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Abstract: Benzoxazinoids are important secondary metabolites in gramineae plants and have in-
hibitory and toxic effects against a wide range of herbivore pests. However, the relationship between
benzoxazinoid level and plant resistance to aphids remains controversial. In this study, we inves-
tigated the relationship between benzoxazinoids composition and concentration in wheat leaves
and the resistance to the grain aphid Sitobion avenae. Overall, six benzoxazinoids were detected
and identified by mass spectrometry based metabolites profiling, including three lactams, two hy-
droxamic acids, and one methyl derivative. The constitutive levels of these benzoxazinoids were
significantly different among the wheat varieties/lines. However, none of these benzoxazinoids
exhibited considerable correlation with aphid resistance. S. avenae feeding elevated the level of
2-O-β-D-glucopyranosyloxy-4,7-dimethoxy-(2H)-1,4-benzoxazin-3(4H)-one (HDMBOA-Glc) and re-
duced the level of 2-O-β-D-glucopyranosyloxy-4-hydroxy-7-(2H)-methoxy-1,4-benzoxazin-3(4H)-one
(DIMBOA-Glc) in some of the wheat varieties/lines. Moreover, aphid-induced level of DIMBOA-Glc
was positively related with callose deposition, which was closely associated with aphid resistance.
Wheat leaves infiltrated with DIMBOA-Glc caused a noticeable increase of callose deposition and the
effect was in a dose dependent manner. This study suggests that the constitutive level of benzox-
azinoids has limited impact on S. avenae. Aphid feeding can affect the balance of benzoxazinoids
metabolism and the dynamic level of benzoxazinoids can act as a signal of callose deposition for
S. avenae resistance. This study will extend our understanding of aphid–wheat interaction and
provides new insights in aphid-resistance wheat breeding.
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1. Introduction

Wheat (Triticum aestivum L.) is one of the most important crops in the world and
crucial to global food security [1]. The grain aphid, Sitobion avenae (Fabricius), is a major
pest of wheat, and it seriously affects the quality and yield of wheat [2,3]. Currently,
chemical pesticide spraying is the main strategy of controlling S. avenae, but the side-
effects of pesticides have brought more serious challenges for environment and public
health [4]. Therefore, growing aphid-resistant wheat varieties is considered as the most
economical, safe, and environment-friendly method to control S. avenae. However, the
lack of aphid resistance germplasm has seriously hindered the process of breeding aphid-
resistant wheat varieties [5,6].

Exploring plant secondary metabolites as defense chemicals is an effective way to
screen the natural resistant wheat against aphids [7–9]. Benzoxazinoids are important
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defense metabolites in gramineous plants (Poaceae), such as wheat [10]. Benzoxazinoids
have been reported to function as antifeedant, insecticidal, antimicrobial, and allelopathic
properties [11,12]. Many studies have demonstrated that benzoxazinoids have antifeedant
and toxic effects on a wide range of insect herbivores [12]. However, the relationship
between benzoxazinoids and aphid resistance remains controversial [13–23]. Some re-
searchers found that the constitutive benzoxazinoid levels in host plants were positively
correlated with resistance against various species of aphids, such as S. avenae, Schizaphis
graminum, Rhopalosiphum padi, and R. maidis [13–17]. Other studies suggested that the
concentration and composition of benzoxazinoids were not the primary factor of aphid
resistance [18–22]. In some cases, aphids even perform better on plants with higher levels
of benzoxazinoids [23]. Benzoxazinoids related plant defense can also be induced upon
aphid feeding, depending on aphid species and host plant genetic background [17,21].
However, the relative contributions of constitutive and induced benzoxazinoid levels to
aphid resistance remain poorly understood.

Benzoxazinoids are divided into three groups based on their structures as lactams,
hydroxamic acids, and methyl derivatives (Table 1) [11,24]. To date, the analysis of benzox-
azinoids relies mostly on spectrophotometry, liquid chromatography coupled with ultravi-
olet detection (LC-UV), gas chromatography coupled with mass spectrometry (GC-MS),
and liquid chromatography coupled with mass spectrometry (LC-MS) [25]. Nevertheless,
spectrophotometry is vulnerable to interference from other potential impurities and has a
poor selectivity. LC-UV is a selective and sensitive analytical technique for separation and
quantification of complex mixture. However, one of the major difficulties of the LC-UV
technique is scarcity of commercial standard compounds as reference substances [26,27].
Due to low volatility, benzoxazinoids are not suitable for direct GC-MS analysis, and a
time-consuming derivatization step is needed before analysis [28]. To overcome these tech-
nique limitations, liquid chromatography coupled with tandem multistage MS (LC-MSn)
have been developed. Compared with single-quadrupole MS, tandem multistage MS (MSn)
can provide a wealth of structural information and provide more insights into the detailed
structure of a target compound [29]. Many kinds of benzoxazinoids have been identified
by tandem multistage spectrometry [30–32]. In the present study, we used a LC-MS based
approach for benzoxazinoids profiling in 13 wheat varieties/lines. In addition, we evalu-
ated the relative contributions of constitutive and induced benzoxazinoid levels to aphid
resistance in wheat plants. This study extends our understanding of the biological roles of
benzoxazinoids in aphid–wheat interaction and provides new insights in aphid-resistance
wheat breeding.

Table 1. Classification of benzoxazinoids based on previous studies [11,24,32].

Category Molecular Structure
Substituent Group Acronym MWR1 R2 R3

Lactams
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Table 1. Cont.

Category Molecular Structure
Substituent Group Acronym MWR1 R2 R3

Hydroxamic acids
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2. Results
2.1. Evaluation of Wheat Resistance to S. avenae

The degree of resistance to S. avenae in 13 varieties/lines was evaluated by aphid
quantity ratio (AQR), which is defined as the number of aphids in each seedling divided by
the average number of aphids in all testing seedlings. The results showed that the AQR was
significantly affected by the wheat varieties/lines (F12, 65 = 17.706, p < 0.001) (Figure 1). The
AQR from the wheat lines XY22-3, 98-10-30, XY22, and XY22-5 were significantly less than
other nine varieties/lines and exhibited medial resistance (MR) to S. avenae. The AQR from
AK58, S122, MX169, XN979, and TM-39 were greater than other eight varieties/lines and
exhibited median susceptible (MS). The other four varieties/lines exhibited low susceptible
(LS) to S. avenae.

2.2. Chromatographic and Mass Spectrometric Behavior of Benzoxazinoids

The optimal chromatographic separation was achieved using a linear gradient with
methanol-formic acid aqueous solution and all target compounds were eluted within
10 min (Figure 2A). Different mass spectrometric parameters were optimized for each
benzoxazinoid to obtain structural information and to achieve maximum sensitivity. In neg-
ative ionization mode, benzoxazinoids had higher sensitivity and more stable multistage
mass spectrometric behavior. Six benzoxazinoids were identified based on their mass spec-
trometry information and confirmed by standard compounds. These compounds were as
follows: three lactams: 2-O-β-D-glucopyranosyloxy-7-hydroxy-(2H)-1,4-benzoxazin-3(4H)-
one (DHBOA-Glc), 2-O-β-D-glucopyranosyloxy-1,4-benzoxazin-3(4H)-one (HBOA-Glc),
and 2-O-β-D-glucopyranosyloxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (HMBOA-
Glc); two hydroxamic acids: 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)
and 2-O-β-D-glucopyranosy-loxy-4-hydroxy-7-(2H)-methoxy-1,4-benzoxazin-3(4H)-one
(DIMBOA-Glc); and one methyl derivatives: 2-O-β-D-glucopyranosyloxy-4,7-dimethoxy-
(2H)-1,4-benzoxazin-3(4H)-one (HDMBOA-Glc). Five out of six benzoxazinoids were
identified as glucosides, and only one aglycon (DIMBOA) was detected. Benzoxazinoids
usually formed the deprotonated ion [M − H]− and the formic acid adduct [M + FA −
H]− in negative full MS mode. Benzoxazinoids from the different subclasses showed
typical ionization and multistage fragmentation behaviors. Typical neutral loss fragments
of lactams are 162, 180, 190, and 218 Da in MS2 spectrum, corresponding to neutral losses
of glycan residue (Glc), Glc + H2O, Glc + CO, and Glc + 2CO, respectively. Fragmentation
of hydroxamic acid typically formed fragments at mass-to-charge ratio of 210, 164, and 149,
corresponding to neutral losses of glycan residue (162 Da), CH2O2 (46 Da), and C2H5O2
(61 Da), respectively. Ionization behavior of methyl derivatives was different from other
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benzoxazinoids. The molecular ion of methyl derivatives was formic acid adduct [M +
FA − H]− and the deprotonated ion was not detected. Typical neutral loss fragments of
methyl derivatives were as follows: OCH3 (31 Da), FA + OCH3 (76 Da), Glc + CH2O2 (208
Da), FA + Glc + OCH3 (238 Da), FA + Glc + C2H5O2 (268 Da), and FA + Glc + C3H8O2 (283
Da). The putative fragmentation pathways of detected benzoxazinoids and detailed mass
spectra information are shown in Figure 2B and Table S1.
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Figure 1. The degree of resistance to Sitobion avenae in 13 wheat varieties/lines. The degrees of
resistance were evaluated by aphid quantity ratio (AQR) method. XY6 stands for the variety of
Xiaoyan6; XY22 stands for the variety of Xiaoyan22; XY22-3 and XY22-5 are the sib-lines of XY22;
TM-39 stands for the line of 186Tm39; TM-47 stands for the line of 186Tm47; XN979 stands for the
variety of Xinong979; MX169 stands for the variety of Mingxian169; AK58 stands for the variety
of Aikang58; S122 stands for the variety of Shan122; XN1376 stands for the variety of Xinong1376.
HR stands for high resistant; MR stands for median resistant; LR stands for low resistant; LS stands
for low susceptible; MS stands for median susceptible; HS stands for high susceptible. Different
lowercase letters on the top of the bar indicate significant differences at p < 0.05 (Tukey’s HSD test).

2.3. Constitutive Benzoxazinoid Levels in Wheat Seedlings and Their Correlation with
S. avenae Resistance

As shown in Table 2, the constitutive benzoxazinoid levels in wheat seedlings varied
markedly among the 13 wheat varieties/lines, even in the sib-lines with similar genetic
background, such as XY22, XY22-3, and XY22-5. By contrast, DIMBOA-Glc was the
major benzoxazinoid in wheat leaves and the minimum and maximum levels were 275.77
and 901.01 µg/g fresh weight (FW) for XY22-5 and S122, respectively. DIMBOA was
found at the lowest content in all wheat varieties/lines, and the content ranged from
4.00 to 34.06 µg/g FW for MX169 and AK58, respectively. Correlation analysis showed
that the constitutive benzoxazinoid levels were not correlated with resistance level to
S. avenae (Figure 3A).
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Figure 2. Extracted ion chromatograms, mass spectra, and fragmentation pathways of benzoxazi-
noids. (A) Extracted ion chromatograms. RT, retention time; the blue line indicates the baseline of
the peak; the blue squares indicate the start time and end time of the peak. (B) Mass spectra and
fragmentation pathways of benzoxazinoids. The dotted arrow indicates a putative cleavage with the
observed mass fragments. m/z, mass-to-charge ratio; the number in front of the arrow indicates the
molecular weight of the neutral loss fragment.
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Table 2. Constitutive benzoxazinoid levels (µg/g fresh weight) in the seedling leaves of 13 wheat varieties/lines.

Varieties/Lines DHBOA-Glc HBOA-Glc HMBOA-Glc DIMBOA-Glc HDMBOA-Glc DIMBOA

XY6 91.84 ± 5.72 abcd 433.01 ± 48.94 bc 265.60 ± 10.74 ab 699.55 ± 28.42 ab 67.10 ± 9.72 bcd 7.99 ± 0.56 def

XY22 129.50 ± 9.65 ab 369.41 ± 52.84 bcd 284.19 ± 16.11 ab 669.88 ± 17.93 abc 14.17 ± 1.54 g 7.91 ± 0.56 def

XY22-3 65.36 ± 6.68 cde 250.58 ± 56.20 de 256.60 ± 27.58 ab 754.22 ± 100.70 ab 28.38 ± 6.46 defg 7.58 ± 2.02 def

XY22-5 164.01 ± 11.69 a 379.32 ± 58.29 bcd 239.75 ± 5.21 ab 275.77 ± 11.24 e 140.39 ± 10.26 ab 12.07 ± 0.76 cdef

98-10-19 87.83 ± 11.80 abcd 242.04 ± 41.59 de 220.48 ± 19.50 b 410.60 ± 113.04 cde 43.20 ± 6.88 cdef 13.38 ± 1.24 bcd

98-10-30 106.89 ± 16.12 abc 475.30 ± 63.57 ab 151.67 ± 11.71 c 552.50 ± 56.70 bcd 157.03 ± 14.73 a 6.15 ± 0.64 ef

TM-39 136.84 ± 24.73 ab 602.67 ± 66.70 a 230.48 ± 24.50 ab 699.71 ± 28.45 ab 22.33 ± 1.72 fg 18.11 ± 1.52 abc

TM-47 117.45 ± 16.68 abc 160.89 ± 31.87 e 131.01 ± 8.78 c 283.50 ± 21.64 de 48.93 ± 9.35 bcde 11.61 ± 0.65 cde

XN979 96.75 ± 4.59 abc 293.99 ± 16.55 cde 225.52 ± 29.07 ab 423.55 ± 53.36 cde 63.03 ± 4.97 abc 6.32 ± 1.12 def

MX169 33.27 ± 7.63 e 150.85 ± 10.12 e 284.40 ± 29.78 ab 309.70 ± 17.33 de 37.64 ± 3.93 cdef 4.00 ± 0.48 f

AK58 67.01 ± 6.62 bcde 471.57 ± 56.31 ab 150.20 ± 11.86 c 687.25 ± 26.53 ab 9.10 ± 0.50 h 34.06 ± 4.36 a

XN1376 60.06 ± 4.12 de 260.46 ± 15.07 de 251.27 ± 32.14 ab 806.76 ± 18.01 ab 22.60 ± 0.39 efg 9.05 ± 2.26 cdef

S122 61.65 ± 3.86 de 502.18 ± 40.98 ab 297.49 ± 27.03 a 901.01 ± 27.48 a 23.84 ± 1.11 efg 19.15 ± 1.35 ab

Notes: Values expressed as mean ± SE; means in the same column followed by different lowercase letters are significantly different at
p < 0.05; comparison of HBOA-Glc and HMBOA-Glc using Tukey HSD test; comparison of DHBOA-Glc, DIMBOA-Glc, HDMBOA-Glc,
and DIMBOA using Kruskal–Wallis test.
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2.4. Induced Levels of Benzoxazinoids in Aphid Infested Wheat Seedlings and Their Correlation
with S. avenae Resistance

The induced levels of the benzoxazinoids were measured by the peak areas of main
ions of their corresponding MS2 spectra. Mean values were normalized to the mean
of control wheat seedlings with no aphids (Figure 4). S. avenae feeding altered several
benzoxazinoid levels in some of the wheat varieties/lines. Specifically, the levels of DIM-
BOA were significantly increased in XY6 and XY22-5 after 96 h of S. avenae feeding. The
levels of DIMBOA-Glc were significantly decreased in TM-39 and S122, while the levels
of HDMBOA-Glc were significantly increased in TM-39, S122, and AK58 after S. avenae
feeding. A significant negative correlation was found between the relative abundance of
HDMBOA-Glc and DIMBOA-Glc (r = −0.72, p < 0.01, Figure 3B). Furthermore, the levels
of DHBOA-Glc, HBOA-Glc, and HMBOA-Glc were not affected by S. avenae feeding. Cor-
relation analysis of the benzoxazinoid levels showed obvious differences between control
and aphid infested wheat seedlings (Figure 3B). A positive linear correlation was found be-
tween the relative abundance of HDMBOA-Glc and AQR in aphid infested wheat seedlings,
while there was no clear correlation between the induced level of other benzoxazinoids and
S. avenae resistance.

2.5. The Relationship between Aphid-Induced Benzoxazinoids Levels and Callose Deposition

To investigate the relationship between benzoxazinoids levels and callose deposition,
we tested callose deposition in control and aphid infested wheat seedlings. As illustrated
in Figure 5, callose deposition was detected in the leaf epidermis of all tested plants.
There were few callose deposition spots in control seedlings and the number of callose
deposition spots did not differ significantly among control plants. S. avenae feeding caused
a noticeable increase in the number of callose deposition spots, especially in aphid-resistant
wheat leaves, such as XY22-3, 98-10-30, and XY22 (Figure 5). In the epidermis of aphid
infested leaves, the number of aphid-induced callose deposition spots was significantly
lower in aphid-susceptible seedlings than in aphid-resistant seedlings, which also showed
reduced DIMBOA-Glc levels and elevated HDMBOA-Glc levels. Correlation analysis
showed the number of aphid-induced callose deposition spots had a positive relation with
DIMBOA-Glc levels (r = 0.84, p < 0.05), while had a negative relation with HDMBOA-Glc
(r = −0.87, p < 0.05) levels. Wheat leaves infiltrated with DIMBOA-Glc induced significant
callose deposition, especially in aphid-resistant wheat line XY22-3. Infiltration with 40 or
80 µg/mL DIMBOA-Glc in XY22-3 elicited more callose deposition spots than in TM-39.
The effect of DIMBOA-Glc was in a dose dependent manner in wheat line TM-39 (Figure 6).
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Figure 5. Aphid-induced callose deposition in different wheat varieties/lines. (A) Histochemical
staining of callose in control and S. avenae infested wheat leaves. Callose was stained with aniline blue
and visualized as bright-blue spots (indicated by white arrows). Scale bar = 100 µm. (B) Quantification
of callose deposition spots in control and S. avenae infested wheat leaves. Different letters indicate
significant differences (Kruskal–Wallis test).
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Figure 6. DIMBOA-Glc induced callose deposition in wheat leaves. (A) Histochemical staining of cal-
lose in wheat leaves infiltrated with different concentrations of DIMBOA-Glc. Callose was visualized
as bright-blue spots by staining with aniline blue (indicated by white arrows). Scale bar = 100 µm.
(B) Quantification of callose deposition spots in wheat leaves infiltrated with DIMBOA-Glc. Different
letters indicate statistically significant differences (ANOVA, followed by Tukey’s HSD test).

3. Discussion

Benzoxazinoids are synthesized by indole-3-glycerol phosphate in the plastids. Nor-
mally, toxic and unstable benzoxazinoid-aglycones are glycosylated and stored as benzox-
azinoid glucosides in vacuoles to prevent self-toxicity in undamaged plant cells [10,11].
Benzoxazinoid glucosides are vulnerable to hydrolysis by β-glucosidase during plant tissue
disruption, and thus the extraction and quantitative analysis of benzoxazinoids in plants
were quite challenging [25]. In our present work, wheat samples were frozen and ground
into powder in liquid nitrogen immediately after sample collecting. Furthermore, the
subsequent extraction was carried out at low temperature to prevent hydrolysis of benzox-
azinoids by β-glucosidase. In this study, five out of six benzoxazinoids were identified as
glucosides and only one aglucone (DIMBOA) was detected in wheat leaves. There was no
correlation between the contents of DIMBOA and its glucoside compound, DIMBOA-Glc.
Similar to previous studies, DIMBOA has been found in wheat tissue when β-glucosidase
activity was restricted by liquid nitrogen [9,33,34]. These results indicate that DIMBOA is
synthesized constitutively in wheat leaves.

Benzoxazinoid composition and abundance largely depend on plant species, cultivar,
developmental stages, and environmental factors [24]. For example, the major benzox-
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azinoid in rye is DIBOA-Glc, whereas the most abundant benzoxazinoid in maize is
DIMBOA-Glc [35,36]. In wheat plants, DIMBOA-Glc, HMBOA-Glc, HDMBOA-Glc, and
DIMBOA are the most frequently identified benzoxazinoids [9,21,22,32–34]. Including
these four benzoxazinoids, a total of six benzoxazinoids were identified in this study and
the most abundant benzoxazinoid was DIMBOA-Glc. The constitutive levels of these
benzoxazinoids differed widely among different wheat varieties/lines, even in the sib-lines
with similar genetic background, such as XY22, XY22-3, and XY22-5. Previous studies also
indicated that levels of benzoxazinoids varied greatly in different wheat varieties/lines of
the same developmental stage [21,22,37].

Benzoxazinoids can disturb cell function by inhibition of many target enzymes [11].
The resistance of benzoxazinoid towards herbivores can be implemented by toxic and
antifeedant activities. Benzoxazinoids have been shown to be toxic to many chewing herbi-
vores, such as Ostrinia nubilalis, O. furnacalis, Spodoptera exigua, and S. frugiperda [38–41].
Compared to chewing herbivores, aphids feed upon phloem sap with their stylet-like
mouthparts from plant sieve elements and cause little damage to host plants [42]. The
effects of benzoxazinoids on aphids have been studied using both artificial diets and plants
containing different levels of benzoxazinoids. In artificial diet experiments, most of the
benzoxazinoids exhibited negative effects on a wide range of aphid species, such as S.
avenae [16], R. padi [17], Metopolophium dirhodium [43], and S. graminum [44]. However,
previous studies showed inconsistent results in aphid performance assay with different
host plants. Some studies showed that the constitutive benzoxazinoid levels in host plants
are positively correlated with resistance to cereal aphids [13–15,45], while some other re-
searchers found the concentration and composition of benzoxazinoids were not correlated
with aphid resistance [18–23]. In this study, although the S. avenae resistance level was
significantly affected by wheat varieties/lines, the constitutive levels of benzoxazinoids
were not correlated with S. avenae resistance level. Our results suggested that the constitu-
tive level of benzoxazinoids is not the primary factor responsible for wheat resistance to S.
avenae in these wheat varieties/lines. Typically, benzoxazinoids are synthesized in plastids
and mobilized in the phloem sap and their effect on aphids depends on their abundance in
the phloem. According to previous studies, benzoxazinoid levels in the phloem sap are
much lower than that of the whole wheat leaves and aphids can avoid the higher toxicity
levels of benzoxazinoids in mesophyll cells by careful probing [34,46]. Moreover, aphids
can avoid the negative effects of benzoxazinoids due to the detoxification system [23].
Therefore, the direct toxicity of benzoxazinoids has a limited effect on S. avenae in wheat.

In this study, we found that S. avenae feeding had different impact on benzoxazinoid
levels in wheat plants. Specifically, the level of DIMBOA was significantly increased in
some wheat varieties/lines, while DIMBOA-Glc level was decreased after S. avenae feeding.
Our results are consistent with previous studies that aphid feeding led to the hydrolysis
of DIMBOA-Glc and resulted in an increased level of DIMBOA in wheat plants [21,34]. S.
avenae feeding also altered the level of HDMBOA-Glc, a methyl derivative of DIMBOA-
Glc. Previous studies have similarly confirmed that the level of HDMBOA-Glc over-
accumulated due to aphids feeding in durum wheat and emmer wheat [34,47]. In ad-
dition, we also found that some of the benzoxazinoids (e.g., DHBOA-Glc, HBOA-Glc,
and HMBOA-Glc) were not affected by S. avenae feeding. Similar phenomena were also
observed in maize and wheat plants, respectively [48–50]. Overall, these findings indicate
that the induced benzoxazinoid level is affected by the properties of benzoxazinoids and
plant genotypes.

Apart from direct toxicity of benzoxazinoids, some of the benzoxazinoids, such as
DIMBOA-Glc, can act as signal molecules and induce callose deposition for aphid resis-
tance [10,12]. Callose deposition can hinder aphid stylets’ access to the phloem by making
cell walls more difficult to penetrate. Callose deposition can also block sieve elements
to limit nutrient loss of host plants [12]. Callose deposition has been demonstrated to
be an important plant defense mechanism in response to aphid feeding [10–12]. In this
study, we found that S. avenae feeding caused a noticeable increase in the number of callose



Metabolites 2021, 11, 783 12 of 17

depositions. The number of aphid-induced callose deposition had a positive relation with
aphid-induced DIMBOA-Glc level, while had a negative relation with HDMBOA-Glc level
in some of the wheat varieties/lines. Furthermore, wheat leaves infiltrated with DIMBOA-
Glc significant induced callose deposition and this effect was in a dose dependent manner.
These results suggest that aphid-induced DIMBOA-Glc level may have a positive effect
on callose deposition in wheat plants, while the induced level of HDMBOA-Glc has an
opposite effect. Similarly, a previous study showed that R. maidis performed better on
maize inbred lines with low DIMBOA-Glc content and high HDMBOA-Glc content, al-
though HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc [13]. In wheat plants,
S. avenae grew better on DIMBOA-Glc O-methyltransferases transgenic plants, which
exhibited high HDMBOA-Glc level and very low DIMBOA-Glc level [50]. These results
suggested that DIMBOA-Glc metabolism had a significant impact on aphid-induced callose
deposition. Converting DIMBOA-Glc to HDMBOA-Glc reduced the DIMBOA-Glc level
and subsequently suppressed callose deposition and aphid resistance. In addition, the
aglucone of DIMBOA-Glc, DIMBOA also exhibited the inducibility of callose in previous
studies [17,50]. However, neither constitutive nor induced DIMBOA level exhibited a
considerable correlation with callose deposition in this study. According to our results,
DIMBOA level was much lower compared with DIMBOA-Glc, so the callose inducibility
of DIMBOA may be limited in wheat. Although callose depositions induced by benzoxazi-
noids in wheat are well established, the detailed mechanism remains poorly understood.
Further studies are still needed to clarify the genetic basis and molecular mechanisms of
benzoxazinoids dependent callose deposition.

4. Materials and Methods
4.1. Wheat and Aphids

Thirteen winter wheat varieties/lines used in this study are listed in Table S2. All of
them are hexaploid wheat with stable heredity. Four of the 13 varieties/lines, Xiaoyan6
(XY6), Xiaoyan22 (XY22), Xiaoyan22-3 (XY22-3), and Xiaoyan22-5 (XY22-5), have the intro-
duced chromosomes from Thinopyrum ponticum. XY22-3 and XY22-5 are the sib-lines of
XY22. Two varieties/lines, 186Tm39 (TM-39) and 186Tm47 (TM-47), are hybrids of T. aes-
tivum and T. monococcum. Two other varieties/lines, 98-10-19 and 98-10-30 are hybrids of T.
aestivum and T. turgidum. Five wheat varieties, Xinong979 (XN979), Mingxian169 (MX169),
Aikang58 (AK58), Shan122 (S122), and Xinong1376 (XN1376), are bred by hexaploid wheat.
AK58 is a widely cultivated wheat variety in China and was bred by Henan Institute of
Science and Technology (Xinxiang, China). MX169 is a traditional wheat variety from
Shanxi Agricultural University (Taigu, China). The other 11 wheat varieties/lines (four
commercial varieties: XY6, XY22, XN979, and XN1376 and seven breeding lines: XY22-
3, XY22-5, TM-39, TM-47, 98-10-19, 98-10-30, and S122) were bred by Northwest A&F
University (Yangling, China). All the wheat seeds used in this study were collected and
provided by the State Key Laboratory of Crop Stress Biology in Arid Areas (Yangling,
China). The aphid-resistance levels of some varieties/lines were evaluated in our previous
works [51–53]. S. avenae was originally collected from a wheat field (34◦297′ N, 108◦071′ E)
in Yangling, Shaanxi, China. Aphids were reared in a separate cage on wheat seedlings
(var. ‘AK58’) in a climate chamber.

4.2. Evaluation of Wheat Resistance to S. avenae

Wheat seeds were germinated at room temperature for 24 h in the dark. Then, one
germinated seed was planted in a plastic pot (250 mL) containing a 3:1 mixture of peat moss
(Pindstrup Mosebrug A/S; Ryomgaard, Denmark) and vermiculite. All seedlings were
maintained in a walk-in growth chamber under the following conditions: 22 ◦C/18 ◦C, RH
60 ± 5%, and photoperiod 16:8 h (L:D). Each seedling was watered as needed and covered
with a ventilated transparent plastic cylinder (8 cm in diameter and 30 cm in height). Seven
day old seedlings were used in this experiment. Three adult aphids were introduced to
the first fully expanded leaf of wheat seedlings. The adult aphids were removed after 24 h,
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and 10 newborn nymphs were left on each seedling. After another five days, the nymphs
with winged buds were removed, and five wingless aphids were selected and reared on
each seedling. Total number of aphids on each wheat seedling was recorded after 2 weeks.
Six replicates were conducted for each variety/line.

The degree of resistance to S. avenae in different wheat varieties/lines was evaluated
by the ratio of aphid quantity (AQR), according to the previous studies [2,54]. AQR was
defined as the number of aphids in each seedling divided by the average number of aphids
in all testing seedlings. The S. avenae resistance level of each plant was graded as follows:
high resistance (HR, AQR ≤ 0.3), middle resistance (MR, 0.3 < AQR ≤ 0.6), low resistance
(LR, 0.6 < AQR ≤ 0.9), low susceptible (LS, 0.9 < AQR ≤ 1.2), middle susceptible (MS,
1.2 < AQR ≤ 1.5), and high susceptible (HS, AQR > 1.5), respectively.

Sitobion avenae infestation experiment was performed as follows: 7-day-old wheat
seedlings were infested with S. avenae by placing 10 apterous adult aphids on the first fully
expanded leaf, which was covered with a ventilated transparent plastic cylinder (8 cm
in diameter and 30 cm in height). After feeding for 96 h, all aphids were removed using
a hairbrush and the treated wheat seedlings were used for further experiments. Plants
without aphids were used as controls and covered with ventilated transparent plastic
cylinder. Wheat leaves from control and aphid-infested plants were rapidly harvested and
immediately ground into powder in liquid nitrogen for metabolic analysis.

4.3. Benzoxazinoids Analysis

Benzoxazinoids were extracted following a previously published protocol with minor
modifications [48]. Fifty milligram wheat leaves were ground by a tissue grinder in liquid
nitrogen and extracted for 5 min at 4 ◦C in 1 mL extraction solvent (methanol/water/formic
acid, 50/49.5/0.5, v/v/v). After centrifugation at 13,000× g for 5 min, the supernatant was
transferred to a sample vial and stored at −80 ◦C before analysis. Benzoxazinoids were ex-
tracted and analyzed by high-performance liquid chromatography electrospray ionization
ion trap mass spectrometry (LTQ-XL, Thermo Scientific, Waltham, MA, USA). Liquid chro-
matography separations were carried out with Xterra® MS C18 column (150 × 2.1 mm;
Waters, Milford, CA, USA) and Intertsil OSD-4 C18 Column (250 × 3.0 mm; GL Sciences
Inc., Tokyo, Japan). Benzoxazinoids were separated with a mobile phase consisting of water
and methanol, both of which contained 0.1% formic acid (v/v). The gradient run was at a
flow rate of 0.2 mL/min with 30% methanol for an initial 5 min, methanol concentration
which was then increased to 80% in 10 min, and the system was held at 80% methanol
for 10 min. The injection volume for all samples was 10 µL and the column temperature
was held at 40 ◦C. The MS parameters were as follows: sheath gas (nitrogen) flow rate,
25 arb; aux gas (nitrogen) flow rate 5 arb; spray voltage 4.5 kV; capillary temperature
275 ◦C. The MS system worked in the negative electrospray ionization (ESI) mode and
helium was used as the collision gas in the ion trap. Data dependent MSn analyses were
performed by collision-induced dissociation with normalized collision energy of 35%. Data
were acquired and processed using Xcalibur 2.1 software (Thermo Scientific, Waltham,
MA, USA). Absolute concentrations of benzoxazinoids were quantified by the commercial
standards (J&K Scientific, Beijing, China).

4.4. Callose Induction and Visualization

For aphid-induced callose deposition, callose was induced by caging 10 adult aphids
on the first leaf for 96 h and plants without aphids were used as controls. Aphid-infested
leaf segments were collected from at least 10 different plants per variety/line. Benzoxazi-
noids infiltration experiment was performed according to a previously published protocol
with minor modifications [50]. Briefly, the first leaf from 7-day-old seedlings was cut
into 2 cm long pieces and then infiltrated with different concentrations of benzoxazinoids
in 1.96% methanol (v/v) and 0.04% acetic acid (v/v) aqueous solution for 24 h at room
temperature. Five randomly collected leaf segments were conducted for each variety/line.
Meanwhile, mock treatments were infiltrated with a solution without benzoxazinoids.
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Callose deposition in wheat leaves was visualized by callose staining with aniline blue
according to previously published protocols with minor modifications [50]. Briefly, wheat
leaves were incubated for 72 h in 95% ethanol until all tissues were transparent. After
destaining, wheat leaves were washed 3 times with 0.07 M phosphate buffer (pH = 9.0),
and then stained with 0.01% analine blue (m/v, J&K Scientific, Beijing, China) in 0.07 M
phosphate buffer (pH = 9.0) for 4 h. After staining, wheat leaves were rinsed with 0.07 M
phosphate buffer (pH = 9.0) 3 times and stored at 4 ◦C in 0.07 M phosphate buffer (pH = 9.0)
until microscopic analysis. Observations were performed with a Nikon 80i fluorescence
microscopy (Tokyo, Japan) with UV filter (EX 330–380 nm, BA 420nm). Callose depositions
were quantified by calculating the number of callose spots per mm2 of wheat leaf.

4.5. Statistical Analyses

Statistical tests were performed using the SPSS 23 (SPSS Inc, Chicago, IL, USA). The
distribution of the sample was verified by Kolmogorov–Smirnov test and the homogeneity
of variance was performed using Levene test. The data of S. avenae resistance level were
analyzed using analysis of variance (ANOVA). The data of constitutive benzoxazinoid
levels were evaluated using one-way ANOVA or Kruskal–Wallis nonparametric test. The
differences of benzoxazinoid levels between control and the aphid-infested plants were
subjected to two-tailed Student’s t-test. The relationship between benzoxazinoid contents
and S. avenae resistance level was studied by Pearson correlation analysis. The data of cal-
lose deposition were evaluated using one-way ANOVA or Kruskal–Wallis nonparametric
test. The relationship between aphid-induced benzoxazinoids levels (relative abundance)
and callose deposition was studied by Pearson correlation analysis.

5. Conclusions

In conclusion, we investigated the relative contributions of constitutive and induced
benzoxazinoid levels to S. avenae resistance in 13 different wheat varieties/lines. Compared
with constitutive level of benzoxazinoids, aphid-induced level of benzoxazinoids is more
closely related to S. avenae resistance. Our data suggest that S. avenae feeding can affect the
balance of benzoxazinoids metabolism in wheat plants. The dynamic level of benzoxazi-
noids can act as signal of callose deposition for S. avenae resistance. This study extends our
understanding of aphid–wheat interaction and provides new insights in aphid-resistance
wheat breeding.
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