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Abstract: The genus Laurencia, a category of marine red algae, is well recognized for producing a
large variety of natural products (NPs) that are both chemically intriguing and structurally distinct.
The aim of this research was to identify NPs with potential anti-SARS-CoV-2 activity. The crystals of
the proteins RdRp and nsp15 were obtained from the RCSB protein database. About 300 NPs were
discovered using the PubChem, ChemSpider, and CMNPD databases. The program Autodock Vina
was used to conduct the molecular docking procedure once the proteins and ligands were prepared.
Before running MD simulations using the CABS-flex 2.0 website, binding affinity assessments and
interactions between amino acids were carefully reviewed. Only nine NPs were shortlisted to be
examined further. Bromophycolide R, S, and bromophycoic acid C show the tendency to inhibit RdRp
by β-hairpin motif binding at the N-terminal known as Active site 2 (AS2), whereas the other four
NPs, bromophycolide E, H, P, and thyrsenol A, may effectively inhibit RdRp through interactions via
C-terminal, also known as the Active site 1 (AS1). For the enzyme nsp15, bromophycoic B, C, and
floridoside showed plausible interactions. In conclusion, out of nine, seven candidates shortlisted for
RdRp exhibited strong interactions with the key residues in the AS1 and AS2 regions. Bromophycoic
acid C may work as a dual inhibitor due to its favorable interactions with the nsp15 protein and
RdRp’s N-terminal, with affinities of −8.5 and −8.2 kcal/mol, respectively.

Keywords: COVID-19; SARS-CoV-2; RdRp; Nsp12; Nsp15; endoribonuclease; Laurencia; natural
products; anti-viral; red algae

1. Introduction

The life-threatening coronavirus infection in 2019 was anticipated to be caused by
the positive-sense, a single-strand RNA virus referred to as the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). As of July 2023, there were over 768 million
confirmed cases and about 7.0 million fatalities globally, according to the WHO dashboard
https://covid19.who.int/ (accessed on 23 July 2023). Even if the severity of the illness is
lessened by existing vaccinations and antiviral medical treatment, people can still contract
the illness, especially if the virus comprises unique mutations [1,2]. Moreover, vaccine
efficiency is still poor, and certain antiviral medications suggested for the treatment of
SARS-CoV-2 have been reported to cause viral modifications [3], making it unlikely that this
will be enough to halt the spread on its own. At this point, it is quite likely that SARS-CoV-2
will spread throughout the world’s population [4].

Viral RNA-dependent RNA polymerase (RdRp), also known as nonstructural protein
12 (Nsp12), is one of the many possible therapeutic targets and is regarded as a promising
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target [5]. For viral replication, RdRp is essential [6]. It has conserved structural and core
sequence characteristics among RNA viruses, enabling a wide range of antiviral activity [7].
In SARS-CoV-2, the RdRp complex made up of three non-structural proteins 12, 7, and
8, is necessary for RNA replication. Whilst nsp7 and nsp8 are auxiliary stimulators of
polymerase activity, nsp12 functions as RdRp and is an important component [8]. There is
an excellent effort being made by scientists all around the world to help elucidate feasible
alternatives for inhibiting SARS-CoV-2 RdRp. Numerous studies have been conducted
to date [9–47]. One medication that targets RdRp is Remdesivir, which is the only one
that the US Food and Drug Administration has licensed for the treatment of COVID-19.
In several clinical investigations, it has been shown that Remdesivir greatly increases
COVID-19 recovery [48–50]. Remdesivir was proven to be most efficacious when provided
in early infection [51,52]. Nevertheless, investigations have shown that Remdesivir did
not statistically significantly outperform the standard of treatment in terms of clinical
outcomes [53–55], particularly in the case of patients who had severe symptoms and
required oxygen support [56]. Remdesivir may produce better results when combined with
additional medications or cutting-edge therapies such as monoclonal antibodies when used
alone [57,58].

A recent research investigation, again looking at the use of corticosteroids, revealed the
impact on viral replication and host inflammation. It was observed that the steroid drugs
Ciclesonide and mometasone showed dosage dependent influence on viral proliferation
and cytotoxicity [59]. According to recent findings, Ciclesonide either directly or indirectly
interacts with nsp15 [60]. A nidoviral RNA uridylate-specific endoribonuclease is called
nsp15 (NendoU). It possesses an EndoU family C-terminal catalytic domain [61]. The nsp15
was formerly believed to be involved directly in viral replication; however, it has now
been discovered that this is not the case. Moreover, nsp15’s ability to modulate immune
system response by meddling with innate immune response has just been de-scribed [62].
It was also mentioned that nsp15 may be involved in RNA disintegration, which assists in
concealing it from the host defenses. This nsp15 is described as being crucial to coronavirus
biology when taking into account its different activities.

More than any other form of life, viruses have remained impervious to treatments and
prevention. Only a few medications are now available to treat viral illnesses effectively.
There is an increasing amount of interest in using natural products as a source for novel
medications [63]. Effective medications are desperately needed to combat the SARS-CoV-2
infection, including small-molecule inhibitors [64,65], bioactive natural products [66–68],
and conventional medicine [69]. Marine red algae is seen as a vital source of novel therapeu-
tic compounds [70,71]. Natural compounds from the red algal genus Laurencia may prove
to be vital in the treatment of SARS-CoV-2 infection due to their antiviral potency [72,73].

The purpose of this study is in silico evaluation of antiviral activity of 300 natural
products from a marine red algal genus Laurencia (refer to Table S1). By focusing more
on the amino acid interactions than just the binding affinities, this study was able to
identify a small number of NPs from a total of 300 NPs [74–172]. This study is geared
toward suggesting some low molecular weight NPs as potential SARS-CoV-2 RdRp (nsp12)
and endoribonuclease (nsp15) inhibitors. For the RdRp enzyme, the two docking sites
employed in the study are frequently referred to as active site 1 (AS1) and active site 2
(AS2); these active sites are hypothesized to be linked allosterically and coordinate the
enzyme activity [173]. As there are not many studies emphasizing the relevance of docking
the N-terminal (AS2), it was the major emphasis of this investigation. To ascertain if lead
compounds are effective antiviral candidates, it is very crucial to take into account the
activity of both AS1 and AS2 [173]. Thus, a two-phase docking strategy was used. First,
the β-hairpin motif situated in the NiRAN region of the N-terminal was targeted, since it
is crucial for stabilizing the complete protein and ensuring optimal functioning. Second,
the top ligands shortlisted from the N-terminal docking were then further docked in the
C-terminal portion of RdRp (AS1), consisting of the main catalytic core responsible for
RNA replication. Finally, the toxicity and pharmacokinetic characteristics of the screened
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NPs identified for both target proteins were explored. A schematic depicting the workflow
used for this computational study is shown in Figure 1.
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2. Materials and Methods
2.1. Retrieval of Proteins

Data on the common COVID-19 proteins were found in the literature. The RCSB
PDB database was used to locate the crystal structures of SARS-CoV-2 RdRp and nsp15,
which were produced using electron microscopy and X-ray diffraction techniques, re-
spectively [174]. The RNA-dependent RNA polymerase, generally known as RdRp or
nsp12, and its 3D structure (PDB ID: 7BV2) resolved at 2.50 Å, were used for this investi-
gation [175]. The 3D structure of non-structural protein number 15, also known as nsp15,
which was chosen (PDB ID 6VWW), resolved at 2.20 Å [61]. The targets were selected on
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the basis of resolution and PDB validation reports for optimum metrics to ensure a better
docking process.

2.2. Retrieval of Ligands

A thorough literature search was conducted in order to learn more about the natural
compounds produced by the Laurencia genus of the marine red algae. Despite the fact that
there are hundreds of natural compounds, this study was restricted to about 300 naturally
occurring products from this genus (refer to Table S1). To find 2D and/or 3D conformers of
all 300 ligands, a thorough search was conducted. The PubChem database’s 3D conformers
of ligands were initially obtained in SDF chemical format [176]. In the event that 3D
structures were not available, 2D conformers were downloaded. The ligands that were
absent from the PubChem database were obtained from the ChemSpider database and
retrieved in the Mol chemical format using the same database [177]. The 2D Mol format
structures of ligands that were not accessible in the PubChem or ChemSpider databases
were obtained using the CMNPD database [178].

2.3. Visualization Tools

Using BIOVIA Discovery Studio Visualizer 4.5, the protein structures of RdRp and
nsp15 were studied [179]. This gave us the necessary details on the quantity of amino acid
chains, connected ligands, HETATM groups, etc. However, Avogadro software was first
employed for visualization and afterwards for the preparation of ligands [180,181].

2.4. Pre-Docking Preparations

Using the data gathered throughout the visualization process, BIOVIA Discovery
Studio Visualizer prepared both target proteins. The nsp15 protein only had chains A and B,
but the RdRp protein contained three amino acid chains, such as A, B, and C. Both proteins
demonstrated the presence of ligand groups, HETATM, and water molecules. However,
RdRp was also found to have a nucleic acid group. In order to get rid of unnecessary
molecules (H2O, HETATM, nucleic acid, and undesired amino acid chains), 3D structures
were cleaned and trimmed. For both proteins to be utilized in this investigation, Chain A
was chosen, but the ligand group was left intact. Hydrogen atoms were also added, energy
minimization was performed, and Swiss-pdb viewer software [182] was utilized to perhaps
restore the fragmented amino acid chain. After the energy minimization procedure, the
ligand groups were eliminated; this step was important to prevent potential disruption
of the active site. Additionally, these structures were stored in the Swiss-pdb viewer’s
PDB format before being converted utilizing Autodock tools to the necessary PDBQT
format [183].

The Avogadro program was used to construct the 2D and 3D conformers of ligands
acquired in SDF and Mol chemical formats. The 2-dimensional structures were first opened
in Avogadro to generate 3D coordinates, which turned them into 3-dimensional structures.
All 2D structures were thus transformed to 3D conformers and stored. Once all 300 products
had been converted to 3D, each one was individually put through a process of geometry
optimization and energy minimization. All ligands that were processed were exported in
PDB format. Finally, Gasteiger charges were added using the auto dock tools by converting
ligands from PDB to PDBQT format.

2.5. Docking Protocol Validation

By re-docking the original ligand RTP (remdesivir triphosphate) in the catalytic domain
on the C-terminal, the docking technique was validated. On the crystal structure of the
protein that was re-docked with the native RTP, the original crystal structure (PDB ID:
7BV2) was superimposed. Analyses were performed on the map of amino acid interactions
and docking score was noted. To evaluate the precision of the employed protocol, the
RMSD value was determined (see Figure 2).
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2.6. Molecular Docking

For the rigid protein flexible ligand molecular docking approach, Autodock Vina 1.2.0
was employed [184,185]. The Grid box was constructed and positioned suitably using
knowledge of key amino acids and active sites for RdRp and nsp15. The RdRp protein
file in PDBQT format was first opened in the program, and 300 ligands were individually
docked (see Table 1). RdRp’s cavity volume was 1248 Å3, whereas the nsp15 protein’s
active site volume was 83 Å3. For RdRp phase 1 docking, the grid box was constructed
over the β-hairpin motif and positioned at X = 113 Å, Y = −87 Å, Z = 79 Å. In the phase
2 docking, the top NPs identified in phase 1 docking were docked in the grid box placed at
the catalytic core region X = 99 Å, Y = 96 Å, Z = 104 Å. In the case of nsp15 protein, grid box
was placed at X = −93 Å, Y = 19 Å, Z = −27 Å. The nsp15 protein was also docked with
all 300 ligands (see Table 2). To confirm the correctness of the outcome, the full docking
process was carried out twice. Additionally, all protein–ligand complexes in PDB format
were acquired in order to use BIOVIA Discovery Studio Visualizer 4.5 to show amino acid
interactions (see Table 3) in 2D and 3D maps (see Figures 3–6).

2.7. MD Simulation

Using the CABS-flex 2.0 website, MD simulations were performed for protein–ligand
complexes exhibiting the desired amino acid interactions [186]. This service effectively
assesses protein flexibility using quick simulations. PDB files for the best complexes
were posted to the server. The server gave default settings for the simulation parameters,
which included the number of cycles (50), cycles between trajectory frames (50), simulation
temperature (1.4), and seed for the random number generator. At default settings, these MD
simulation sessions are considered equivalent to 10 ns of computer performed simulations.
Root Mean Square Fluctuation (RMSF) plots were produced by simulation sessions which
were used further in this study (see Figures 7–9 and Tables S13–S15).
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2.8. Toxicity Profile Assessment

ProTox II and StopTox web servers were employed to assess the potential toxicity of
the top-ranking ligands [187,188]. ProTox-II reduces the requirement for animal testing by
making quick predictions about a tiny molecule’s potential toxicity in a virtual environment.
Important details regarding the ligands, including LD50 values (mg/kg body weight),
toxicity class, and toxicity endpoints (hepatotoxicity, carcinogenicity, immunotoxicity,
mutagenicity, and final cytotoxicity), were given by this website (see Table 4). Estimates of
the likelihood that ligands may cause acute toxicity are quickly and accurately provided by
the user-friendly program StopTox. Acute oral, dermal, and inhalation toxicity information,
as well as information on the likelihood of skin and eye irritation and corrosion, skin
sensitization, and other critical information, were all provided by this server (refer to
Table 5).

2.9. Pharmacokinetics Analysis

The canonical SMILES (Table S16, ESI) on the Swiss-ADME service was used to
investigate the drug-like qualities of natural compounds that had previously been selected
as the best [189]. The five Lipinski parameters (Ro5) were observed and recorded as the first
act of observation. These criteria included the molecular weight (≤500), consensus log p-
value (≤5), and the number of hydrogen bond donors and acceptors (≤5). Two more criteria
were included—as the topological polar surface area (≤140) and the number of rotatable
bonds (≤10)—in order to more accurately assess the likelihood that the ligand will be orally
active (refer to Table 6). Further, the water solubility, bioavailability, and GI absorption
probability were noted (see Table 7). A simple mathematical equation that produced the
absorption percentage was used to more precisely measure GI absorption [190,191]:

AB% = 109 − (0.345 × TPSA)

Additionally, the Swiss-ADME boiled egg graph was used to analyze the cell perme-
ability of NPs (see Figure 10). Finally, utilizing the PASS online webserver [192], possible
biological activity prediction was carried out (in Table 8).

3. Results and Discussion
3.1. Binding Affinity Studies

Due to the significant number of NPs used in this investigation, the data for the
binding affinity for both RdRp and nsp15 were separated into three groups. First, the
classes of ligands with low affinity were those having docking scores between −4.0 and
−4.9 kcal/mol and −5.0 and −5.9 kcal/mol. Second, it was considered that the ligands
having docking values between −6.0 and −7.9 kcal/mol were of intermediate affinity.
These low and moderate ligands were further placed in subcategories, whereas high-affinity
ligands were the final group.

3.1.1. Docking β-Hairpin Motif Region (RdRp): N-Terminal

The NiRAN region and the palm subdomain of RdRp are linked by a β-hairpin
motif. This motif stabilizes the overall protein structure of RdRp, aiding in its optimum
functioning. Important amino acids in this region are TYR: 32, LYS: 47, TYR: 122, TYR:
129, HIS: 133, ASN: 138, ASP: 140, THR: 141, SER: 709, and ASN: 781 [193–196]. Targeting
this region might inhibit RdRp by disruption of conformational dynamics triggered by
ligand binding. In simple terms, there might be structural re-arrangements that ultimately
alter the protein function [197]. The residue TYR: 129 from AS2 (N-terminal) and SER: 709
from AS1 (C-terminal) are conserved among all coronaviruses. Targeting these residues
will most likely compromise the inter-domain connections, which will eventually have a
detrimental effect on the activity of RNA synthesis [173]. The results of the phase 1 docking
process for the β-hairpin motif of RdRp were divided into the three major groups.
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Ten NPs made up the first grouping in the low category because they had the lowest
docking scores for the RdRp protein (see Table 1). The affinities of laurencenyne, halomon,
and 9-octadecanoic acid were the lowest at −4.0 kcal/mol. 6, 8-cycloeudesmane had the
greatest affinity score, which was closely followed by 1-methyl-2, 3 and 5-tribromoindole
at −4.9 and −4.8 kcal/mol, respectively (refer to Table S2, ESI). The second subgroup
had about 172 NPs, 19 of which had a low docking value of −5.0 kcal/mol. Neverthe-
less, only five of the NPs in this group showed the maximum docking scores in this
class, which was −5.9 kcal/mol (refer to Table S3, ESI). These were (6R, 9R, 10S)-10-
bromo-9-hydroxychamigra-2, 7(14)-diene, aldingenin C, axinysone B, aplysiolic acid, and
compositacin C, J. There were two subcategories within the moderate class. As well, 61 NPs
with lower-moderate scores were put in the first sub-category, 20 of which had affinities
of −6.0 kcal/mol; nevertheless, five NPs, including 11,14-dihydroaplysia-5,11,14,15-tetrol,
beta-sitosterol, callophycoic acid I, cholest-5-en-3-alpha-ol, and saringosterol, had the low-
est score in the group at −6.9 kcal/mol (refer to Table S4, ESI). The second subcategory
of upper-moderate ligands included 39 NPs, of which 6 NPs had a low docking score
of −7.0 kcal/mol while 4 NPs, namely beta-cryptoxanthin, brassicasterol, bromophycoic
acid E, and bromophycolide A, displayed −7.9 kcal/mol affinity (refer to Table S5, ESI).
Ultimately, we identified 18 NPs in category 3 with the greatest affinities (see Table 1).
Lithothamin A had the greatest docking score for RdRp of any ligand, with a value of
−9.0 kcal/mol, followed closely by dehydrothyrsiferol, bromophycolide S, callicladol, and
bromophycolide E, which had values of −8.9, −8.8, −8.7, and −8.5 kcal/mol, respectively
(Table S6, ESI).

Table 1. Docking output for the N-Terminal β-hairpin region of RdRp enzyme.

RdRp Protein

Low Moderate High

−4.0 to −4.9 kcal/mol −5 to −5.9 kcal/mol −6 to −6.9 kcal/mol −7 to −7.9 kcal/mol −8.0 kcal/mol and Above

1-methyl-2,3,5-tribromoindole (−)-3-(E)-bromomethylidene-10beta-bromo-beta-chamigrene 1,2-Dehydro-3,4-epoxypalisadin B 5-alpha-cholestane-3,6-dione Bromophycoic acid B
6,8-cycloeudesmane (+)-3-(Z)-bromomethylidene-10beta-bromo-beta-chamigrene 2-Hydroxyluzofuranone A, B 6-hydroxycholest-4-en-3-one Bromophycoic acid C
9-octadecanoic acid (5S)-5-Acetoxy-beta-bisabolene 3 alpha-hydroperoxy-3-epiaplysin 10-acetoxyangasiol Bromophycolide E

14-methylpentadecanoic acid (6R,9R,10S)-10-bromo-9-hydroxychamigra-2,7(14)-diene 3-Bromo-4,5-dihydroxybenzaldehyde 10-epi-Dehydrothyrsiferol Bromophycolide H
beta-Synderol (10R)-10-Bromo-alpha-chamigrene 3-Bromobarekoxide 13-Hydroxyprethyrsenol A Bromophycolide K

Halomon 2-bromospironippol 3-epi-Perforenone A 15,16-Dehydrovenustatriol Bromophycolide L
Luzonensin (3Z)-laurenyne 3R,4S-luzonolone 15-DehydroxythyrsenolA Bromophycolide P
Hordenine 3,4-epoxypalisadin B 3S, 4R-luzonolone 16-Hydroxydehydrothyrsiferol Bromophycolide R

Laurencenyne 3,7-dihydroxydihydrolaurene 5-acetoxypalisadin B Beta cryptoxanthin Bromophycolide S
Trans-Laurencenyne 3-alpha-Hydroxydebromoaplysin 5-alpha-Hydroxyaplysistatin Brassicasterol Callicladol

3-beta-Hydroperoxyaplysin 9-hydroxy-3-epi-perforenone A Bromophycoic acid A, D, E Dehydrothyrsiferol
4-Hydroxy-1,8-epi-isotenerone 11,14-dihydroaplysia-5,11,14,15-Tetrol Bromophycolide A–D, F, J, M–O, Q, T, U Isodehydrothyrsiferol

4-hydroxypalisidin C 15-hydroxypalisadin A Callophycoic acid C–E Laurebiphenyl
5-acetoxyoxachamigrene Acetylmajapolene A, B Campesterol Lithothamin A

5-epi-maneolactone Aldingenin D Cholest-4-en-3,6-dione Mammeisin
7-acetyl-aplysiol Aplysistatin Dehydrovenustatriol Thyrsenol A

7-hydroxylaurene Aristolan-10-ol-9-one Lactodehydrothyrsiferol Thyrsenol B
8,10-dibromoisoaplysin Aplysiodiol Neurymenolide A, B Thyrsiferol

9-Deoxyelatol Barekoxide Neoirietetraol
10-Bromo-beta-chamigrene beta-Sitosterol Predehydrovenustatriolacetate

10-Bromosoaplyin Bromophycolide G, I Prethyrsenol A
10-hydroxyisolaurene Caespitol Pseudodehydrothyrsiferol

10-Hydroxyaplysin Callophycoic acid A, B, G, H, I, J Stigmasterol
12-hydroxy Isolaurene Callophycol A, B
12-Hydroxypalisadin B Chamigrene Lactone

15-Hydroxylaurene Compositacin B, E, F, I, N
15-Oxolaurene Cholest-4-en-3-one
Almadioxide Cholest-5-en-3alpha-ol

Aromadendrene Cholest-5-en-3beta-ol
Aldingenin A, B, C Debromoisocalenzanol

Allolaurinterol Japonenyne A
Allolaurinterolacetate Johnstonol

Aplysinol Laurecomin A, D
Aristolan-8-en-1-one Laurenokomarin

Aristolane Laurepoxyene
Axinysone B Laureacetal C

Aplysiol-7-one Laurefurenyne B
Aplysiolic acid Laurinterolacetate

(−)-BisezakyneA Luzondiol
Brasilenol Majapolene A

Bromocuparene Oryzalexin S
Bromocyclococanol Pacifenol

Bosseopentanoic acid Palisadin D
Bromlaurenidificin Perforenone A

Caespitane Saringosterol
Caesspitenone Tiomanene
Cycloeudesmol
Cyclolaurenol

Callophycoic acid F
Callenzanol

Chamigrene epoxide
Chinzallene

Compositacin A, C, D, G, H, J, K, L, M
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Table 1. Cont.

RdRp Protein

Low Moderate High

−4.0 to −4.9 kcal/mol −5 to −5.9 kcal/mol −6 to −6.9 kcal/mol −7 to −7.9 kcal/mol −8.0 kcal/mol and Above

Cycloelatanene A, B
Cycloisoallolaurinterol

Chlorofucin
Cupalaurenol

Dactylyne
Debromoaplysin

Debromoepiaplysinol
Debromolaurinterol

Debromolaurinterolacetate
Dendroidiol
Dendroidone

Deoxyprepacifenol
Deschloroelatol

Elatenyne
Elatol

Epiaplysinol
Epibrasilenol
Floridoside
Filiformin

Filiforminol
Guimarediol
Heterocladol
Intricenyne
Isocaespitol

Isodihydrolaurene
Isolaurallene
Isolaureatin
Isolaurene

Itomanindole A
Isolaurenidificin

Isoafricanol
Isoallolaurinterol

Isoaplysin
Isodactyloxene A

Isodebromolaurinterol
Isolaurenisol

Isoobtusol
Isopalisol
Isorigidol

Kumausallene
Laurallene

Laureacetal A, B
Laurefurenyne A, C, D, E, F

Laurencial
Laurendecumallene A, B
Laurendecumenyne A, B

Laurenenyne
Laurenisol

Laurenone A
Laureoxanyne

Laurecomin B, C
Laurencomposidiene

Laurene
Laurentristich-4-ol

Laureperoxide
Laurokamurene A-D

Luzofuran
Luzonenone
Luzonensol

Luzonensol acetate
Laurepinnacin

Laurinterol
Ma’iliohydrin

Mailione
Majapolene B

Microcladallene A-C
Neoisoprelaurefucin

Neolaurallene
Nidificene
Notoryne

Octadecanedioic acid
Obtusane

Okamurene A-E
Omaezallene

Oxachamigrene
Palisadin A-C

Pannosane
Pannosanol
Perforatone
Perforenol

Prepacifenol
Prelaureatin
Rhodophytin

Scopariol
Seco-Laurokamurone

Spirolaurenone
Trans-Deacetylkumausyne

Trans-Kumausyne

3.1.2. Validation of RdRp Catalytic Domain Docking Protocol

After being re-docked, the original inhibitor remdesivir triphosphate gave a binding
affinity score of −7.1 kcal/mol, and the RMSD value for the superimposed crystal structures
was calculated to be 1.51 Å. The computed RMSD value was below the threshold of 2.0 Å,
indicating that the docking operation was conducted with good precision (see Figure 2).
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3.1.3. Docking Catalytic Domain (RdRp): C-Terminal

After addressing active site 2 (N-terminal), we proceeded to move on to the active
site 1 (C-terminal) to determine the applicability of already filtered compounds in step 1.
This dual-step docking assisted in narrowing down the pool of candidates in a systematic
but progressive fashion. In addition, the likelihood of discovering potent inhibitors that
might bind and favorably interact with both AS1 and AS2 increased. The AS1 consists
of two catalytic motifs. The first motif includes amino acid residues from 611–626. Out
of which, the ASP: 618 is of paramount importance, as it is the most conserved residue.
On the other hand, the second motif consists of residues ranging from 753–767. The three
catalytic residues such as SER: 759, ASP: 760, and ASP: 761 are considered crucial for RdRp
activity [198,199]. The highest docking score of −8.2 kcal/mol was seen for bromophycoic
acid B and callicladol, whereas bromophycolide L obtained the lowest value, −7.0 kcal/mol.
All results for the C-terminal docking are presented in Table S7, ESI of the supplemental
information.

3.1.4. Docking nsp15

The docking process produced the output listed (in Table 2) for the endoribonuclease
enzyme (nsp15) of SARS-CoV-2.

Seven NPs were found to have the lowest docking scores to the endoribonuclease pro-
tein. Halomon exhibited the lowest result, which was −4.2 kcal/mol. Bosseopentanoic and
octadecanedioic acids had the strongest binding score in this category, at −4.9 kcal/mol (re-
fer to Table S8, ESI). The second low-class subcategory had 110 NPs, 15 of which displayed
the maximum docking values in this group. Nevertheless, at −5.0 kcal/mol, floridoside
and laurefurenyne A had the lowest ability for binding (refer to Table S9, ESI). There were
around 111 NPs in the first subcategory of the moderate class, and 41 of them displayed
the lowest docking scores in the group. Nevertheless, the highest binding scores were
demonstrated by five NPs, including allolaurinterol, aplysiodiol, callophycoic acid G,
isolaurenisol, and mammeisin, with a −6.9 kcal/mol value (refer to Table S10, ESI). Ad-
ditionally, 42 NPs made up the upper-moderate category. The absolute minimum affinity
score for this group, −7.0 kcal/mol, was displayed by 11 NPs. The maximum binding
value was displayed by two NPs, 15, 16-dehydrovenustatriol, and bromophycoic acid E,
with a value of −7.9 kcal/mol (refer to Table S11, ESI). Lastly, the final category included
the remaining 30 NPs (see Table 2). With −8.7 and −8.6 kcal/mol, respectively, bromo-
phycolide T and 5 alpha-cholestane-3, 6-dione showed the maximum binding potential
in this group. Ten NPs, however, showed docking scores of −8.0 kcal/mol only (refer to
Table S12, ESI).

Table 2. Docking output for nsp15 enzyme.

Categorization of Ligands—nsp15

Low Moderate High

−4.0 to −4.9 kcal/mol −5 to −5.9 kcal/mol −6 to −6.9 kcal/mol −7 to −7.9 kcal/mol −8.0 kcal/mol and Above

9-Octadecanoic acid 1-Methyl-2,3,5-tribromoindole (−)-3-(E)-Bromomethylidene-10-beta-bromo-beta-chamigrene 2-Hydroxyluzofuranone A 5-alpha-Cholestane-3,6-dione
14-Methylpentadecanoic acid 2-Bromospironippol (+)-3-(Z)-Bromomethylidene-10-beta-bromo-beta-chamigrene 3-alpha-Hydroperoxy-3-epiaplysin 6-hydroxycholest-4-en-3-one

Bosseopentanoic acid 3,4-epoxypalisadin B (5S)-5-Acetoxy-beta-bisabolene 5-alpha-Hydroxyaplysistatin 15-Dehydroxythyrsenol A
Halomon 3-alpha-Hydroxydebromoaplysin (6R,9R,10S)-10-Bromo-9-hydroxychamigra-2,7(14)-diene 10-epi-Dehydrothyrsiferol 16Hydroxydehydrothyrsiferol

Hordenine 4-Hydroxy-1,8-epi-isotenerone (10R)-10-Bromo-alpha-chamigrene 11,14-Dihydroaplysia-5,11,14,15-tetrol Brassicasterol
Octadecanedioic acid 5-Acetoxyoxachamigrene 1,2-Dehydro-3,4-epoxypalisadin B 13-Hydroxyprethyrsenol A beta-sitosterol

Tiomanene 5-Acetoxypalisadin B 2-Hydroxyluzofuranone B 15,16-Dehydrovenustatriol Bromophycoic acid B
6,8-Cycloeudesmane 3,7-dihydroxydihydrolaurene Aplysistatin Bromophycoic acid C

7-Acetyl-aplysiol 3-beta-Hydroperoxyaplysin Beta cryptoxanthin Bromophycolide G
9-Deoxyelatol 3-Bromo-4,5-dihydroxybenzaldehyde Bromophycoic acid A, D, E Bromophycolide K

10-Bromo-beta-chamigrene 3-epi-PerforenoneA Bromophycolide A–F, H, I, J, M, N, R Bromophycolide L
Aristolan-8-en-1-one 3R,4S-Luzonolone Barekoxide Bromophycolide O
Aristolan-10-ol-9-one 3S, 4R-Luzonolone Bromophycolide S Bromophycolide P

Aristolane (3Z)-Laurenyne Callophycoic acid A, C, D–F, H, I Bromophycolide Q
Almadioxide 3-Bromobarekoxide Cholest-5-en-3-alpha-ol Bromophycolide T

Aromadendrene 4-Hydroxypalisidin C Dehydrovenustatriol Bromophycolide U
Aplysiol-7-one 5-epi-Maneolactone Isodehydrothyrsiferol Callicladol
Aplysiolic acid 7-Hydroxylaurene Lactodehydrothyrsiferol Callophycoic acid B
beta-Synderol 8,10-Dibromoisoaplysin Neurymenolide B Campesterol

Brasilenol 9-Hydroxy-3-epi-perforenone A Predehydrovenustatriolacetate Cholest-4-en-3,6-dione
(−)-BisezakyneA 10-Acetoxyangasiol Prethyrsenol A Cholest-4-en-3-one

Callenzanol 10-Bromosoaplyin Pseudodehydrothyrsiferol Cholest-5-en-3-beta-ol
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Table 2. Cont.

Categorization of Ligands—nsp15

Low Moderate High

−4.0 to −4.9 kcal/mol −5 to −5.9 kcal/mol −6 to −6.9 kcal/mol −7 to −7.9 kcal/mol −8.0 kcal/mol and Above

Chamigrene epoxide 10-Hydroxyaplysin Saringosterol Dehydrothyrsiferol
Chinzallene 10-hydroxyisolaurene Laurebiphenyl

Compositacin A, D-H, L, M, N 12-hydroxy Isolaurene Lithothamin A
Cycloelatanene A, B 12-Hydroxypalisadin B Neurymenolide A

Cycloeudesmol 15-hydroxypalisadin A Stigmasterol
Cyclolaurenol 15-Hydroxylaurene Thyrsenol A

Dactylyne 15-Oxolaurene Thyrsenol B
Debromoepiaplysinol Acetylmajapolene A Thyrsiferol

Dendroidiol Acetylmajapolene B
Dendroidone Aldingenin A-D

Deoxyprepacifenol Allolaurinterol
Deschloroelatol Allolaurinterolacetate

Elatol Aplysinol
Epibrasilenol Axinysone B

Elatenyne Aplysiodiol
Floridoside Bromocyclococanol

Guimarediol Bromlaurenidificin
Heterocladol Bromocuparene

Isolaurenidificin Callophycoic acid G, J
Isoafricanol Callophycol A, B
Isoaplysin Chamigrene Lactone

Isodactyloxene A Compositacin B, C, I, J, K
Isoobtusol Cycloisoallolaurinterol
Isopalisol Chlorofucin
Isorigidol Cupalaurenol

Intricenyne Caespitane
Isolaurallene Caespitol

Itomanindole A Caesspitenone
Kumausallene Debromoisocalenzanol

Laurecomin B, C Debromolaurinterol
Laurenokomarin Debromolaurinterolacetate

Luzondiol Debromoaplysin
Luzonensin Epiaplysinol
Luzonensol Filiformin

Luzonensolacetate Filiforminol
Laurallene Isoallolaurinterol

Laureacetal B, C Isodebromolaurinterol
Laurefurenyne A, B, D, E, F Isolaurenisol

Laurencenyne Isocaespitol
Laurencial Isodihydrolaurene

Laurendecumallene A, B Isolaureatin
Laurendecumenyne B Isolaurene

Laurenenyne Japonenyne A
Laurenisol Johnstonol

Laureoxanyne Laurecomin A, D
Laurepinnacin Laurencomposidiene
Ma’iliohydrin Laurene

Mailione Laurentristich-4-ol
Microcladallene A-C Laureperoxide
Neoisoprelaurefucin Laurepoxyene

Neolaurallene Laurinterolacetate
Nidificene Laurokamurene A-D
Obtusane Luzofuran

Okamurene C, E Luzonenone
Omaezallene Laurinterol

Pacifenol Laureacetal A
Palisadin B, C, D Laurefurenyne C

Pannosane Laurendecumenyne A
Perforatone Laurenone A
Perforenol Majapolene A, B

Prelaureatin Mammeisin
Rhodophytin Neoirietetraol

Scopariol Notoryne
trans-Deacetylkumausyne Okamurene A, B, D

trans-Kumausyne Oxachamigrene
trans-Laurencenyne Oryzalexin S

Palisadin A
Pannosanol

Perforenone A
Prepacifenol

Seco-Laurokamurone
Spirolaurenone

3.2. Selection of Best Interaction Complexes—RdRp and nsp15

High binding affinities must not be the only factor used to determine a ligand’s
ability to inhibit druggable targets. Understanding the interactions between the residues is
crucial to determine the potential success of the ligands in inhibiting the activity of RdRp
and nsp15.

3.2.1. Selection Criteria

1. It must interact with the majority of catalytic amino acids;
2. It must form many hydrogen bonds with catalytic amino acids (RMSD ≤ 3.00);
3. For electrostatic connections, the pre-specified threshold RMSD cutoff distance (Å ≤ 5.00)

must not be exceeded.
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3.2.2. Rejection Criteria

1. No interactions with key amino acids;
2. No hydrogen bonds are connected to important residues or exceeded RMSD ≥ 3.00;
3. Mostly Van der Waals forces are involved in the interactions;
4. For electrostatic bonding, the maximum pre-defined RMSD cutoff distance (Å ≤ 5.00)

was surpassed.

3.3. Best Interaction Complexes—RdRp and nsp15

Following the aforementioned selection terms and conditions, only 10 docked com-
plexes met our criteria for ideal residue interactions for RdRp and nsp15 out of a total of
618 protein–ligand complexes. Figure 3 showcases the selected ideal docked complexes.
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In the case of RdRp (β-hairpin motif), three NPs showed desirable interaction with
most crucial amino acids. First, the bromophycolide R interacted strongly with seven key
residues out of ten (see Figure 4 and Table 3). It interacted with SER: 709 (2.40 Å) and ASN:
781 (2.47 Å) by forming hydrogen bonds. Pi–Pi T-shaped bonds were formed with TYR:
129 (4.26 Å) and HIS: 133 (4.76 Å). Alkyl and pi–alkyl bonds were seen for TYR: 32 (4.20 Å)
and LYS: 47 (3.95 Å). Van der Waals interaction was observed for ASN: 138 residue. Second,
the bromophycolide S also interacted with seven residues of interest out of ten. Hydrogen
bonds were formed with SER: 709 (2.00 Å) and ASN: 781 (2.66 Å). Pi–Pi T-shaped bond was
formed only with TYR: 129 (4.33 Å). Furthermore, alkyl and pi–alkyl bonds were formed
with two residues, TYR: 32 (4.20 Å) and LYS: 47 (3.95 Å). Lastly, HIS: 133 and ASN: 138
interacted via VdW forces. Ultimately, the third, bromophycoic acid C, showed interactions
with six desired residues out of ten. Two residues, TYR: 129 formed a hydrogen bond
(2.39 Å) and a Pi–Pi T-shaped connection (4.14 Å). However, SER: 709 (2.56 Å) formed
hydrogen bonds. Pi–cation and pi–alkyl bonds were observed to be forming connections
with LYS: 47 (Å = 4.33, 4.25 respectively). Lastly, with TYR: 32 residue, it formed two alkyl
bonds (4.72, and 4.79 Å).
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Table 3. Amino acid interaction profile of filtered nine NPs.

Favourable Residue Interactions

Filtered Ligands Involved Amino Acids

RdRp (N-Terminal β-Hairpin Motif)

Bromophycolide R TYR32 LYS47 TYR129 HIS133 ASN138 ALA706 SER709 THR710 ASP711 GLY774 LYS780 ASN781

Bromophycolide S TYR32 LYS47 TYR129 HIS133 ASN138 ALA706 SER709 THR710 ASP711 GLY774 SER778 LYS780 ASN781

Bromophycoic acid C TYR32 LYS47 TYR129 ALA130 HIS133 ASN138 CYS139 SER709 THR710 ASP711 LYS714 ILE715 GLN773 GLY774 LYS780

RdRp (C-terminal catalytic core)

Bromophycolide E ARG553 ARG555 ASP618 TYR619 PRO620 CYS622 ASP623 THR680 SER682 THR687 ALA688 ASN691 LEU758 SER759
ASP760 ASP761 CYS813

Bromophycolide H ARG553 ARG555 ASP618 LYS621 CYS622 ASP623 LEU758 SER759 ASP760 ASP761 CYS813

Bromophycolide P ARG553 ARG555 ASP618 TYR619 PRO620 LYS621 CYS622 ASP623 ASP760 ASP761 SER814

Thyrsenol A ARG555 ASP618 TYR619 PRO620 LYS621 CYS622 ASP623 THR687 ALA688 ASN691 LEU758 SER759 ASP760 ASP761
CYS813

nsp15 enzyme

Bromophycoic acid B HIS235 GLY247 GLY248 HIS250 LYS290 VAL292 CYS293 SER294 TRP333 GLU340 THR341 TYR343 PRO344 LYS345
LEU346

Bromophycoic acid C HIS235 GLY247 GLY248 HIS250 LYS290 VAL292 CYS293 SER294 TRP333 GLU340 THR341 TYR343 PRO344 LYS345
LEU346

Floridoside HIS235 GLN245 LEU246 GLY247 GLY248 HIS250 LYS290 VAL292 CYS293 SER294 THR341 PHE342 TYR343

In Figure 5, the bromophycolide E in complex with the catalytic domain of RdRp
interacted with ASP: 761 and 760 by forming a single hydrogen bond (2.42 Å) and an
electrostatic connection (3.50 Å). In addition, ASP: 618 and SER: 759 interacted via Van der
Waals forces. Furthermore, bromophycolide H formed a hydrogen bond with ASP: 761
(2.89 Å). Hydrophobic interactions were evident for the residues ASP: 618, 760, and SER:
759. Bromophycolide P interacted with ASP: 761 and 618 using hydrophobic interactions,
whereas ASP: 760 interacted electrostatically, forming a pi–anion bond (3.26 Å). However,
no interactions with amino acid SER: 759 occurred. Ultimately, thyrsenol A formed a
couple of hydrogen bonds (2.12 Å, 2.69 Å) with ASP: 618 and SER: 759, respectively. A
carbon–hydrogen link (3.55 Å) was observed with the residue ASP: 618, whereas ASP: 761
interacted via Van der Waals forces only.
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bond (4.46 Å). Second, the bromophycoic acid C formed hydrogen bonds with LYS: 290 
(1.84 Å) and SER: 294 (2.42 Å). HIS: 235 was found to be linked by three pi–alkyl bonds 
(4.09, 4.33, and 4.40 Å), whereas HIS: 250 was connected by a C-H bond (3.42 Å) and a pi–
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namely, LYS: 290 (2.26 and 2.58 Å), SER: 294 (1.94 Å), and HIS: 235 (2.31 Å). Van der Waals 
interactions were observed in the case of HIS: 250 residue. 
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In Figure 6, for the nsp15 enzyme, three NPs showed the most favorable interactions
by associating with four key amino acids out of eight (see Figure 3 and Table 5). First, the
bromophycoic acid B formed hydrogen bonds with LYS: 290 (1.95 Å) and SER: 294 (2.35 Å).
With HIS: 235, it formed one hydrogen (2.95 Å) and three pi–alkyl bonds (4.07, 4.47, and
5.00 Å). Moreover, HIS: 250 was connected with C-H bond (3.40 Å) and a pi–alkyl bond
(4.46 Å). Second, the bromophycoic acid C formed hydrogen bonds with LYS: 290 (1.84 Å)
and SER: 294 (2.42 Å). HIS: 235 was found to be linked by three pi–alkyl bonds (4.09, 4.33,
and 4.40 Å), whereas HIS: 250 was connected by a C-H bond (3.42 Å) and a pi–alkyl bond
(4.49 Å). Lastly, floridoside formed four hydrogen bonds with three residues, namely, LYS:
290 (2.26 and 2.58 Å), SER: 294 (1.94 Å), and HIS: 235 (2.31 Å). Van der Waals interactions
were observed in the case of HIS: 250 residue.
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Figure 6. The 2D interaction maps for nsp15 protein: (A) nsp15 endoribonuclease–bromophycoic acid
B complex; (B) nsp15 endoribonuclease–bromophycoic acid C complex; (C) nsp15 endoribonuclease–
floridoside complex.

3.4. MD Simulations

The CABS-flex 2.0 tool displays good fit with NMR spectroscopic data on protein
flexibility and is very efficient for fast simulations of protein residue flexibility.

MD Simulations for Selected RdRp and nsp15 Complexes

The aforementioned complexes were subjected to molecular dynamics simulations
on the free to access CABS-flex 2.0 webserver. Multiple in silico studies concerning
SARS-CoV-2 used this webserver for MD simulations, indicating its reliability [200–203].

In the case of bromophycolide R in complex with the N-terminal domain, RMSF score
of 0.388 Å was obtained for the residue number ASN: 781, whereas the highest fluctuation
was seen for ASN: 138 (1.606 Å). Similarly, for the complex of RdRp–bromophycolide S,
the highest fluctuation (1.027 Å) was seen again for the amino acid ASN: 138. On the
other hand, the lowest fluctuation was for HIS: 133 (0.159 Å). Likewise, the complex with
bromophycoic acid C, TYR: 129 residue showed minimum fluctuation (0.169 Å). However,
ASN: 138 fluctuated the highest (1.562 Å) of all residues (see Figure 7 and Table S13).

The C-terminal docking with bromophycolide E revealed that amino acid ASP: 761
had the lowest RMSF score of 0.139 Å, whereas the highest RMSF score of 0.7600 was seen
for the ASP: 618 residue. In the case of bromophycolide H, it was observed that SER: 759
fluctuated the most (0.901 Å) and ASP: 761 residue fluctuated the least (0.540 Å). Finally,
for both bromophycolide P and thyrsenol A, the least fluctuating amino acid was ASP: 761
(0.345 Å, 0.257 Å, respectively). On the other hand, the highest RMSF score of 0.594 Å and
0.498 Å for fluctuation was evident for SER: 759 residue (refer to Figure 8 and Table S14).
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For the endoribonuclease enzyme (nsp15), the complexes formed with floridoside and
bromophycoic acid B and C showed the highest fluctuating residue number HIS: 242. For
bromophycoic acid C, the amino acid HIS: 242 fluctuated the most (2.726 Å), almost reaching
the maximum limit of 3.0 Å. The lowest fluctuation was observed for the residue SER: 294
for the complexes of bromophycoic acid B (0.172 Å) and floridoside (0.134 Å). However,
HIS: 249 was the lowest fluctuating residue (0.388 Å) for the nsp15–bromophycoic acid C.
All complexes were concluded to be stable, as the threshold of 3.0 Å was not surpassed (see
Figure 9 and Table S15). All RMSF values were well below the threshold of 3.0 Å. Thus, all
10 complexes were considered to form stable conformations.
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3.5. Toxicity Evaluation

Using the ProTox-II and StopTox webservers, the toxic characteristics of finalized
natural compounds were studied.

3.5.1. ProTox-II Report

The ProTox-II algorithm divides ligands into six toxicity classes based on LD50 scores,
which are estimates of the median lethal dosage, i.e., at which 50% of the test subjects pass
away after oral exposure. In addition, the ability to cause genetic abnormalities as well as
the danger of liver damage and cancer-causing potential were examined.

As members of class 2 (5 < LD50 < 50), thyrsenol A, bromophycoic acids B and C
have the potential to be lethal upon oral consumption. The class 4 members included
bromophycolide E, H, P, R and S (300 < LD50 < 2000). They are not hazardous, but oral
consumption might be harmful. Ultimately, floridoside received the class 6 distinction
(LD50 > 5000), which indicates a likelihood of non-toxicity. It was determined that none
of the nine NPs were mutagenic, carcinogenic, or hepatotoxic. Bromophycolides and
thyrsenol A, however, may cause immune toxicity (see Table 4).

Table 4. ProTox-II results for shortlisted NPs.

ProTox-II Toxicity

Top Ligands
Toxicity Values Probability

LD50 (mg/kg) Toxicity Class Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity

Bromophycoic acid B 12 2 Inactive Inactive Inactive Inactive
Bromophycoic acid C 12 2 Inactive Inactive Inactive Inactive

Bromophycolide E 1000 4 Inactive Inactive Active Inactive
Bromophycolide H 1000 4 Inactive Inactive Active Inactive
Bromophycolide P 1000 4 Inactive Inactive Active Inactive
Bromophycolide R 1000 4 Inactive Inactive Active Inactive
Bromophycolide S 1000 4 Inactive Inactive Active Inactive

Floridoside 23,000 6 Inactive Inactive Inactive Inactive
Thyrsenol A 7 2 Inactive Inactive Active Inactive

3.5.2. StopTox Report

The StopTox server provided us with estimations of the likelihood that the selected
NPs would cause acute toxicity.

Bromophycoic acids, bromophycolide E, H, P and floridoside have been indicated to
be non-toxic when inhaled. Nevertheless, bromophycolide R and S could be harmful if
inhaled. Bromophycoic acids, bromophycolide E and thyrsenol A were capable of showing
the likelihood of oral harm. All nine NPs are unlikely to cause dermal toxicity, eye or skin
irritation, or corrosion. Ultimately, the five bromophycolides may cause skin sensitivity
(see Table 5).
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Table 5. StopTox results for shortlisted NPs.

StopTox Acute Toxicity

Top Ligands
Endpoints

Inhalation Oral Dermal Irritation and Corrosion Skin Sensitization

Bromophycoic acid B Non-Toxic Toxic Non-Toxic Eyes (-) Skin (-) Non-sensitizer
Bromophycoic acid C Non-Toxic Toxic Non-Toxic Eyes (-) Skin (-) Non-sensitizer

Bromophycolide E Non-Toxic Toxic Non-Toxic Eyes (-) Skin (-) Sensitizer
Bromophycolide H Non-Toxic Non-Toxic Non-Toxic Eyes (-) Skin (-) Sensitizer
Bromophycolide P Non-Toxic Non-Toxic Non-Toxic Eyes (-) Skin (-) Sensitizer
Bromophycolide R Toxic Non-Toxic Non-Toxic Eyes (-) Skin (-) Sensitizer
Bromophycolide S Toxic Non-Toxic Non-Toxic Eyes (-) Skin (-) Sensitizer

Floridoside Non-Toxic Non-Toxic Non-Toxic Eyes (-) Skin (-) Non-sensitizer
Thyrsenol A Non-toxic Toxic Non-toxic Eyes (-) Skin (-) Non-sensitizer

3.6. Pharmacokinetic Studies
3.6.1. Lipinski Framework (Ro5)

The Lipinski rule of five, commonly referred to as Pfizer’s rule, demonstrated the
candidate NPs’ drug-like potency (see Table 6). With the exception of floridoside, all NPs
violated the first criterion (MW ≤ 500). The criteria of maximum rotatable bonds (RB ≤ 10)
and hydrogen bond acceptors (HBA ≤ 10) were both followed by all NPs. Only floridoside
deviated from the HBD ≤ 5 limit for maximal hydrogen bond donors. The maximum
Consensus log p-value was exceeded by all five bromophycolides (Log p ≤ 5), whereas
floridoside received a negative score. The total number of NPs did not surpass the TPSA’s
[(Å2) ≤ 140] upper limit.

Table 6. Results for drug-likeness of the NPs.

Drug-Likeness Assessment

Top Ligands Mol. Weight (g/mol)
MW ≤ 500

Rotatable Bonds
RB ≤ 10

H Bond Acceptors
HBA ≤ 10

H Bond Donors
HBD ≤ 5

C Log p
Log p ≤ 5

TPSA
(Å2) ≤ 140

Bromophycoic acid B 521.48 5 5 3 4.78 86.99
Bromophycoic acid C 537.48 6 6 3 4.77 96.22

Bromophycolide E 584.38 1 4 2 5.79 66.76
Bromophycolide H 665.29 0 4 2 6.10 66.76
Bromophycolide P 584.38 0 4 1 5.83 55.76
Bromophycolide R 503.47 1 4 1 5.54 59.06
Bromophycolide S 584.38 1 4 1 5.87 59.06

Floridoside 254.23 5 8 6 −2.53 139.84
Thyrsenol A 619.63 8 8 4 3.51 117.84

3.6.2. Swiss-ADME

Both bromophycoic acids and thyrsenol A were found to be moderately soluble with
the high bioavailability score. All five bromophycolides, on the other hand, were shown
to have low water solubility. The bioavailability levels for them were the lowest. Lastly,
floridoside has a 0.55 bioavailability value, making it potentially soluble. Just three NPs
had a high likelihood of GI absorption; the likelihood was modest for the other five. The
bromophycolide P had the greatest AB%, followed by the two bromophycoic acids R and S,
with floridoside having the lowest (see Table 7).
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Table 7. Results for Swiss-ADME analysis.

Swiss-ADME Output

Top Ligands Water Solubility Bioavailability GI Absorption Absorption (%) BBB Permeant

Bromophycoic acid B Moderate 0.56 High 78.98 No
Bromophycoic acid C Moderate 0.56 Low 75.80 No

Bromophycolide E Poor 0.17 Low 85.96 No
Bromophycolide H Poor 0.17 Low 85.96 No
Bromophycolide P Poor 0.17 Low 89.76 No
Bromophycolide R Poor 0.17 High 88.62 No
Bromophycolide S Poor 0.17 Low 88.62 No

Floridoside Soluble 0.55 Low 60.75 No
Thyrsenol A Moderate 0.55 High 68.34 No

The GI tract was predicted not to be able to passively absorb six NPs, namely, bromo-
phycoic acid C, bromophycolide E, H, P, and S. On the other hand, the GI tract may passively
absorb bromophycoic acid B, bromophycolide R, and thyrsenol A. The blood–brain barrier
was impermeable to all of the NPs of interest (see Figure 10).
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3.6.3. Bioactivity Evaluation

One of the most important steps in the pre-clinical drug-screening process is the
assessment of bioactivity. The following NPs’ probable bioactivity was predicted by the
PASS online program.

According to predictions, all NPs are potential antifungals that might aid in treat-
ing fungal infections linked to COVID-19. Antifungal qualities such as 1, 3-Beta-glucan
synthase, beta glucuronidase, histidine kinase, rhizopuspepsin, and GRP78 expression
inhibitors were linked to potential inhibition of COVID-19-associated mucormycosis
(CAM) [204]. As possible histidine kinase inhibitors, bromophycoic acid B, bromophy-
colide E, H, P, R, and, S may block the important functional residues of Nsp15 protein,
such as HIS: 234, 235, 242, 249, and 250. Four NPs, namely, bromophycoic acid C, the
three bromophycolides, floridoside, and thyrsenol A were anticipated to have antiviral
properties, indicating a higher likelihood of inhibiting the viral target—in this case, SARS-
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CoV-2. Depending on the stage of infection, additional relevant bioactivities may help to
mitigate the effects of SARS-CoV-2 by either directly or indirectly influencing the immune
system, including interferon antagonist, interferon gamma antagonist, transcription factor
NF kappa B stimulant or inhibitor, immunostimulant, immunosuppressant, interleukin
agonist and antagonist, cytokine release inhibitor, TNF expression, and JAK2 expression
inhibitor [205,206]. It is interesting to note that floridoside was predicted to be effective in
treating severe acute respiratory syndrome (see Table 8).

Table 8. Potential bioactivity for selected NPs.

PASS Online Program

Top Ligands Potential Bioactivity

Bromophycoic acid B Antifungal, Histidine kinase inhibitor, Beta glucuronidase inhibitor, Antibacterial, Antioxidant, Antineoplastic,
Interferon antagonist, Interferon gamma antagonist, Transcription factor NF kappa B stimulant, Immunostimulant

Bromophycoic acid C Antifungal, Antiviral, Antioxidant, Anticancer, Antineoplastic, Beta glucuronidase inhibitor, Transcription factor NF
kappa B stimulant

Bromophycolide E
Antineoplastic, Antibiotic, Antiviral, Antifungal, Beta glucuronidase inhibitor, Histidine kinase inhibitor, MMP9
expression inhibitor, Immunosuppressant, Respiratory analeptic, Antibacterial, Cytokine release inhibitor, Interleukin 10
antagonist, 1,3-Beta-glucan synthase inhibitor, Interferon gamma antagonist

Bromophycolide H Antineoplastic, MMP9 expression inhibitor, Antifungal, Antibacterial, Antibiotic, Histidine kinase inhibitor, Cytokine
release inhibitor, Interferon gamma antagonist, Interleukin 10 antagonist, 1,3-Beta-glucan synthase inhibitor

Bromophycolide P
Antineoplastic, Respiratory analeptic, Antibacterial, Antibiotic, Antifungal, MMP9 expression inhibitor, Beta
glucuronidase inhibitor, Histidine kinase inhibitor, 1,3-Beta-glucan synthase inhibitor, Immunosuppressant, Interferon
gamma antagonist, Cytokine release inhibitor, Expectorant,

Bromophycolide R

Antiviral, Antineoplastic alkaloid, Anticancer, Antifungal, Antibiotic, Antibacterial, Immunosuppressant, Transcription
factor NF kappa B stimulant, Beta glucuronidase inhibitor, Histidine kinase inhibitor, 1,3-Beta-glucan synthase inhibitor,
Respiratory analeptic, Anti-inflammatory, Cytokine release inhibitor, Interferon gamma antagonist, and an Interleukin
10 antagonist.

Bromophycolide S
Antiviral, Antineoplastic, Antibiotic, Anticancer, Antifungal, Immunosuppressant, Antibacterial, Transcription factor
NF kappa B inhibitor, Histidine kinase inhibitor, Beta glucuronidase inhibitor, 1,3-Beta-glucan synthase inhibitor,
Cytokine release inhibitor and an Interleukin 10 antagonist.

Floridoside

Antiviral, Anti-parasitic, Antifungal, Antifungal enhancer, Antibacterial, Anti-tuberculosic, Anticancer, Anti-infective,
Antioxidant, Free radical scavenger, Anti-diabetic, Antineoplastic, Immunostimulant, Immunomodulator, Macrophage
stimulant, Macrophage colony stimulating factor agonist, Respiratory analeptic, Transcription factor NF kappa B
stimulant, Histamine release stimulant, Beta glucuronidase inhibitor, 1,3-Beta-glucan synthase inhibitor,
Rhizopuspepsin inhibitor, GRP78 expression inhibitor, Mucolytic, Expectorant, Anti-inflammatory, Histamine release
inhibitor, JAK2 expression inhibitor, Severe acute respiratory syndrome treatment, RdRp Inhibitor, Interferon gamma
antagonist, Respiratory distress syndrome treatment, Cytokine release inhibitor, TNF expression inhibitor, Interleukin 2,
10, 12 agonist, Interleukin 1a, 4, 6 antagonist.

Thyrsenol A Antineoplastic, Antifungal, Antiviral, Antiinflammatory, Antibacterial, Antibiotic

4. Conclusions

In conclusion, in this work, we conducted in silico trials on natural compounds from
the Laurencia genus to find potential candidates for the treatment of SARS-CoV-2’s RdRp
and nsp15 enzymatic infections. Our research identified promising Laurencia red algal
anti-SARS-CoV-2 products. The final seven candidates that were shortlisted for RdRp
unmistakably exhibit strong interactions with the relevant residues that are crucial for
the enzyme inhibition. Three of the seven ligands have the potential to inhibit RdRp
when they bind to the N-terminal (AS2), whereas the remaining four ligands are effective
RdRp inhibitors when they attach to the NTP entry channel at the C-terminal (AS1).
Bromophycolide R displayed the best interaction with the β-hairpin motif region of RdRp
(AS2). On the other hand, bromophycolide E and thyrsenol A demonstrated the most
favorable residue interactions in the C-terminal (AS1) of RNA-dependent RNA polymerase.
As a result of the correlation and required synergy (allosteric signaling) between the two
active sites, the RdRp will ultimately be inhibited in both scenarios. The critical residues of
nsp15 were interacted with best by bromophycoic acid B, C, and floridoside. Bromophycoic
acid C had highly favorable amino acid interactions with both RdRp (N-terminal) and nsp15
proteins, making it a likely dual target inhibitor. Given the nature of the identified amino
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acid interactions, we propose additional research into the thyrsenol B, dehydrothyrsiferol,
and thyrsiferol, against RdRp and nsp15 proteins. To increase the therapeutic prospects
of these NPs, laboratory modifications are suggested by assessments of their toxicity and
pharmacokinetics analyses.
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