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Abstract: To improve the corrosion inhibition and wear resistance of materials, the pack cementation
method was used to prepare chromized coatings on the surfaces of high-carbon T9 steel and low-
carbon SPCC steel. The results showed the formation of a uniform and dense double-layer structure
with a thickness of ~10 µm on the surfaces of two different types of steel. The coating layer for T9
steel was mainly composed of Cr23C6 and Cr7C3, while that for SPCC steel was mainly composed
of Cr23C6 and Fe–Cr solid solution. Additionally, both of the steels showed different hardness
distributions. The hardness measurements of the outer layers of the T9 steel and SPCC steel were
~1737.72 HV and 1771.91 HV, while the hardness values of the secondary layers were 1378.31 HV
and 448.52 HV, respectively. The polarization curves in 3.5 wt.% NaCl solution demonstrated the
better corrosion resistance of the chromized coating. Chromizing increased the corrosion potential by
~0.2 V and reduced the corrosion current density by one order of magnitude. Under the presence of
an 8 N load, the friction factor before and after the chromizing of T9 steel was about 0.69, and the
mass wears were 2 mg and 0.6 mg, respectively. Meanwhile, the friction factor of the SPCC steel
before and after chromizing was about 0.73, with respective mass wears of 2 mg and 2.9 mg. The
wear resistance of T9 steel after chromizing was superior, but it became worse after chromizing for
the SPCC steel.

Keywords: carbon steel; chromizing; coating; corrosion inhibition; wear resistance

1. Introduction

T9 carbon tool steel and SPCC low-carbon cold-rolled steel have wide applications in
manufacturing industries [1,2]. Long-term durability and stable performance of steel are
essential for industrial applications. However, T9 and SPCC steels both undergo corrosion
and suffer from wear failures when exposed to corrosive environments and strong wear
conditions in the long term [3,4], thus leading to safety accidents and even economic
losses. Therefore, with respect to the broadening of application territories, improving the
corrosion and wear resistance of T9 steel and SPCC steel is of great significance. Chromium
stainless steel, which can be formed by the addition of chromium to steel matrices, has
good corrosion and wear resistance due to the presence of hard chromium [5–7], but it
is expensive and difficult to process. In such scenarios, surface modification [8,9] is an
effective method for improving the corrosion and wear resistance of steel, and transition
metal carbides or nitride layers can be produced through surface treatments [10,11].

Over the past decade, a variety of surface modification methods, such as electroplat-
ing [12,13], plasma spraying [14,15], salt baths [16,17], magnetron sputtering [18,19], laser
cladding [20–22], the sol–gel method [23,24], fluidized beds [25,26], and pack cementa-
tion [27–29], have been developed. In spite of specific advantages, these technologies
also have limitations, such as the requirement for expensive and complex equipment and
high-vacuum conditions, weak adhesion of the formed coatings, serious environmental
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pollution, etc. As the pack cementation method involves powder landfill, it can deal with
samples with complex shapes and inner holes. Moreover, due to the in situ formation
of wear-resistant layers, such as chromium carbide through high-temperature chemical
reactions, the coating and the steel substrate are closely metallurgically bonded due to
the high bonding strength. Thus, a coating with excellent wear resistance and corrosion
resistance can be prepared by pack cementation. If it is only used to improve the corrosion
resistance of steel, its cost performance is not as good as that of electrochemical chromium
plating and other methods. However, if corrosion resistance, wear resistance, and excel-
lent bonding performance must be taken into account, the pack cementation method is
one of the methods with the highest cost performance because of its low equipment cost,
recyclable embedded materials, simple process system, and low cost [30,31]. Additionally,
reports on the effect of chromizing on the surface of carbon steel and its related properties
are already available [32,33]. However, the differences in corrosion and wear resistance
between high-carbon steel and low-carbon steel after chromizing have not been studied.
Therefore, a comprehensive study on the influence of surface chromizing on the corrosion
and wear resistance of high-carbon steel and low-carbon steel is necessary.

In this work, the surface chromizing of high-carbon steel (T9) and low-carbon steel
(SPCC) was carried out. During chromizing, the carbon in the steel diffuses to form a
deposited layer of carbide-forming elements that then reacts with the carbide-forming
elements in the layer. This results in the formation of a metallurgical bond between the
carbide and the sample surface. Depending on the carbon content, different types of carbide
coatings are formed on the surfaces of steel. The corrosion behavior was revealed in typical
corrosive media, along with the friction and wear performance, under reciprocating friction
conditions to elucidate the relationship between the carbon content and the corrosion and
wear resistance of the materials.

2. Experimental Materials and Methods
2.1. Experimental Materials

For the preparation of the chromized layer, T9 steel (the international standard orga-
nization (ISO) standard steel grade is TC90) and SPCC steel (cold-rolled carbon steel, the
chemical composition and mechanical properties of which are similar to those of Q195 and
Q215A) were selected as base materials, and the chemical compositions (mass fraction) are
shown in Table 1.

Table 1. Chemical composition (mass fraction) of T9 steel and SPCC steel.

C Mn P S Si Cr Ni Cu Fe

T9 0.8~0.9 ≤0.50 ≤0.03 ≤0.03 ≤0.35 ≤0.20 ≤0.25 ≤0.30 Bal.
SPCC ≤0.15 ≤0.60 ≤0.100 ≤0.02 - - - - Bal.

2.2. Experimental Method

The solid powder pack cementation method was adopted for the chromizing process,
and the device is shown in Figure 1. The dimensions of the machined sample were
25 mm × 10 mm × 3 mm. In order to remove the surface oxide layers and machining
traces, water-abrasive paper was used to polish the sample, and the sample was then
ultrasonicated with anhydrous ethanol, followed by drying. The chromizing powder
was composed of a chromium donor, filler, and activator. Pure chromium powder was
used as the chromium donor. Al2O3 powder was used as the filler, while NH4Cl was
the activator. The chromizing powder was prepared with a certain ratio and placed in a
mixer. The well-mixed chromated powder was added to the crucible. The steel sample
was evenly buried in the chromated powder dispersed in the crucible. Then, the crucible
was closed and placed into a high-temperature furnace, where it was heated at 950 °C for
4 h under an argon atmosphere. During this process, Cr reacted with NH4Cl to produce
reactive chromium atoms and counteracted the carbon atoms in the substrate to form
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Cr–C compounds. Afterward, the carbon in the substrate diffused outward to form a new
phase, and the chromium atoms further replaced the substrate crystal space to form an
Fe–Cr solid solution. The Cr–C compound and Fe–Cr solid solution layer that formed
during this process due to diffusion was called the “infiltrated layer”. After cooling to room
temperature, the sample was removed and underwent ultrasonic treatment for the removal
of the adhesive. The sample was placed in an alcohol solution containing 4% (volume
fraction) nitric acid for a certain amount of time, and then alcohol was used for cleaning
with ultrasonic assistance.
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Figure 1. Schematic diagram of the chromizing device.

2.3. Material Characterization

The phase composition of the infiltrated layer was analyzed using a D/max 2550
automatic X-ray diffractometer (XRD, Rigaku DX-2500, Rigaku, Tokyo, Japan) using a Cu
target at 40 kV, and the scanning angle (2θ) was 20–90◦. Three-dimensional imaging of the
surface-infiltrated layer of the sample was conducted using an LSM700 laser confocal micro-
scope (LSCM, LSM700, Zeiss, Jena, Germany) with an imaging range of 600 µm × 600 µm.
The microstructural morphology of the surface was observed by employing a MIRA3
TESCAN-type field emission scanning electron microscope (SEM). A JXA-8230R electron
probe microanalyzer (EPMA, JEOL JXA-8230, JEOL Ltd., Tokyo, Japan) equipped with
WDS was used to scan the micro area of the coating cross-section and to determine the
elemental distribution of the composite coating. To obtain cross-sectional samples for
testing, the T9 steel and SPCC steel samples with coatings were wire-cut into small pieces
of 5 mm × 10 mm × 3 mm and were then ultrasonically cleaned and embedded in resin.
After sanding with 200, 400, 600, 800, 1000, 1500, and 2000 mesh sandpaper, the samples
were polished with W2.5 and W1.5 polishing paste.

To refrain from artificial reading errors in the test process affecting the accuracy of the
hardness value, a computer-connected nanoindenter was selected for hardness testing, and
a UNHT nanoindenter was used to test the hardness distribution of the sample from the
infiltration layer to the inside of the substrate. The loading speed and loading time were
40 mN/min and 10 s, respectively. A multi-autolab M204 electrochemical workstation was
used to test the polarization curves of the samples. A three-electrode system employing
3.5 wt.% NaCl solution as the corrosive medium was used. For the polarization curve
measurements, the matrix was cut into 10 mm × 10 mm for chromizing; then, the resin and
wire were used to form the chromized sample into a standard sample for the polarization
test. Additionally, the balance time was 1 h. A UMT-3-type reciprocating friction tester
was used to test the friction and wear performance of the samples. The friction pair was
composed of Si3N4 ceramic balls with a diameter of 9.5 mm, the load was 8 N, the test time
was 30 min, and the speed was 240 rpm.

3. Results and Analysis
3.1. XRD Analysis

The XRD patterns of both of the chromized steels are shown in Figure 2. The surface
layer of the chromized T9 steel was mainly composed of Cr23C6 and Cr7C3 phases. T9 steel
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showed a higher carbon content, and Cr appeared to be a strong carbide-stabilizing element.
At high temperatures, outward diffusion of C in the substrate occurred. This resulted in
the formation of a carbon-rich zone on the surface, and the combination of some of the Cr
with C resulted in the Cr23C6 phase. With the continuous enrichment of the C elements on
the surface, part of the Cr23C6 phase was transformed into the Cr7C3 phase [34]. However,
the surface layer of the chromized SPCC steel was mainly composed of the Cr23C6 phase
and Fe–Cr solid solution. Due to the relatively low carbon content of SPCC steel, only the
Cr23C6 phase formed on the surface. The lack of sufficient carbon potential prevented the
transformation of the Cr23C6 phase into the Cr7C3 phase. At elevated temperatures, the Cr
and Fe atoms inter-diffused to form an Fe–Cr solid solution.
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3.2. Confocal 3D Imaging Analysis

The three-dimensional images of the surface acquired by the laser confocal microscope
are shown in Figure 3. The surface roughness (Ra) values of T9 and SPCC steel after
chromizing were 4.02 µm and 3.52 µm, respectively. The surface roughness of chromized
SPCC steel was slightly lower than that of the chromized T9 steel.
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Moreover, within a microscopic regime, the surface of the samples after chromizing
showed a uniform, but locally clustered, morphology, which was determined by the
characteristics of the solid powder employed in the chromizing process in relation to the
pretreatment process of the sample. When the penetrating agent and the sample came into
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contact, the diffusion and enrichment of the reactive gas in the gap between the sample
and powder led to the preferential growth of the surface-infiltrating layer.

3.3. Elemental Analysis of the Infiltrating Layer

The cross-sectional morphology of the coating is shown in Figure 4a. The chromized
layer of T9 steel was composed of inner and outer layers, which was obvious from the
contrast. The thickness of the outer layer was ~4.19 µm, while the thickness of the secondary
layer was ~6.59 µm. Overall, there were no obvious defects. As obtained from the elemental
distribution shown in Figure 4b, with increasing distance, there was a stepwise alteration
in the concentrations of Cr and Fe. The outer layer had the highest Cr content, which
showed a decreasing trend in the secondary layer along with an increase in the Fe content.
Equilibrium was reached at the junction between the coating and the substrate. With deeper
penetration into the substrate, there was a sharp decrease in the elemental content of Cr,
while the concentration of Fe reached its maximum value. The C content was slightly higher
in the infiltrating layer compared with that of the substrate. These results are consistent
with the inset table in Figure 4a, which provides the quantitative analysis of the chemical
composition distributed on the surface by WDS.
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The distributional characteristics of different coating elements can be obtained from
the surface mapping of the cross-sectional area of the coating (Figure 4c–e). From the
outside to the inside, the contents of the C and Cr elements gradually decreased, while
the opposite trend was observed for Fe. This may be attributed to the deposition of the
infiltration agent on the surface of the infiltrating layer during inclusive infiltration. The
highest contents of C and Cr were found in the outer layer. In the combined XRD and
elemental distribution analysis, the outer layer of the infiltrating layer was found to be
composed of Cr7C3 and Cr23C6 phases. The lower contents of the elements C and Cr and a



Materials 2022, 15, 7902 6 of 15

higher Fe content in the secondary layer indicated that ferrochrome carbide was the main
component of the outer layer in the infiltrating layer. The lower C content in the substrate
compared with that in the infiltrating layer suggested the diffusion of C to the surface layer
at high temperatures.

Figure 5a shows the cross-sectional morphology of the chromized SPCC steel coating,
as well as two chromized layers. Here, the sample was also stratified by the different
contrast. The thickness values of the outer layer and secondary layer were ~2.89 µm and
~7.26 µm, respectively. No apparent defects were found. A stepwise alteration trend with
increasing distance for the concentrations of Cr and Fe can be seen in Figure 5b, similar to
that in T9. The highest Cr content was observed in the outer layer, which then dropped
sharply in the second layer. At the same time, the Fe content started to increase, and
equilibrium was reached at the junction of the outer layer and the secondary layer. The
secondary layer showed a significantly higher Fe content compared with that of Cr, and the
infiltrating layer had a slightly higher C content than that of the substrate. These results
are consistent with the inset table in Figure 5a, which depicts the quantitative analysis
of the chemical composition distributed on the surface by WDS. The results of mapping
analyses for different elements on the cross-sectional area of the coating section are shown
in Figure 5c–e. There was a gradual decrease in the C and Cr contents from the outside to
the inside, while the Fe content gradually increased from the outside to the inside. The
highest C and Cr contents were observed in the outer layer. XRD analysis showed that the
outer layer of the infiltrating layer consisted of the Cr23C6 phase. A significantly higher
Fe content was found in the secondary layer compared with C and Cr, indicating that the
outer layer of the infiltrating layer was composed of Fe–Cr solid solution. The difference
between Figures 4 and 5 is that the hardness of the matrix is different, resulting in different
polishing and grinding values. However, what is more important is that different substrates
had different sensitivity levels to the corrosion solution, which led to different corrosion
depths and corrosion morphologies. Additionally, according to the depth distribution
profiles of chromium in Figures 4 and 5, the thickness of the near-surface layer forming
the diffraction pattern in Figure 2 may have been 5–10 µm. Combined with the XRD and
EDS results of T9 and SPCC steels, the chromizing process is shown in Figure 6. The pure
chromium powder reacted with the activator NH4Cl to obtain activated chromium atoms.
The activated chromium atoms first reacted with the carbon atoms on the surface of the
steel substrate to form Cr23C6. The carbon in the substrate continued to diffuse to the
surface, which promoted the transformation of Cr23C6 into Cr7C3. Compared with T9 steel,
SPCC steel had a lower carbon content and only formed a thinner chromium carbide layer.
Driven by the low carbon content and high temperatures, chromium atoms replaced crystal
spaces in the austenite phase in the SPCC steel matrix to form the Fe–Cr solid solution.

3.4. Nanoindentation Microhardness Analysis

The indentation images and load–press-depth curves of chromized T9 and SPCC steel
are shown in Figure 7, with the micro-Vickers hardness (HV) of the chromized T9 and
SPCC steels at different depths from the surface being presented in Table 2.

The hardness of the outer infiltrating layer of chromized T9 steel was 1737.72 HV.
According to XRD analysis and the energy spectrum, the phase consisted of Cr7C3 and
Cr23C6, which resulted in maximum hardness. At a depth of 6 µm from the surface, the
hardness of the secondary infiltrating layer was reduced to 1378.31 HV. The phase consisted
of ferrochrome carbide. With increasing depth, the hardness decreased sharply compared
with the outer layer, with the substrate having a hardness of 219.29. For chromized
SPCC steel, the hardness of the outer layer was 1771.91 HV. At the depth of 6 µm, Fe–Cr
solid solution was the main phase, which resulted in a rapid decrease in the hardness to
448.52 HV that decreased continuously to a value of 131.09 HV. The decreasing trend of the
hardness from the surface-infiltrating layer to the internal substrate for both the chromized
T9 and SPCC steels showed gradient behavior, which was closely related to the gradient
distribution of the elements in the chromized layer. When the infiltrating layer formed,
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there was outward diffusion of carbon elements from the surface of the substrate, resulting
in the formation of a decarburized zone and the slightly lower hardness of the substrate
near the infiltrating layer compared with that of the core of the substrate.
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Figure 7. (a) Schematic diagram of the indentation of chromized T9 steel; (b) load–press-depth curves
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Table 2. Micro-Vickers hardness (HV) of the chromized T9 and SPCC steels at different depths from
the surface.

Position 1 2 3 4 5

Depth (µm) 1.5 6 13 26 45

T9

1 1734.55 1374.92 221.43 252.35 256.89
2 1739.26 1375.26 219.78 250.69 254.31
3 1735.35 1382.07 215.48 246.48 257.67
4 1740.84 1380.42 217.52 253.99 251.44
5 1738.60 1378.88 222.24 255.84 255.84

Average 1737.72 1378.31 219.29 251.87 255.23

SPCC

1 1773.65 445.42 134.83 154.24 147.73
2 1768.58 447.28 131.06 152.58 149.64
3 1769.82 449.60 127.94 147.33 144.92
4 1774.64 451.56 130.69 149.86 148.67
5 1772.86 448.74 130.93 152.74 145.84

Average 1771.91 448.52 131.09 151.35 147.36

3.5. Electrochemical Corrosion Test

The self-corrosion potential (Ecorr) and corrosion current density (icorr) are often used
to evaluate the corrosion resistance of coatings [35,36]. The improved corrosion resistance
of various materials was characterized by increased self-corrosion potential and decreased
corrosion current density. The polarization curves of the T9 and SPCC steel substrates in
3.5 wt.% NaCl solution before and after chromizing are shown in Figure 8.
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As shown in Figure 8, the self-corrosion potentials of the T9 and SPCC steel substrates
were −0.63 V and −0.60 V, respectively, which, after chromizing, increased to −0.42 V
and −0.35 V, respectively, leading to respective increases of 0.21 V and 0.25 V. Initially,
the calculated icorr values for the T9 steel and SPCC steel substrates were 4.04 × 10−6

and 3.03 × 10−6, respectively, as obtained from the linear fitting on the Tafel zone of the
polarization curve. After chromizing, the icorr values of T9 steel and SPCC steel decreased by
one order of magnitude to reach the respective values of 3.05 × 10−7 and 2.26 × 10−7. The
chromized layer was able to play a protective role against corrosion, significantly improving
the corrosion resistance of the T9 steel and SPCC steel. The surface morphologies of T9
steel after immersion in 3.5 wt.% NaCl solution for 120 h with or without chromizing are
shown in Figure 9.

After 120 h of immersion in a 3.5 wt.% NaCl solution, the surface of the T9 steel
substrate showed the presence of a large number of nodular corrosion products (Figure 9a).
However, under identical experimental conditions, the chromized T9 steel surface showed
fewer surface corrosion products (Figure 9b). Composition analysis by WDS showed that a
large number of iron oxides and more Cl ions formed on the surface of T9 steel (Figure 9c),
while uniform corrosion-resistant chromium oxides formed on the surface of the chromized
T9 steel, and the retention of Cl ions decreased significantly (Figure 9d). This proves
that the chromized layer could effectively protect the substrate from being corroded in a
saltwater environment.

3.6. Friction and Wear Performance Tests

Figure 10 shows the time-dependent relationship curves of the friction coefficients
for T9 steel, the SPCC steel substrate, and the chromized samples. It can be seen that, in
the initial running-in stage, for both steel substrates and the chromized samples, a sharp
increase in the friction coefficients was observed with increasing sliding stroke. The friction
coefficients of the chromized samples were not significantly different from those of the base
materials, indicating no anti-friction effects for the chromized layer. Combined with the
three-dimensional imaging of the surface, this may be due to the ubiquitous dispersion of
many hard particles on the surface after the chromizing treatment, leading to an increase in
the surface roughness.
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For the T9 steel substrate, the friction coefficient in the running-in stage linearly
increased to 0.68, which then subsequently jittered up and down from 0.65 to 0.75, as can
be seen in Figure 10a, and the average friction coefficient was 0.6997. For the chromized
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sample, in the first three minutes, there were drastic fluctuations in the friction coefficient.
Afterward, it became stable within the range of 0.68 and 0.73, with the average friction factor
being 0.6937. The mass wear values of the base material and chromized samples were 2 mg
and 0.6 mg, respectively, indicating that the wear resistance of T9 steel was significantly
enhanced after the chromizing treatment. From Figure 10b, the friction coefficient of the
SPCC substrate linearly increased to 0.65 in the running-in stage. Then, it jittered up
and down from 0.69 to 0.79, with 0.737 being the average friction coefficient. As for the
chromized sample, the friction coefficient linearly increased to 0.68 and then jittered up and
down from 0.70 to 0.78, leading to an average friction factor of 0.7391. The mass wear values
of the base material and chromized sample were 2 mg and 2.9 mg, respectively, indicating
that the chromizing treatment had a poor effect on the wear resistance of SPCC steel. The
wear scar morphology and electron microscope analysis indicated that a carbide layer
formed after chromizing. The SPCC low-carbon steel was thin and quickly wore down
during the abrasion process. Additionally, the ground hard carbide particles facilitated the
wear of the substrate under the infiltrating layer. Figure 11 indicates the morphologies of
the T9 and SPCC steel surfaces after wearing under different magnifications.
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Figure 11. Morphologies of (a,b) T9 steel substrate and (c,d) SPCC steel after wearing.

As shown in Figure 11a,b, after abrasion, the surface roughness of the T9 steel substrate
increased, and the surface exhibited flaky adhesion pits and a large number of furrows. This
was due to the occurrence of metal adhesion under friction with a grinding ball resulting
in the appearance of adhesion points. In the presence of reciprocating friction, the metal
on the surface of the material was torn to form abrasive particles, and under the action
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of plowing, a large number of furrows were formed. The wear mechanism consisted of
adhesive wear and abrasive wear [37–39]. In Figure 11c,d, the SPCC steel substrate only
showed adhesive wear, with no furrows being visible to the naked eye. This was due to the
low hardness of SPCC steel; the wear debris that wore off did not form surface furrows,
and the wear mechanism was adhesive wear. Figure 12 shows the wear scar morphologies
of the chromized T9 and SPCC steels under different magnifications.
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After chromizing, T9 only showed a small amount of adhesive wear, as can be seen in
Figure 12a,b. The adhesive pits were small in size, and they were independent of each other.
There was no wear on either side of the wear scar. Compared with the substrate, the wear
resistance of the sample after chromizing was significantly improved, with adhesive wear
being the wear mechanism. As shown in Figure 12c,d, the infiltrating layer in some areas
of the SPCC steel remained intact after chromizing, while in other areas, a large number of
furrows were formed. The abrasive wear phenomenon was more apparent. Combined with
the scanning electron microscopic analysis, after chromizing the SPCC steel, a thin carbide
layer was formed and the contact surface of the friction pair showed sliding friction. Due
to periodic loading, the generation of large alternating stress in the contact area resulted in
the occurrence of cracks, and fractures occurred in the weak parts of the surface, leading
to the peeling off of the infiltrating layer and causing surface fatigue wear [40,41]. A large
number of hard abrasive particles were formed after the peeling of the infiltrating layer,
which accelerated the abrasive wear of the substrate under the infiltrating layer. Thus,
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the wear mechanism of SPCC steel after chromizing consisted of surface fatigue wear and
abrasive wear.

4. Conclusions

The pack cementation method was used to prepare chromized coatings on the surfaces
of high-carbon T9 steel and low-carbon SPCC steel, which resulted in a double-layer
structure with a thickness of ~10 µm. For T9 steel, the outer layer was composed of Cr7C3
and Cr23C6 phases, with a hardness of 1737.72 HV, while ferrochrome carbide was the
component of the secondary layer, with a hardness of 1378.31 HV. As for SPSS steel, the
outer layer was composed of a Cr23C6 phase with a hardness of 1771.91 HV, and the
secondary layer was composed of an Fe–Cr phase with a hardness of 448.52 HV. The
self-corrosion potentials of the T9 steel and SPCC steel increased by 0.21 V and 0.25 V,
respectively, due to chromizing, indicating that the chromized layer effectively improved
the corrosion resistance of substrates. The friction factor of the T9 steel before and after
chromizing was more or less similar, at about 0.69, while the mass wear values were 2 mg
and 0.6 mg, respectively. The wear mechanisms changed from adhesive wear and abrasive
wear prior to chromizing to only adhesive wear after chromizing. For SPCC, the friction
factor before and after chromizing remained the same at ~0.73, and the mass wear values
were 2 mg and 2.9 mg, respectively. The wear mechanism changed from adhesive wear
prior to chromizing to surface fatigue wear and abrasive wear after chromizing.

Due to the relatively high carbon content of the T9 steel, a double-layer infiltrating
layer composed of chromium carbide was formed. The uniform and dense hard coating
effectively improved the corrosion resistance and wear resistance of the T9 steel. However,
for SPCC steel, the carbon content decreased, which resulted in a thin outer chromium
carbide layer, most of which consisted of the Fe–Cr solid solution of the secondary layer.
The corrosion resistance of materials can be improved by a thinner chromium carbide layer,
but it is prone to surface fatigue wear during friction processes, which can lead to material
failure. Therefore, chromizing treatment cannot improve the wear resistance of low-carbon
SPCC steel.
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