of
regulating many processes in echinoderms and may mediate various ECM rearrangements
that occur with changes in the MCT state. In sea urchin embryos, it is involved in post-oral
arm formation due to its effect on cell proliferation [35]. During the asexual reproduction
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in the holothurian C. schmeltzii, the syndecan expression decreases, which may indicate its
probable involvement in fission and transformation of the body-wall connective tissue [20].

2.2.2. Glypicans

Glypicans (GPC) are a family of heparan sulfate proteoglycans located on the outer
surface of plasma membrane [56]. These proteoglycans are divided into two subfamilies.
In mammals, the first subfamily is glypicans 1, 2, 4, and 6, and the second one is glypicans
3 and 5 [56] (Figure 10, Supplementary File S8). Crinoids, asteroids, ophiuroids, and echi-
noids have one glypican gene in each of the subfamilies (Figure 10). Holothurians have
two genes in the first subfamily and one gene in the second subfamily. Glypicans consist
of heparan sulfate chains, a core protein, and glycosylphosphatidylinositol (GPI) linkage
required for attachment to the cell membrane [57]. The location on the cell surface allows
these proteins to interact with extracellular components of various signaling pathways.
Thus, vertebrate glypicans, regulating such signaling pathways as Wnt, Hedgehog (Hh),
fibroblast growth factor (FGF), bone morphogenetic protein (BMP), and Hippo are involved
in various development and carcinogenesis processes [56,58]. In the sea urchin Paracen-
trotus lividus, glypican 5 is regulated by BMP signaling and shows a variable pattern of
expression at the blastula and gastrula stages [59]. Due to the large repertoire of regulated
signaling pathways, glypicans can have an effect on ECM remodeling and on the MCT
properties change.
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and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria miniata)—red color;
echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Eupentacta fraudatrix)—blue
color; hemichordates (Saccoglossus kowalevskii) and chordates (Ciona intestinalis, Branchiostoma belcheri
and Homo sapiens)—black color. Groups of proteins (I–III) are marked with colored areas.
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2.2.3. Betaglycan

Betaglycan, or Transforming growth factor beta receptor III (TGFBR3), is a heparan
sulfate proteoglycan of cell surface consisting of a large extracellular, transmembrane, and
short cytoplasmic domains [60]. It is a co-receptor for some ligands of the TGF-β signaling
pathway which is involved in many processes including embryonic development, cell
differentiation, proliferation, immune system control, and regeneration [61]. TGFBR3 can
also acquire a soluble form. Due to its proteolytic cleavage, or shedding, by means of matrix
metalloproteinase MT1-MMP, ectodomain is released into the extracellular space [62]. The
free ectodomain binds to ligands and becomes involved in their deposition and neutral-
ization [63]. Thus, the membrane and soluble forms of betaglycan can perform opposite
functions. Each echinoderm has one TGFBR3 gene with a similar structure. There is a
lack of information about the betaglycan functions in echinoderms. We assume that, as a
participant in TGF-β signaling, it can potentially be involved in ECM remodeling.

2.2.4. Bamacan

Bamacan, or structural maintenance of chromosomes 3 (SMC3), is located in the
basement membrane. The molecule has a complex structure that differs markedly from that
of other proteoglycans: the globular or head domains, located at the N- and C-terminuses,
are connected via a rod-shaped coiled-coil structure, which is interrupted in the middle by
a small site [64,65]. Chondroitin chains are located at the junctions of the head structures
with the rod [64]. The SMC3 protein is known to be a part of the cohesin complex necessary
for chromosome cohesion and coordinated segregation of sister chromatids [66,67]. All the
studied echinoderm species have the bamacan gene. There is a lack of information about
the bamacan functions in echinoderms.

2.2.5. Perlecan

Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is one of the most important com-
ponents of basement membranes. It is found in a variety of tissues such as cartilage, adipose,
nervous, bone, etc. [68]. In most cases, perlecan is a hybrid heparan sulfate/chondroitin
sulfate proteoglycan. Its molecule has a modular structure and includes five domains, each
of which is capable of binding to many ligands and other molecules. This structure imparts
a large number of different functions to HSPG2. For example, domain I binds to growth
factors, which contributes to cell proliferation, differentiation, and tissue development;
domain IV is necessary for adhesion and scaffolding; and the C-terminal domain V provides
cell–ECM interactions and is involved in angiogenesis and regeneration [69]. The perlecan
gene was found in all the echinoderm species that we studied. It encodes a protein having
a domain structure similar to vertebrate perlecans. In the holothurian C. schmeltzii, the
perlecan expression is found in fissioning, but not intact, individuals [20], which indicates its
involvement in the connective tissue transformation. However, due to the large number of
intermolecular interactions, this proteoglycan can also act as a regulator. Perlecan probably
has a structural and regulatory effect on the processes occurring in MCT.

2.3. Glycoproteins
2.3.1. Laminins

Laminins (LAMs) are an important structural component of basement membranes
and areas of the ECM that come into contact with cells [70]. These glycoproteins are
found in almost all tissues. They function as heterotrimers consisting of a combination of
various α, β, and γ subunits [70]. The human LAM gene family encodes five α, four β,
and three γ subunits. The domain organization of all subunits includes an N-terminal site,
usually consisting of a laminin N-terminal (LN) domain, followed by a region of repeats
of laminin-type epidermal growth factor (EGF)-like (LE) domains [71]. The array of LE
repeats is interrupted by one or two globular laminin type IV (L4 and LF) domains [71]. The
presence of alpha-helical sites, which bind three chains with association into a coiled coil, is
common to all laminins [71]. In α subunits, unlike β and γ ones, the coiled-coil region at
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the C-terminus is followed by five laminin G-like (LG) domains [34]. Laminin molecules
are capable of self-assembling and, together with collagen type IV, matrix cell receptors
and other components, form network structures of basement membranes. LN and LG1-3
domains are responsible for self-assembly: by means of LN, heterotrimers of laminins bind
to each other, with C-terminal LG1-3 necessary for their attachment to the cell surface via
integrins [71]. Also, the complex domain system of laminins provides interaction with
glycoproteins such as agrin, nidogen, and dystroglycan [72,73]. Due to the wide range of
intermolecular interactions and the influence on the ECM structure, laminins are involved
in a variety of processes such as cell adhesion, migration, and differentiation [70].

The total number of echinoderm LAMs is from five to eight genes, with subunits of all
three types occurring among their products. Among the echinoderm classes studied, the
highest number of LAM genes were found in holothurians (8) and crinoids (7), while five
LAM genes were found in echinoids and asteroids. The laminin expression is positively
regulated during fission in the holothurian C. schmeltzii [20]. Moreover, along with some
other ECM components, laminin shows increased expression during the gut regeneration
in the holothurians Holothuria glaberrima and A. japonicus [74,75]. Together, these facts
indicate the important role of laminin in connective tissue transformations, including in
MCT during various morphogenesis processes.

2.3.2. Nidogens

Nidogens (NID), or entactins, are a family of glycoproteins located in the basal lam-
ina. Vertebrates have two genes, NID1 and NID2, encoding the proteins. In mammals,
serious disorders in the basement membrane structure are observed in case of the absence
of both nidogens, which leads to prenatal death in the late stages of lung and heart de-
velopment [76]. However, with one of the genes working, the structure of the basement
membrane is not disturbed, which indicates overlapping functions of their products [76].
Nidogens interact with laminins, perlecan, fibulins, and collagens I and IV. Together, these
proteins constitute the basis of the supramolecular structure of basement membranes [77,78].
The relationship of NID1 with the processes of stem cell expansion and differentiation has
also been shown [79].

The nidogen molecule consists of three globular domains: G1, G2, and G3. G1 and G2
are separated by a link region, and G2 and G3 by the rod domain. The rod domain contains
EGF-like sequences and thyroglobulin-like module (TY) motifs. Also, in the globular
domains G2 in NID1 and NID2 and in G3 in NID1, there are EGF repeats that can influence
the processes of cell development, adhesion, and protein–protein interactions [80].

Echinoderms have one NID gene. The structure of its products is very similar to
that of vertebrate nidogens. The difference is the lack of echinoderm TY motifs in the
structure of NIDs. In a phylogenetic tree, the echinoderm and vertebrate nidogens form
separate groups, which indicates the divergence of these genes as early as at the level of
the common ancestor of all deuterostomes (Figure 11, Supplementary File S9). Accordingly,
any orthology between them is hardly to be assumed. Nevertheless, judging by the
presence of the EGF motif at the end of the G3 region in nidogen sequences of most
echinoderms, these are more similar to vertebrate NID1. Taking into account the similarity
of the domain organizations, one can assume that nidogens in echinoderms are also one of
the most important proteins of basement membranes. In C. schmeltzii, nidogen expression
is observed in asexual reproduction, while in intact animals, it is absent, which indicates its
important role in changes in the connective tissue state [20].
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and Homo sapiens)—black color. Groups of proteins (I, II) are marked with colored areas.

2.3.3. Fibulins

Fibulins (FBLNs) are a family of basement membrane glycoproteins that have an
early evolutionary origin [81]. These are recognized in a variety of taxa, from Cnidaria to
Chordata [1,82]. Vertebrates have six to seven FBLN genes. Fibulins, due to their ability
to bind to ECM molecules such as fibrillin, are involved in the maintenance of connective
tissue supramolecular complexes, e.g., microfibrillar networks [83,84]. On the basis of
domain structure and length, two subfamilies of FBLNs can be distinguished: the first
comprises FBLN 1,2,3,4,5,7; the second, FBLN 6 and 8, also known as hemicentins (HMCN)
1 and 2. One gene from each subfamily was found in echinoderms (Figures 12 and 13,
Supplementary Files S10 and S11). On the phylogenetic tree, the FBLNs of echinoderms
and vertebrates form separate groups, which indicates the divergence of these genes at the
level of the common ancestor of all deuterostomes.
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miniata)—red color; echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Eupentacta
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Branchiostoma belcheri and Homo sapiens)—black color. Groups of proteins (I–III) are marked with
colored areas.

The echinoderm FBLN, like that of vertebrates, consists of an N-terminal signal peptide,
domains of Anaphylotoxin (AT), and EGF repeats. The major function of vertebrate FBLNs
is to be involved in cell signaling by interacting with ECM components such as fibronectin,
laminin-1, and versican, as well as in tissue renewal through interaction with a disintegrin
and metalloproteinase with thrombospondin motifs protease 1 (ADAMTS-1) [83]. During
fission in the holothurian C. schmeltzii, fibulin-1 shows a positive regulation [20]. Fibulins
in echinoderms can be part of the microfibrillar networks of MCT, as well as regulate
morphogenetic processes that are accompanied by its change.

The second gene encodes a protein similar to vertebrate hemicentrins. The hemicentrin
molecule of both echinoderms and vertebrates consists of an N-terminal signal peptide,
a vWA domain, Immunoglobulin C-2 (IGc2) repeats, thrombospondin type 1 repeats, a
G2F domain, followed by EGF repeats, and a C-terminal Fibulin-type module. HMCNs are
involved in migration processes and provide cell–cell and cell–matrix contacts [85]. Their
function in echinoderms remains unknown.
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2.3.4. Agrin

Agrin in mammals is an important component of the synaptic basal lamina at the
neuromuscular junctions [86,87]. It, as with many other ECM proteins, has a modular
structure: a signal peptide and an NtA domain responsible for attachment to the basal
lamina via linkage with laminins are located at the N-terminus [88]. Then follows a central
region mainly formed by follistatin-like domains that inhibit protease activity [89] and also
including other structures: factor I membrane attack complex (FIMAC) and Laminin-type
EGF. Behind the central site, there are SEA domains interrupted by EGF sequences and
three laminin G-like domains (G1–G3). G1 and G2 domains bind dystroglycan [90], while
G3 and, presumably, SEA are required for aggregation and clustering of acetylcholine
receptors at the neuromuscular junctions [91,92]. In vertebrates, agrin is involved in the
formation, maintenance, and regeneration of neuromuscular junctions [93–95].

Echinoderm agrins generally manifest a structure similar to that of mammalian agrins.
However, in echinoderms, this protein has a number of specific features. It lacks SEA
domains and has structures containing cysteine repeats. Also, the NtA domain has not been
found in agrins of most echinoderms. The exceptions are the holothurians E. fraudatrix and
H. leucospilota (agrin of A. japonicus lacks part of the sequence at the N-terminus) and the sea
star A. planci. At the N-terminuses of agrins in the sea stars A. rubens and P. miniata, there is
a different structure, the transmembrane transport protein Major Facilitator Superfamily
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(MFS), while agrins of sea urchins immediately begin with follistatin-like domains. In
the holothurian C. schmeltzii, agrin is active in the body wall of intact animals, but its
expression is not detected in fissioning individuals [20]. It is possible that agrin is involved
in the formation and maintenance of juxtaligamental cells, which are the effectors directly
responsible for changes in MCT tensility [13].

2.3.5. Dystroglycan

Dystroglycan is a receptor for cell adhesion of ECM proteins. It presents in a variety
of tissues, both during embryonic development and in the postnatal period [96,97]. Echino-
derms, like vertebrates, have one dystroglycan gene, DAG1. It encodes a precursor, which,
after translation, is cut into two subunits subsequently forming a non-covalent bond with
each other [98]. The first subunit, extracellular αDG, consists of a glycosylated mucin-like
domain flanked by two globular domains. The second, βDG, has transmembrane and
cytoplasmic domains [98]. The mucin-like domain of αDG interacts with laminins, agrin,
perlecan, and other ECM proteins in muscle and nervous tissues [98]. Dystroglycan is
necessary to maintain the structural integrity of basement membranes and the central
nervous system development [99–101]. DAG1 is expressed by neuroepithelial cells and
regulates the migration of glial cells [101]. Dystroglycan is also involved in dendritogenesis
and axon guidance, and, along with agrin, it is involved in the formation of neuromuscular
junctions [101]. DAG1 in echinoderms probably performs similar functions. It can, together
with agrin, be involved in the formation of neural connections in MCT. This may indirectly
be indicated by the fact that in C. schmeltzii the activity of dystroglycan in the body wall,
like that of agrin, disappears during fissioning [20].

2.3.6. Thrombospondins

Thrombospondins (THBSs) are a family of multidomain, multifunctional, calcium-
binding glycoproteins that interact with cell surfaces, other ECM components, growth
factors, cytokines, and proteases [1]. Vertebrates have five genes of THBSs. THBSs can be
divided into two groups depending on the quaternary structures that they form. Group A
contains proteins THBS1 and THBS2, which form trimers, and group B contains THBS3,
THBS4, and THBS5, which form pentamers [102]. The THBS-A molecule includes many
domains: a N-terminal domain (THBS-N), a coiled-coil domain, a vWC domain, three
properdin-like repeats or thrombospondin repeats (TSRs), a signature domain comprising
three EGF repeats, a calcium-binding wire, and a lectin-like C-terminal globe [102]. THBS-B
has a similar structure, except for the absence of vWC and TSRs and the presence of an
additional EGF repeat [102]. Also, THBS-5 lacks THBS-N [102].

Two THBS genes have been found in all echinoderms (Figure 14, Supplementary File S12).
The first encodes a protein that shows similarities to THBS 1 and 2 in vertebrates, and
therefore, it can be designated as THBS1/2. In mammals, these THBSs are involved in ECM
assembly, platelet aggregation, inflammatory response, and regulation of angiogenesis
during regeneration and tumor growth [103]. Moreover, they perform a structural function
in ECM, acting as molecular bridges between its components. THBS1 and 2 are capable of
binding to integrin and fibrillar collagens [104–106].

The second echinoderm gene is referred to as THBS5 or Cartilage oligomeric matrix
protein (COMP) in the NCBI database. The protein encoded by it has a domain structure
corresponding to the THBS-B group. In this regard, this gene can be referred to as THBS3/4/5.
Vertebrate THBS5 can form molecular bridges between ECM proteins [103], in particular, by
binding to FACITs [107,108]. In echinoderms, thrombospondins probably perform a similar
function. By interacting with collagen fibrils, they can be involved in the mechanisms
changing the mechanical properties of MCT.
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blue color; hemichordates (Saccoglossus kowalevskii) and chordates (Ciona intestinalis, Branchiostoma
belcheri and Homo sapiens)—black color. Groups of proteins (I, II) are marked with colored areas.

2.3.7. Fibrillins

Fibrillins (FBNs) are among the most ancient proteins capable of forming fibrils in
ECM [1]. In vertebrates, these are widely known as components critically important for
composing fibers that form a scaffold for elastin [109]. Vertebrate FBNs are structurally sim-
ilar to each other and consist of about 30 EGF modules, which provide, first, stabilization of
the protein structure, second, its protection from proteolysis, and third, interaction with the
ECM components, e.g., with fibulin [110]. Among EGF modules, there are about eight trans-
forming growth factor beta (TGF)-β binding protein (TB)-like modules, mediating reactions
with integrins [110], and one to three vWA domains. Fibrillin 1 unique N-terminal domain
(FUN), which, interacting with the C-terminal site of another FBN molecule, provides
assembly of microfibrils, is located at the N-terminus [111]. The C-terminal domain is also
capable of binding ECM proteins [110].

Vertebrates have three genes of this family; echinoderms, according to the NCBI
database, have from two to three. One of them, more frequently designated as FBN2
and present in all the echinoderms species that we studied, has a domain organization
similar to that of vertebrate fibrillins and includes all of the above structures in comparable
amounts. The rest of the echinoderm sequences found, though confidently identified by
BLAST as fibrillins, have a slightly different structure. First, these do not contain the FUN
domain, and second, these sequences differ substantially from each other by the absence
of TB modules or vWA domains or, vice versa, by the presence of other structures. In the
transcriptome of the holothurian E. fraudatrix, we found about six structurally different
sequences that are identified as fibrillins by BLAST. This is probably explained by the fact
that the vast majority of domains in fibrillins are not unique to them and are present in
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other proteins, which hampers their accurate identification. For example, a very similar
arrangement of EGF and TB modules is found in the latent-transforming growth factor
beta-binding protein 1 that is absent in echinoderms. Thus, we assume that echinoderms
possess only a single fibrillin gene (Figure 15, Supplementary File S13). The rest of the
FBN-like proteins probably represent a separate group of connective tissue proteins that
has formed within the phylum Echinodermata.
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Figure 15. Phylogenetic trees showing the relationships of fibrillins of chordates, hemichordates,
and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria miniata)—red color;
echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Apostichopus japonicus)—blue
color; hemichordates (Saccoglossus kowalevskii) and chordates (Ciona intestinalis, Branchiostoma belcheri
and Homo sapiens)—black color. Groups of proteins (I–III) are marked with colored areas.

Besides being involved in elastogenesis, FBNs perform other functions that are of
greater interest within the scope of this review, because echinoderms lack elastins. Thus,
they are involved in the assembly of microfibrillar networks and basement membranes; they
can influence growth factors and are, thereby, indirectly involved in the regulation of cell
functions and stem cell niches, as well as provide cell–matrix communication by interacting
with integrins [85]. Fibrillin molecules are present in MCT of the holothurian body wall.
Studies using electron microscopy have shown that fibrillins in MCT form a microfibrillar
network around collagen fibers [112]. Stretching of MCT is accompanied by the sliding of
collagen fibers relative to each other, and the microfibrillar network provides them with
the correct orientation during movement. It has also been shown that the microfibrillar
network isolated from the body wall of the holothurian Cucumaria frondosa (Gunnerus,
1767) behaves as a highly extensible elastomer [112]. Thus, fibrillin, as a component of
microfibrillar networks, imparts on MCT the ability to stretch and the strength, and is also
involved in the correct orientation of collagen fibers in MCT.
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2.3.8. SPARC-Related Modular Calcium Binding Protein 1

SPARC-Related Modular Calcium Binding protein 1 (SMOC) is a family of proteins
located in basement membranes and ECM [113]. Vertebrates have two genes coding
proteins of this family. Structurally, SMOC1 and SMOC2 are similar and have a follistatin-
like domain, two thyroglobulin-like domains, a unique domain, and an extracellular
calcium-binding domain [113]. SMOCs are involved in a variety of processes such as
migration, proliferation, cell adhesion, tissue fibrosis, angiogenesis, calcification, and tumor
development [113]. Only one gene encoding SMOC with all the above-listed domains
has been identified in echinoderms. Judging by the similarity of structures of SMOC in
echinoderms, it probably has a similar set of functions and may be involved in connective
tissue remodeling.

2.4. Polysaccharides

Connective tissue of animals includes diverse GAGs such as hyaluronic acid, chon-
droitin sulfates, and heparan sulfates. Their synthesis requires various enzymes. Hyaluronic
acid is synthesized by the enzymes hyaluronan synthases. Mammals have three genes
hyaluronan synthase, while invertebrates lack them [114]. We have also not found hyaluro-
nan synthases in echinoderms. This is a noteworthy finding because these animals have
hyaluronidase, an enzyme that, in mammals, breaks down hyaluronic acid into monosac-
charides. However, among invertebrates, hyaluronic acid has been found only in mol-
lusks [114], which suggests that hyaluronidase in echinoderms has a different substrate
specificity.

The chondroitin sulfate biosynthesis involves some enzymes of the Beta 4-glycosyltransferases
family, e.g., chondroitin sulfate synthases (Chsy) [115]. In echinoderms, as well as in verte-
brates, two Chsy genes have been found. The synthesis of heparan sulfates in vertebrates
is provided by the enzymes EXTL1, EXTL2, and EXTL3, which constitute the Exostosin
glycosyltransferase family (EXT) [116]. Echinoderms also have three EXT genes.

Chondroitin sulfates and heparan sulfates are part of proteoglycans, are required for
cell hydration, structural scaffolding, and also play a key role in cell signaling [117]. It
has been shown that in MCT structures of crinoids, echinoids, and holothuroids, highly
sulfated chondroitin sulfates are located along collagen fibrils [118–121]. In this regard, the
enzymes that synthesize and degrade GAGs can play an important role in the modification
of MCT in echinoderms.

3. Proteins Modifying ECM
3.1. Collagen Formation

The synthesis of ECM and change in its properties depend, first, on the enzymes
responsible for the assembly of various types of fibrils that constitute the basis of connective
tissue. Transglutaminase-2 [122] and lysyl oxidase (Lox) are involved in the formation of
collagen fibrils [123,124]. An analysis of the NCBI databases has shown that echinoderms
possess one Lox and some transglutaminase genes.

3.1.1. Lysyl Oxidase

Lysyl oxidases (LOXs) are a family of copper-dependent amino oxidases capable of
ECM remodeling by forming various inter- and intra-chain cross-links in collagens and
elastins [125]. LOXs can oxidize lysine and hydroxylysine residues to reactive aldehyde
species that eventually form associations with other oxidized groups or intact lysines [125].
Vertebrates have five LOXs genes, while echinoderms have only one (Figure 16,
Supplementary File S14). Apparently, LOXs of deuterostomes diverged from a single an-
cestral gene during the divergence of Ambulacraria and Chordata. The function of LOX in
echinoderms most likely does not differ from that in vertebrates and consists of establishing
cross-links between collagens.
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Figure 16. Phylogenetic trees showing the relationships of Lysyl oxidase of chordates, hemichordates,
and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria miniata)—red color;
echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Apostichopus japonicus)—blue
color; hemichordates (Saccoglossus kowalevskii) and chordates (Ciona intestinalis, Branchiostoma belcheri
and Homo sapiens)—black color. Groups of proteins (I–III) are marked with colored areas.

3.1.2. Transglutaminases

Transglutaminases (TGM) are a family of Ca2+-dependent enzymes that covalently
bind amino groups of one protein to the γ-carboxamide groups of glutamines of an-
other [126]. Vertebrates have eight to nine TGM genes that perform many functions in
various tissues such as apoptosis, adhesion, ECM stabilization, signal transmission, co-
agulation of germ and blood cells, and formation of bone tissue and cell membrane of
keratinocytes [127]. One protein from this family, EPB42, does not have catalytic activity but
is, nevertheless, involved in signaling, structural scaffolding, and adhesive functions [127].
The domain structures of all vertebrate TGMs are similar and include the N-terminal,
catalytic middle domains, and one or two domains located at the C-terminal site. Transglu-
taminases of echinoderms have a structure identical to those of vertebrates. Three TGM
genes have been found in all classes, except for crinoids, which have four genes (Figure 17,
Supplementary File S15). In a phylogenetic tree, all the echinoderm TGMs are grouped sep-
arately from vertebrate TGMs, which indicates an earlier divergence from the ancestral gene
and the lack of correspondence between them. It has been shown that transglutaminases
in sea urchins are involved in embryonic development and affect cell proliferation [128].
Also, as evidenced by experiments with their inhibitors, transglutaminases probably cause
stiffening of MCT [129].
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Figure 17. Phylogenetic trees showing the relationships of transglutaminases of chordates, hemi-
chordates, and echinoderms. Crinoids (Anneissia japonica)—purple color; asteroids (Patiria mini-
ata)—red color; echinoids (Strongylocentrotus purpuratus)—green color; holothurians (Eupentacta
fraudatrix)—blue color; hemichordates (Saccoglossus kowalevskii) and chordates (Ciona intestinalis,
Branchiostoma belcheri and Homo sapiens)—black color. Groups of proteins (I–III) are marked with
colored areas.

3.2. Proteases

Animals possess a wide variety of proteases capable of degrading ECM proteins.
These are serine, cysteine, aspartyl, and metal peptidases. The transformation of connective
tissue during fission in echinoderms has been shown to be accompanied by variation
in the expression of genes of numerous proteases and their inhibitors such as matrix
metalloproteinases (MMPs), ADAMTSs, a tissue inhibitor of metalloproteinases (TIMPs),
and Cathepsin D [20]. This emphasizes the importance of these proteins in morphogenetic
processes accompanied by rearrangements in connective tissue.

3.2.1. Serine Proteases

The family of serine proteinases comprises a large number of proteolytic enzymes
involved in many biological processes [130]. It is known that many serine proteases of
various types can degrade connective tissue proteins. These include plasmin, cathepsin
G, fibroblast activation protein α, kallikrein 12 (KLK12), neurotrypsin, furin, matriptase
(ST14), hepsin, neutrophil elastase, activated protein C, KLK 4 and 14, etc. [131–133]. They
can lyse ECM components directly or indirectly, by activating other proteinases such as
MMP [71,72]. Of all the above proteins, only furin is reliably identified in echinoderms.

The domain organization of furins does not fundamentally differ between verte-
brates and echinoderms. The N-terminal signal peptide and the subsequent propeptide
are involved in successive posttranslational modifications such as proteolytic cleavage,
glycosylation, and folding [134]. A catalytic, P domain stabilizing it, and a cysteine-rich
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domain, are located next [134]. These are followed by a cytoplasmic domain responsible
for protein localization and a transmembrane domain. Removing the propeptide, furin
activates extracellular proteases MMPs and a disintegrin and metalloproteinases (ADAMs)
by cleaving the molecule in the region of furin-activated motif (R-X-R/K-R) [135]. In
addition, it is involved in the maturation of some of ECM components: collagen type
V, XIII, XXV [26,136,137] (see above), integrins, and various growth and differentiation
factors [134,138].

Besides furin, proteases referred to in NCBI as serine proteases have been identified in
echinoderms. Eight serine proteinases have been found in the holothurian C. schmeltzii, of
which four are expressed only in fissioning individuals [20]. A study on the holothurian
A. japonicus has shown that serine proteases are capable of effectively degrading colla-
gen [139,140]. Thus, an assumption can be made that in echinoderms, serine proteinases
are involved in the processes of connective tissue remodeling.

The use of BLAST on echinoderms has shown proteases Hepsin and KLK4, 12 and
14 to best match with the sequences designated as trypsins. However, a search for these
“trypsins” among mammals provides ambiguous matches, which hampers identification of
these proteins and assumption on their functions. The situation is similar to that with other
serine proteases, e.g., plasmin. The systematics of echinoderm serine proteases requires
dedicated studies, which may identify new candidates to the role of ECM remodeling
among proteins of this family.

3.2.2. Cysteine Proteases

Cysteine proteases are a group of enzymes that play a major role in a variety of
biological processes including digestion, apoptosis, and protein processing. These enzymes
are characterized by the nucleophilic cysteine residue in the active center that catalyzes the
hydrolysis of peptide bonds [141]. One of the subgroups of cysteine proteases is cathepsins
(CTS). As a rule, these have intracellular localization, but some of them (cathepsins B, L,
K and S) can be secreted into the intercellular space and degrade ECM proteins [142,143].
For example, STSK is secreted by osteoclasts and is involved in bone remodeling. Among
ECM proteins, the substrates for the listed proteinases are collagens I, II, and IV, aggrecan,
perlecan, nidogen, and laminin [142].

Cysteine cathepsins have a similar structure: a signal peptide is located at the N-
terminus, followed by the propeptide inhibitor I29 required for post-translational modifica-
tions and activation, and then by the peptidase domain C1 containing a catalytic site [144].
Of cathepsins capable of degrading extracellular components, CTSB and CTSL were identi-
fied in echinoderms. In A. japonicus, the cathepsin L-like protein is found in the outer layer
of dermis [134]. It is assumed to be involved in the autolysis of the body-wall connective
tissue in holothurians. In C. schmeltzii, cathepsin L is expressed during asexual reproduc-
tion [20]. CTSB may be involved in regenerative processes in echinoderms, as it has been
detected in spines of the sea urchin Echinometra lucunter capable of regeneration [145]. Thus,
cathepsins should be taken into account when analyzing the mechanisms changing the
MCT properties, since these proteases can be involved in ECM remodeling in echinoderms.

3.2.3. Aspartyl Protease

Aspartyl proteases represent a group of peptidases that cleave protein substrates
using two aspartic acid residues located in their catalytic center [146]. One of proteases
of this type is cathepsin D. It is a lysosomal enzyme, but it can also be localized in the
extracellular space [147], where it can cleave aggrecan molecules [148]. The CTSD structures
in echinoderms and vertebrates are similar and do not fundamentally differ from the
structural organization of cysteine cathepsins. There is evidence of the involvement of
CTSD in morphogenetic processes in holothurians. In A. japonicus, it is involved in autolysis
of body wall, muscles, and gut [149]. In C. schmeltzii, CTSD begins to be expressed in the
constriction area of fissioning individuals [20]. Thus, CTSD is likely to be involved in
processes of MCT transformation.
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3.2.4. Matrix Metalloproteinases

Among the enzymes involved in the ECM remodeling, proteases of the metzincin
superfamily are of particular interest [150]. This group includes most of the well-known
metalloendoproteinases: matrix metalloproteinases (MMPs), a disintegrin and metallo-
proteinases (ADAMs), a disintegrin and metalloproteinase with thrombospondin motifs
(ADAMTSs), pappalysins (pregnancy-associated plasma proteins), serralysins (bacterial
enzymes), leishmanolysins (protozoan proteinases), and astacins [150,151]. All of them
contain zinc in the active center. Many of these proteases are involved in ECM degradation,
but the most significant group of enzymes involved in connective tissue remodeling is
MMPs, also referred to as matrixins [152]. Depending on their specialization, MMPs can
either degrade extracellular matrix components or perform site-specific proteolysis by
activating or inactivating various proteins [153,154]. The number of MMPs varies between
different echinoderm species. In the A. japonica genome, a total of 22 MMP genes have
been identified; in P. miniata, 20 MMPs; in S. purpuratus, 21 MMPs; and in A. japonicus,
18 [155]. These are comparable to the number of MMPs genes in vertebrates (25–33). The
structure and functions of echinoderm MMPs are described in detail in the review by
Dolmatov et al. [155]. MMPs are assumed to play an important role in the mechanisms
changing the mechanical properties of MCT [13,156]. Galardin (the synthetic MMP in-
hibitor) stiffens ligaments in sea urchins [156]. Furthermore, MMPs are involved in dermal
liquefaction in holothurians [157,158].

3.2.5. ADAMs and ADAMTSs

Humans have 21 ADAMs and 19 ADAMTSs [159]. ADAMs and ADAMTs are anchored
on the cell membrane. They differ from MMPs by the absence of hemopexin-like repeats and
the presence of EGF-like and disintegrin domains. ADAMTSs also have thrombospondin
repeats [159]. The number of ADAMTS and ADAM genes in echinoderms differs between
members of different classes. The greatest number of ADAMTS genes (14) have been
found in the crinoid A. japonica, the smallest number being found in the holothurian
A. japonicus and the sea urchin S. purpuratus, with 11 in each. The sea star P. miniata
has 12 ADAMTS genes. Five genes encoding ADAM have been identified in each of the
echinoderm species studied.

Unlike ADAMs, ADAMTSs are mostly specialized in degradation of ECM compo-
nents and are, thus, actively involved in the processes of cell migration, proliferation, and
differentiation [160]. They cut N-propeptides of collagens I and II, thereby being involved
in the assembly of collagen fibrils [161]. ADAMTSs also cut off the prodomains in some of
proteoglycans (aggrecan, versican, brevican, and neurocan) and glycoprotein COMP [160].
Furthermore, fibulins, TGFbRIII, LOX, perlecan, and THBS-1 may be potential substrates
for ADAMTSs [162]. ADAMTSs in echinoderms may be involved in the processes of
degradation of ECM components in MCT. Seven transcripts of ADAMTs have been identi-
fied in C. schmeltzii [20]. ADAMTS7 and ADAMTS9 are positively regulated in fissioning
individuals, while ADAMTS13 and ADAMTS14, vice versa, are negatively regulated.

4. Regulation of Protease Activity

Each class of proteases has its own specific inhibitors [163]. However, examples of
proteins are known that can inhibit a serine and metalloprotease [164,165], cysteine and
aspartic protease [166], or a serine protease and amylase [163,167,168].

4.1. Serine Protease Inhibitors

Serine proteinase inhibitors, or SERPINs, are a superfamily of proteins, of which most
are capable of inhibiting proteinases [169]. SERPINs are divided into nine clades designated
with letters from A to I; in humans, it includes a total of 36 genes. Many SERPIN proteins
are involved in the processes of connective tissue transformation [169]. Only SERPINB has
been found in echinoderms. SERPINB1, or Leukocyte Elastase Inhibitor (LEI), is an inhibitor
of trypsin [170] and elastase [171], which is absent from echinoderms. In addition to serine
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proteases, this protein can inhibit aspartyl and cysteine proteases such as cathepsin D and
cathepsin L [169,171]. Also, several vertebrate cathepsins involved in ECM remodeling,
including cathepsin L, are regulated by the SERPINB3 protein [169]. There is evidence of
the ability of LEI to mediate negative regulation of MMP2 in vertebrates [172]. Another
vertebrate protease from this clade, SERPINB8, inhibits the action of furin required for the
MMP activation [169]. Thus, the role of SERPINs in connective tissue of echinoderms may
be related to the work of serine proteinases, cathepsin L, and furin.

4.2. Metalloproteinase Inhibitors

The major MMP inhibitors are α-2-macroglobulin, reversion-inducing cysteine-rich
protein with Kazal motifs (RECK), and tissue inhibitors of metalloproteinases (TIMPs). Our
study showed that echinoderms lack α-2-macroglobulin. RECK is an important participant
in the process of connective tissue remodeling. Its main function is the inhibition of MMP2,
MMP9, and MT1-MMP [173,174]. RECK is a membrane-anchored glycoprotein [175] that
has a modular structure, with hydrophobic regions located at the ends of the molecule [176].
The C-terminal site provides binding to the membrane through interaction with glyco-
sylphosphatidylinositol [176]. Closer to the N-terminus, there is a region with five cysteine
repeats, which has glycosylation sites required for proper interaction with MMP [176]. It
is followed by two central EGF modules, of which one is flanked by three serine-protease
inhibitor-like domains SPIs. These modules perform a catalytic function [176]. A gene
encoding RECK was found in all echinoderms. It is obviously capable of contributing to
MCT transformation by regulating the MMP action.

TIMPs are endogenous inhibitors of a wide spectrum of metalloproteinases from
the families MMP, ADAM, and ADAMTS [177]. In this regard, TIMPs play an impor-
tant role in the regulation of ECM remodeling and turnover. Unlike vertebrates that
have only four TIMP genes, echinoderms have a large number of genes encoding TIMPs
and TIMP-like proteins [155,178]. In some species, the number of such genes can reach
45 [178]. Most of the studied echinoderm TIMPs have a standard structure similar to
that of other animals [155,178]. Only one domain is identified in them, the NTR domain,
which is characteristic of this protein class. The majority of studied echinoderm TIMPs
contain 10–12 conserved cysteine residues, which probably form a tertiary structure of the
molecule [20,155,178]. The structure of the echinoderm TIMPs is described in detail in the
review by Dolmatov et al. [155].

The functions of TIMPs in echinoderms have not been studied to date. It is obvious
that, as in mammals, many of these proteins are MMP inhibitors. Information is only
available about tensilins, a specific group of TIMP-like proteins [20,155,179]. Tensilin was
first found in the connective tissue of the body wall of the holothurian C. frondosa [180].
Later, similar proteins were found in other holothurians [155,179,181]. These proteins are
assumed to be responsible for MCT stiffening and are an important component of the
mechanism of regulation of MCT properties in echinoderms [49,156,182].

An analysis of the TIMP phylogeny has shown that tensilins are found only in
holothurians [20]. However, Mittal et al. [183] used EchinoDB to find sequences simi-
lar to holothurian tensilins in representatives of all classes of echinoderms. To eliminate
this contradiction, we analyzed the known sequences of TIMP and TIMP-like proteins of
echinoderms, indicated in previously published papers [20,178,181,183]. The phylogenetic
tree (Figure 18, Supplementary File S16) confirms our conclusion about the strong diver-
gence of the ancestral TIMP gene in the phylogeny of echinoderms [155]. In addition, all
holothurian tensilins form a separate group. The closest tensilin homologues are found
only in echinoids. Together they form a common cluster including tensilins and tensilin-like
proteins. TIMPs and TIMP-like proteins of other echinoderm classes are located outside of
this cluster.
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Figure 18. Phylogenetic trees showing the relationships of TIMPs of echinoderms. Crinoids—purple
color; asteroids—red color; ophiuroids—orange color; echinoids—green color; holothurians—blue
color. A. car.—Asteropsis carinifera; A. jap.—Apostichopus japonicus; A. pun.—Arbacia punctulata; C. fro.—
Cucumaria frondosa; C. gig.—Crassostrea gigas; C. sch.—Cladolabes schmeltzii; E. fra.—Eupentacta fraudatrix;
H. for.—Holothuria forskali; H. lev.—Henricia leviuscula; G. mes.—Gephyrocrinus messing; I. viv.—Isometra
vivipara; L. ann.—Labidiaster annulatus; L. cla.—Luidia clathrata; L. var.—Lytechinus variegatus; M. int.—
Molpadia intermedia; O. bre.—Ophioderma brevispinum; O. ser.—Oligometra serripinna; P. aus.—Ptilometra
australis; P. cha.—Psilaster charcoti; P. fol.—Peribolaster folliculatus; P. min.—Patiria miniata; P. mos.—Pannychia
moseleyi; P. och.—Pisaster ochraceus; P. par.—Parastichopus parvimensis; P. tes.—Pteraster tesselatus; R. gou.—
Remaster gourdoni; S. mac.—Synapta maculata; S. pur.—Strongylocentrotus purpuratus. Group of tensilins is
marked with pink area; group of tensilins and tensilin-like proteins is marked with cyan area.

An amino acid sequence analysis shows that tensilins have two distinct features. Most
of these proteins have two or three amino acid residues between the first and second
cysteines of the N-terminal region of the molecule [155]. In addition, in tensilins, the
C-terminal part of the molecule contains two regions —“hydrophobic” and “hydrophilic”
(Figure 19, Supplementary File S16). The “hydrophobic” region is located immediately
after the 12th cysteine and contains phenylalanine (F), alanine (A), valine (V), leucine (L),
and isoleucine (I) residues. This is followed by a “hydrophilic” region in which two more
conserved cysteine residues are found. Perhaps they are also involved in the formation of
the tertiary structure of the molecule. The fourteenth cysteine is surrounded by several
lysine (K) and arginine (R) residues.
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Figure 19. MUSCLE (MEGA) alignment of amino acid sequences of C-terminal part of
some tensilins, tensilin-like proteins and TIMPs of echinoderms. C12–C14—conserved cys-
teine residues. A. jap.—Apostichopus japonicus; C. fro.—Cucumaria frondosa; C. sch.—Cladolabes
schmeltzii; E. fra.—Eupentacta fraudatrix; H. for.—Holothuria forskali; L. var.—Lytechinus varie-
gatus; O. bre.—Ophioderma brevispinum; O. ser.—Oligometra serripinna; P. min.—Patiria miniata;
P. mos.—Pannychia moseleyi; S. pur.—Strongylocentrotus purpuratus.

Tensilin-like sequences of crinoids, ophiuroids, and asteroids found in EchinoDB are
quite short and are aligned only on the N- or C-terminal part of tensilins (see
Supplementary File S17). No tensilin-like genes were found in well-annotated genomes of
crinoid A. japonica and asteroid P. miniata [155]. Most likely, these are incomplete transcripts
of some other proteins. At the same time, some proteins found in echinoids are structurally
similar to holothurian tensilins. These sequences have 2–3 amino acid residues between
1 and 2 cysteines and “hydrophobic” and “hydrophilic” regions at the C-terminus of the
molecule. However, in echinoids in the “hydrophilic” region, hydrophobic amino acid
residues such as alanine, valine, and leucine are noted among lysine and arginine. How
these substitutions affect protein function is unknown.

Despite the supposed importance of tensilins in the mechanisms of changing the
properties of MCT, almost nothing is known about the functions of these proteins. Some
of them are localized in juxtaligamental cells, a MCT-specific cell type [179,182]. It was
shown that the recombinant tensilin of Holothuria forskali is able to stiffen dermal pieces and
aggregate collagen fibrils [182]. It is assumed that it can form cross-links between collagen
fibrils and thereby increase the stiffness of the connective tissue.

Transcripts of four tensilin genes were identified in the transcriptome of the holothurian
E. fraudatrix [181]. The expression of one of them (Ef-tensilin3) increased during the re-
generation of the digestive system. Its transcripts were localized in the coelomic and
intestinal epithelia of the gut anlage. It is possible that Ef-tensilin3 may be an inhibitor of
the Ef-MMP16 proteinase.

The ancestral gene of tensilin, apparently, was repeatedly duplicated, since some of
holothurian species have several of its orthologs. The repeated duplication and preservation
of orthologs in phylogenesis show that tensilins play an important role in the physiology
of holothurians. However, their specific functions in holothurians remain unknown. Ap-
parently, echinoids have orthologs of the tensilin gene. However, similar genes in crinoids,
asteroids, and ophiuroids have not been found to date.

5. Materials and Methods

For the analysis, we used the genomes of representatives of four echinoderm classes:
the crinoid Anneissia japonica (Müller, 1841) (PRJNA615663), the sea star Patiria miniata
(Brandt, 1835) (PRJNA683060), the sea urchin Strongylocentrotus purpuratus (Stimpson, 1857)
(PRJNA13728), and the holothurian Apostichopus japonicus (Selenka, 1867) (PRJNA354676).
Sequences of some genes obtained from the A. japonicus genome were incomplete, which
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made it impossible to determine their domain structure and use them in phylogenetic
analysis. Therefore, in order to fill the gaps in available data, instead of incomplete se-
quences of A. japonicus, we used orthologous sequences from the previously sequenced and
described transcriptome of the holothurian Eupentacta fraudatrix (D’yakonov & Baranova
in D’yakonov, Baranova & Savel’eva, 1958) (GHCL00000000.2) [184]. Furthermore, in case
of finding significant differences in the structure of any protein in the echinoderms under
study, we additionally used data on other Echinodermata species in order to more accu-
rately identify the domain structures using software. Thus, we used sequences from the
genomes of the sea stars Asterias rubens (Linnaeus, 1758) (PRJNA626669) and Acanthaster
planci (Linnaeus, 1758) (PRJNA397419), the sea urchins Lytechinus pictus (Verrill, 1867)
(PRJNA889359) and L. variegatus (Lamarck, 1816) (PRJNA729485), and the holothurian
Holothuria leucospilota (Brandt, 1835) (PRJNA747844).

Hereinafter, the accession numbers of the genomes and amino acid sequences from the
NCBI database (https://www.ncbi.nlm.nih.gov, accessed on 20 April 2023) are shown in
parentheses. The sequences used for the analysis are presented in Supplementary Files S1–S16.

For phylogenetic analysis, in addition to data on echinoderms, we also used sequences
of chordates (Homo sapiens (Linnaeus, 1767), Ciona intestinalis (Linnaeus, 1767), and Bran-
chiostoma belcheri (Gray, 1847)) and hemichordates (Saccoglossus kowalevskii (Agassiz, 1873)).
The trees were rooted on outgroup taxa represented by Crassostrea gigas (Thunberg, 1793)
or Nematostella vectensis (Stephenson, 1935).

The phylogenetic trees were based on conserved regions of the putative amino acid
sequences. The conserved regions were determined using the Gblock program. The
construction was carried out by the RAxML-HPC BlackBox algorithm at the online service
CIPRES (http://www.phylo.org, accessed on 20 April 2023). The trees were visualized
using the iTOL v6.6 online tool (https://itol.embl.de; accessed on 20 April 2023). Domain
structures of proteins were identified using the NCBI CD Search (https://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi, accessed on 20 April 2023) and Smart software (http:
//smart.embl-heidelberg.de/#, accessed on 20 April 2023). In addition, the SignalP-5.0
Server (http://www.cbs.dtu.dk/services/SignalP, accessed on 20 April 2023) and Phobius
(https://phobius.sbc.su.se/index.html, accessed on 20 April 2023) were used to more
accurately detect the presence of a signal peptide and transmembrane domains in amino
acid sequences.

6. Conclusions

Echinoderms possess a vast set of genes encoding various ECM proteins. Accordingly,
the connective tissue of these animals has a rather complex structure. Several groups of
collagens exist that can potentially have different properties and perform a wide range
of functions. In particular, fibril-forming collagens probably constitute the basis of ECM.
Other types of collagens (FACITs and multiplexins), similarly to their homologs in ver-
tebrates, can be involved in the network formation and in giving the connective tissue
various properties. Collagens XXVI may probably play an important role in regulating
the mechanical properties of connective tissue. The presence of the EMI domain allows
them to interact with many ECM proteins. Multiplexins may be of certain importance
for maintaining MCT properties, e.g., providing elasticity of ligaments. It is evident that
such a complex ECM structure and the variety of intermolecular interactions determine
the complexity of mechanisms changing the mechanical properties of connective tissue
in echinoderms. These mechanisms probably depend not only on the number of cross-
links between the molecules but also on the composition of ECM and the properties of
its proteins. In this regard, more attention should be paid to the structure and functions
of fibrillins in echinoderms. It is possible that the fibrillin microfibril scaffold, like that
of vertebrates, forms a niche for regulatory factors and mechanosensation. Conducting
a signal from the extracellular microenvironment to competent cells can be a part of the
mechanisms of MCT mutability.
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https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://smart.embl-heidelberg.de/#
http://smart.embl-heidelberg.de/#
http://www.cbs.dtu.dk/services/SignalP
https://phobius.sbc.su.se/index.html
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Various proteases play a major role in ECM remodeling. More in-depth studies of
MCT properties and functions are needed to understand the transformation mechanisms.
Furthermore, attention should be paid to various molecules that activate or inhibit proteases.
Echinoderms have a wide range of proteins that can regulate the activity of proteases at
various levels such as furin, RECK, and TIMPs. Tensilins apparently represent a separate
group of holothurian proteins which probably have a specific function. They can be
involved in the mechanisms of MCT transformation, acting as MCT stiffening factors or
inhibitors of MMPs. However, their homologs/analogs in other echinoderms have not yet
been identified.

Supplementary Materials: The sequences used for the analysis can be downloaded at: https://www.
mdpi.com/article/10.3390/md21070417/s1, File S1: Fibril forming collagens; File S2: FACITs; File
S2: FACITs; File S3: Network collagens; File S4: Collagens 6_7_26_28; File S5: Multiplexins; File S6:
Unknown collagens; File S7: Syndecans; File S8: Glypicans; File S9: Nidogens; File S10: Fibulins;
File S11: Hemicentins; File S12: Thrombospondins; File S13: Fibrillins; File S14: Lysyl oxidases;
File S15: Transglutaminases; File S16: TIMPs and tensilins; File S17: TIMPs and tensilins—deleted
sequences from alingment.
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