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Abstract: Micro-electro-mechanical-systems (MEMS) extensively employed planar mechanisms with
elastic curved beams. However, using a curved circular beam as a flexure hinge, in most cases, needs a
more sophisticated kinetostatic model than the conventional planar flexures. An elastic curved beam
generally allows its outer sections to experience full plane mobility with three degrees of freedom,
making complex non-linear models necessary to predict their behavior. This paper describes the
direct kinetostatic analysis of a planar gripper with an elastic curved beam is described and then
solved by calculating the tangent stiffness matrix in closed form. Two simplified models and different
contributions to derive their tangent stiffness matrices are considered. Then, the Newton–Raphson
iterative method solves the non-linear direct kinetostatic problem. The technique, which appears
particularly useful for real-time applications, is finally applied to a case study consisting of a four-bar
linkage gripper with elastic curved beam joints that can be used in real-time grasping operations at
the microscale.

Keywords: micro-grippers; micro-manipulators; flexure; CFSH; compliant mechanism; the tangent
stiffness matrix

1. Introduction

Compliant mechanisms have been adopted in several applications for centuries, be-
cause of several well-known advantages, such as the absence of sliding friction, backlash,
and significant wear, with the advantage of requiring minimum effort assembly. The first
complete and systematic description of their characteristics appeared in the literature about
thirty years ago, around 1994, when Midha and Howell introduced a classification [1] that
has been used until today. Another significant step forward in developing the compliant
mechanisms was taken a couple of years later, when the Pseudo-Rigid-Body equivalent
Model (PRBM) was introduced to evaluate the elasticity of compliant mechanisms with
significant deflection capabilities [2]. More materials concerning the compliant mechanisms
were presented in 2001 [3].

Compliant mechanisms are nowadays used in many fields [4], as, for instance, for
the development of aerospace [5] and biomedical [6,7] devices, compliant bistable mecha-
nisms [8–11], grasping and releasing micro-objects devices [12], precision engineering [13],
MEMS [14–19], polishing and deburring [20–22], lab-on-chip micro and nanosystems [23],
and automotive devices [24,25].

The actual configuration of a compliant mechanism depends not only on the applied
forces and torques but also on its geometric characteristics, with kinematic and mechanical
coupling and non-linearity problems that especially arise in case of large deformations.

A comprehensive survey on many recent techniques for modeling the kinetostatic and
dynamic behavior of flexure-based compliant mechanisms has been recently presented [26].

Kinetostatic models of complex plane compliant mechanisms have been developed
in both micro and macro scale devices by using a wide variety of different linear and
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non-linear methods, such as, for only representative example, those based on: Loop-closure
equations and the static equilibrium conditions for multi-loops compliant mechanisms [27];
chained beam constraint model and geometric parameter optimization, specially conceived
for translational motion [28]; a combination of a beam constraint model, load equilibrium
conditions, and geometric compatibility equations, specially conceived for 3-PPR compliant
parallel mechanisms [29]; a kinetostatic modeling approach that integrates the screw theory
with the energy method, with consequent avoidance of the problem of finding a solution
to the equilibrium equations of nodal forces and the possibility of taking into account the
parasitic deformations in space [30]; an extension of the chained beam constraint model
specially revisited to analyze flexible beams of effective variable length [31]; a mathematical
formulation of the compliance matrix method, combined with the inverse kinematic,
specially introduced for modeling the flexure-based parallel compliant mechanisms with
multiple actuation forces [32]; the adoption of three representations of multiple segments 2D
beam models, namely, beam constraint model, linear Euler–Bernoulli beam, and PRBM [33];
the adoption of a new two-colored digraph representation of planar flexure-based compliant
mechanisms for the automatic generation of the kinetostatic equations [34]; the introduction
of virtual flexure hinges, link-flexure incidence matrices, and path matrices to generate
automatically the formulation of the kinetostatic equations [35].

A more specific contribution has been dedicated in 2013 [36] to the solution of the
problem of inverse kinetostatic analysis of a compliant four-bar linkage with flexible circular
joints and pseudo-rigid bodies. This problem was attacked by extensively applying the
theory of curved beams to the flexible parts, which gave rise to the closed-form symbolic
expression of the compliance matrix, and by applying the static balance equations to both
the elastic and pseudo-rigid parts.

The present investigation explores the opposite problem of direct kinetostatic anal-
ysis of a planar gripper with circular flexures. Two possible models based on the static
balance of flexures are provided. The first linear model considers the static equilibrium in
the undeformed configuration, while the second considers the balance in the deformed
configuration. Both models simplify the fully non-linear model by exploiting a constant
stiffness matrix of the undeformed curved beam element. These models allow us to find
the tangent stiffness matrix in closed form as the sum of different contributions. Further-
more, dividing the tangent stiffness matrix into its contributions allows for evaluating each
term’s importance and setting strategies to speed up convergence. Furthermore, through
a validation process of the fully non-linear model results performed on a case study, it
will be possible to ascertain how the simplifications still provide accurate values in almost
the entire mechanism’s range of motion. As known, the tangent stiffness matrix is the
heart of an iterative solving method. It is the basis of many implicit integrators widely
used for the study of flexible mechanisms, such as the generalized α-method [37] or the
HHT-method [38].

The main target of this article is to create two simplified models:

• Solving the problem of the direct kinetostatic analysis of planar grippers with curved
beams;

• Being reliable in terms of motion accuracy and actuation forces;
• Being computationally efficient to extend the formulation for real-time applications.

Any Finite Element Analysis (FEA) or Multibody Dynamics Simulation (MBDS) pack-
age is very reliable for solving any general problem in kinetostatic analysis numerically.
Despite this, the availability of a ready-to-use independent algorithm to solve the direct kine-
tostatic problem gives rise to the possibility of implementing it in any real-time applications.
Nevertheless, the MBDS Adams software has been used herein for validation purposes.

The paper is divided into the following sections. Section 2 gives the fundamentals
of the curved beam model. Section 3 outlines the kinetostatic analysis. Two simplified
linear and partial non-linear models are developed, and their tangent stiffness matrices are
obtained in closed form. Section 4 includes a detailed case study description. Section 5
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compares and validates the two models and gives essential insights into convergence and
computational burden. Finally, Section 6 gives the concluding remarks.

2. The Adopted Curved Beam Model

Flexures employed in this context are curved beams. It has been demonstrated that
curved beams can provide large rotations while maintaining small errors in terms of
displacements of its center [39], as it is typical for classic revolute pairs. This feature is
important to guarantee finite rotations of the end-effector in monolithic structures such as
MEMS-based grippers. Furthermore, a linear model is capable of faithfully reproducing the
displacements and in-plane rotation of the curved beam tip up to rotations of approximately
±20◦. This feature has the considerable advantage of using a constant stiffness matrix, as
will be recalled below.

In the following, the curved beam compliance matrix, and its inverse stiffness matrix,
will be recalled from [36]. Let us consider a curved beam with a circular profile of radius r f
and beam characteristic angle θ f , as displayed in Figure 1. First, let us consider the general-

ized displacement array ψ f = [ξ̂
T
f , φ f ]

T containing the displacement ξ̂ f and the rotation
angle φ f of the end section due to the deformation. Then, introducing the generalized
wrench array w f = [FT

f , M f ]
T containing the force vector and the torque applied to the end

section, the compliance matrix C f , derived in [36], follows from

ψ f = C f w f (1)

and depends only on the geometric and structural parameters of the curved beam, i.e.,

C f =
1

EI


r3

f
4 (6θ f + s(2θ f )− 8s(θ f ))

r3
f

2 (c
2(θ f )− 2c(θ f ) + 1) r2

f (θ f − s(θ f )

. . .
r3

f
4 (2θ f − s(2θ f )) r2

f (1− c(θ f ))

(sym) . . . r f θ f

 (2)

where E is Young’s modulus and I is the area moment of inertia, assumed both constant
for the circular profile. In the following sections, the inverse of the compliance matrix
C f , i.e., the stiffness matrix K f will be employed to write the kinetostatic equations of
planar mechanisms with curved beams. Furthermore, the stiffness matrix will be expressed
in its locale frame Ŝ f attached to the end-section of the curved beam in the undeformed
configuration, as shown in Figure 1.

Figure 1. Curved beam in its initial (dashed line) and deformed configuration (solid line).
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3. Kinetostatic Analysis

Hereafter, all vectors denoted with the hat will refer to the undeformed configuration,
while the same vectors will indicate the deformed configuration without the hat. Position
vectors of local frames as well as rotation matrices of frames describing the orientation of
bodies in the undeformed configuration are constant.

A curved beam links two components, as it happens for the two bodies displayed in
Figure 2. First, consider the undeformed system composed of two rigid bodies, identified
by the reference frames Ŝi and Ŝj, and by the flexure f̂ . The vectors r̂i and r̂j denote the
positions of the body reference frame origins with respect to the fixed reference frame Σ. In
contrast, the vectors ŝi f and ŝj f , respectively, indicate the distance vectors going from the
body-reference frame origins to the attachment points of the curved beam to the bodies.

Figure 2. Deformation of a curved beam due to the relative motions of the bodies connected to
its extremities.

In the undeformed configuration, the position vector p̂ f going from the attachment
point on body i to that on body j is obtained through the following expression

p̂ f = r̂j + ŝj f − r̂i − ŝi f (3)

Then, consider a generic configuration in which the bodies undergo finite displace-
ments and rotations, and the flexure is deformed. For the assumption of rigid bodies, it

follows that ŝ(Ŝi)
i f ≡ s(Si)

i f ≡ s̄i f and ŝ
(Ŝj)

j f ≡ s
(Sj)

j f ≡ s̄j f where the superscript denotes the
reference frame in which the vector is expressed. In the previous expressions, s̄i f and s̄j f
have been introduced to simplify the notation. Then, the following closure equation stands,

ri + Ai s̄i f + p f − rj −Aj s̄j f = 0 (4)

where Ai and Aj are the rotation matrices mapping Si and Sj into Σ and p f is the distance
vector between the two flexure extremities in the deformed configuration.
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Let us introduce the deformation vector x′f containing the deformations of the flexure
due to the displaced configuration described in Section 2. As known from the continuum
mechanics, this vector can be represented using either the material or the spatial description
of motion. In the following, only the material description is implemented. Therefore,
expressing x′f in the frame Ŝi f of Figure 2, it follows

x′f = ÂiAT
i p f − p̂ f (5)

where p f has been pulled back to the undeformed configuration as required in the material
description of motion.

Then, as recalled in Section 2, the circular flexure model requires x′f to be expressed in

the frame Ŝ f j instead of Ŝi f , therefore

x
′(Ŝ f j)

f = ÂT
f jÂ

T
j x′f (6)

where Â f j is the constant rotation matrix mapping Ŝ f j into Ŝj. The rotation angle φ f due to
the flexure deformation reads

φ f = θj − θi − θ̂j + θ̂i ≡ ∆θij − ∆θ̂ij (7)

where θ and θ̂, respectively, are the rotation angles of the bodies in the spatial and material
configurations and ∆θ, ∆θ̂ denote the corresponding relative rotation angles. The general-
ized displacement array of the curved beam f , already introduced in Section 2, becomes

ψ
(Ŝ f j)

f =

[
x
′(Ŝ f j)

f
φ f

]
(8)

3.1. Jacobian of the Deformation Vector

Since the direct kinetostatic analysis will be solved using an iterative procedure, the
variation of the generalized displacement array must be calculated. Using Equation (5), the
variation δx′f is

δx′f = ÂiĀT
i p f δθi + ÂiAT

i (δrj − δri + Āj s̄j f δθj − Āi s̄i f δθi) (9)

where Ā = ∂A/∂θ while δr, δθ are the variations of the body coordinates in the deformed
configuration. The variation δx′f is evaluated in the reference frame Σ but can be easily

expressed in Ŝ f j remembering that Â f j and Âj in Equation (6) are constant, i.e.,

δx
′(Ŝ f j)

f = ÂT
f jÂ

T
j δx′f (10)

Considering the angles, the variation of Equation (7), leads to

δφ f = δθj − δθi ≡ δ∆θij (11)

Finally, the variations can be combined to form the variation of the generalized defor-
mation vector δψ f . The latter satisfies the following expression

δψ f = J̆ f δqij (12)

where δqij = [δqT
i δqT

j ]
T is a 6-dimensional vector containing the variations of the body

coordinates of bodies i and j and J̆ f is the (3× 6) Jacobian matrix, defined as



Micromachines 2022, 13, 2172 6 of 26

J̆ f =
[

J̆i
f J̆j

f

]
=

[
−ÂiAT

i Âi(ĀT
i p f − 1̃s̄i f ) ÂiAT

i ÂiAT
i Āj s̄j f

0T −1 0T 1

]
(13)

In deriving J̆ f , the property AT
i Āi = 1̃ has been employed, being

1̃ =

[
0 −1
1 0

]
(14)

a particular skew-symmetric matrix used to define the cross-product in the planar case.

3.2. Kinetostatic Equations

The kinetostatic equations of the system require the static equilibrium of a curved beam.
Consider the layout of Figure 3 showing the static balance of a curved beam connecting the
bodies i and j. The deformation of the beam yields force and moment applied on the section
Ŝ f j that must be equilibrated at section Ŝi f . A first simplified model, hereafter referred to
as the linear model, performs the balance in the undeformed configuration and leads to the
following expressions[

F
(Ŝi f )

i f
Mi f

]
= −

[
A f 0

−(AT
f d

(Ŝi f )

f )T 1̃ 1

]
︸ ︷︷ ︸

T f

[
F
(Ŝ f j)

f j
M f j

]
(15)

where A f is the rotation matrix mapping Ŝ f j to Ŝi f and d f is the distance vector between
the two sections, respectively, defined as

A f =

[
cos(θ f ) − sin(θ f )
sin(θ f ) cos(θ f )

]
, d

(Ŝi f )

f =

[
r f sin(θ f )

r f (1− cos(θ f ))

]
(16)

Figure 3. Static balance of a curved beam. Dashed line for the undeformed beam and a solid line for
the deformed beam.
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In Section 2, the stiffness matrix of the curved beam has been derived considering
the undeformed configuration, meaning that the stiffness model is linear and cannot
capture the geometrical non-linearity coming from the change of configuration during
the beam deformation. Despite this, the balance in the deformed configuration can be
modified including the tip displacement due to deformation. Referring to Figure 3, the tip
displacement can be included in deriving the moment Mi f at the first section Ŝi f , therefore
modifying the previous Equation (15) into[

F
(Ŝi f )

i f
Mi f

]
= −

[
A f 0

−(AT
f d

(Ŝi f )

f + x
′(Ŝ f j)

f )T 1̃ 1

]
︸ ︷︷ ︸

T′f

 F
′(Ŝ f j)

f j
M′f j

 (17)

where F′f j and M′f j are referred to the deformed configuration. It is noteworthy that this
partial non-linear model is not the geometrically exact fully non-linear model of the curved
beam since the forces and moment at section Ŝ f j are still obtained using a linear stiffness
model for the curved beam.

In the following, either the linear or the partial non-linear model will be included to
derive the kinetostatic equations of a planar mechanism. Let us consider the body i in its
deformed configuration, as displayed in Figure 4. The flexures have been removed and
replaced with their reaction forces and torques where the minus signs come from Newton’s
third law. The static balance of body i requires that the following system be satisfied

Fi − F1i − Fi2 = 0 (18a)

Mi −M1i −Mi2 + sT
i11̃F1i + sT

i21̃Fi2 = 0 (18b)

where Fi and Mi are the external force and torque applied to body i, respectively. From the
balance Equations (15) and (17), the forces and moments coming from the flexures have
been expressed in the undeformed configuration and are now turned into the deformed

one. From Figure 4, it can be found that A1iF
(S1i)
1i ≡ Â1iF̂

(Ŝ1i)
1i and Ai2F(Si2)

i2 ≡ Âi2F̂(Ŝi2)
i2 ,

hence it follows that

Fi −AiÂ1iF̂
(Ŝ1i)
1i −AiÂi2F̂(Ŝi2)

i2 = 0 (19a)

Mi −M1i −Mi2 + sT
i11̃F1i + sT

i21̃Fi2 = 0 (19b)

Considering the frame invariance of the scalar equation of moments, the final system reads

Fi −AiÂ1iF̂
(Ŝ1i)
1i −AiÂi2F̂(Ŝi2)

i2 = 0 (20a)

Mi − M̂1i − M̂i2 + ŝT
i11̃Â1iF̂

(Ŝ1i)
1i + ŝT

i21̃Âi2F̂(Ŝi2)
i2 = 0 (20b)

or in matrix form[
Fi
Mi

]
−
[

AiÂ1i 0
−ŝT

i11̃Â1i 1

][
F̂(Ŝ1i)

1i
M̂1i

]
−
[

AiÂi2 0
−ŝT

i21̃Âi2 1

][
F̂(Ŝi2)

i2
M̂i2

]
= 0 (21)

Then, denoting with

N1i =

[
AiÂ1i 0
−ŝT

i11̃Â1i 1

]
, Ni2 =

[
AiÂi2 0
−ŝT

i21̃Âi2 1

]
(22)

and with Ri the residual vector of body i, the final kinetostatic model is

Ri ≡ −wi + N1iK
(Ŝ1i)
1 ψ

(Ŝ1i)
1 + Ni2T′2K

(Ŝ2j)

2 ψ
(Ŝ2j)

2 = 0 (23)
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where wi = [FT
i , Mi]

T is the generalized force vector or wrench acting on body i, K1 and K2
are the stiffness matrices of the curved beams connected to the body, and T′2 is the matrix
defined in Equation (17). If the latter is replaced by the matrix T2 of the linear model in
Equation (15), the kinetostatic model turns into

Ri ≡ −wi + N1iK
(Ŝ1i)
1 ψ

(Ŝ1i)
1 + Ni2T2K

(Ŝ2j)

2 ψ
(Ŝ2j)

2 = 0 (24)

Figure 4. Kinetostatic balance of a rigid-body.

The kinetostatic equations of a complex multibody system are derived by assembling
the residual vectors of all rigid bodies. The final system can be cast in the form

R(w, q) = 0, (25)

where R indicates the global residual vector, w is the global wrench of external forces
and torques, and q is the global vector of generalized coordinates. The elastostatics
model offers two types of analyses: the inverse and the direct kinetostatic analysis. The
deformed configuration is the input, and the global wrench is the output in the inverse
analysis, as has been already described in [36]. The solution of the inverse kinetostatic
analysis is straightforward and does not require an iterative procedure. In the direct
kinetostatic analysis, the forces and moments applied to the system are known, while the
final configuration of the deformed mechanism is sought. This highly non-linear problem
can be solved using an iterative procedure such as the Newton–Raphson method described
in Algorithm 1.
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Algorithm 1 : Newton–Raphson iterative method

1: ε← given threshold to terminate iterations
2: k = 1← iteration number
3: q(k) = q̂← set the solution guess value
4: procedure NEWTON–RAPHSON ITERATIVE METHOD(q(k),q̂,w)
5: R(w, q(k))← calculate the residuals as in Equation (24)
6: KT(q(k))← calculate the tangent stiffness matrix as in Equation (26)

7: q(k+1) = q(k) −K(k)
T

−1
R(w, q(k))← update the solution

8: if ‖q(k+1) − q(k)‖ < ε then
9: q = q(k+1) ← DKP solution

10: exit procedure
11: else
12: k← k + 1
13: goto step 4
14: end if
15: end procedure

3.3. Tangent Stiffness Matrix Determination

Suppose that the external forces and moments are fixed in space. Then, considering
the residual of the partial non-linear model of Equation (23), the tangent stiffness matrix is

KTi =
∂Ri
∂q
≡ KI

Ti + KI I
Ti + KI I I

Ti (26)

where

KI
Ti = N1iK

(Ŝ1i)
1

∂ψ
(Ŝ1i)
1

∂q
+ Ni2T′2K

(Ŝ2j)

2
∂ψ

(Ŝ2j)

2
∂q

(27a)

KI I
Ti =

∂N1i
∂q

K(Ŝ1i)
1 ψ

(Ŝ1i)
1 +

∂Ni2
∂q

T′2K
(Ŝ2j)

2 ψ
(Ŝ2j)

2 (27b)

KI I I
Ti = Ni2

∂T′2
∂q

K
(Ŝ2j)

2 ψ
(Ŝ2j)

2 (27c)

If the residual of the linear model of Equation (24) is used instead, the tangent stiffness
matrix turns into

KTi =
∂Ri
∂q
≡ KI

Ti + KI I
Ti (28)

The Appendix A reports the expressions for the terms of KTi.

4. Case Study: The Four-Bar Linkage

In this section, a compliant gripper with curved beams, shown in Figure 5a, is studied.
The monolithic structure of the mechanism can be reduced to two in-parallel four-bar
linkages, as revealed in Figure 5b. For symmetry along the vertical axis, only half a
mechanism will be analyzed, i.e., the right side of Figure 5b. The layout of Figure 6 has been
plotted following the notation presented in Section 3. Body 1 is the frame, here considered
fixed, while bodies 2, 3, and 4 are moving rigid bodies. Considering grippers with CSFH
joints, one link is a part of the monolithic structure enclosed between two circular beams.
In an MEMS device, the entire monolithic structure can deform. However, the assumption
of rigid links coupled to flexible circular beams has been verified using FE models. It is
fully justified since the links are at least one order of magnitude stiffer than the circular
beam flexures.
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(b)
Figure 5. MEMS-based gripper with curved beams. (a) CAD layout. (b) Matlab model: (red)
deformed configuration, (blue) undeformed configuration.

Figure 6. Layout of a four-bar linkage with curved beams.

First, vectors p̂ f can be calculated knowing the undeformed configuration, i.e., q̂, therefore

p̂a = r̂2 − r̂1 + Â2ŝ2a − Â1ŝ1a (29a)

p̂b = r̂3 − r̂2 + Â3ŝ3b − Â2ŝ2b (29b)

p̂c = r̂4 − r̂3 + Â4ŝ4c − Â3ŝ3c (29c)

p̂d = r̂1 − r̂4 + Â1ŝ1d − Â4ŝ4d (29d)

Similarly, the vectors p f of the flexures in the deformed configuration, i.e., q, are
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pa = r2 − r1 + A2s2a −A1s1a (30a)

pb = r3 − r2 + A3s3b −A2s2b (30b)

pc = r4 − r3 + A4s4c −A3s3c (30c)

pd = r1 − r4 + A1s1d −A4s4d (30d)

Since body 1 is the frame, r1 = r̂1 and A1 = Â1. Furthermore, if the frame S1 of body 1 is
coincident with Σ, it follows that r1 = 0 and A1 = 1. Here, these matrices are written for
the sake of completeness.

Notice that q could be one of the iterative solutions q(k) employed in the Newton–
Raphson algorithm. The deformation vectors x′f in the material description and expressed
in the local frames of the undeformed flexures are

x′(Ŝa2)
a = ÂT

a2ÂT
2 (Â1AT

1 pa − p̂a) (31a)

x′(Ŝb3)
b = ÂT

b3ÂT
3 (Â2AT

2 pb − p̂b) (31b)

x′(Ŝc4)
c = ÂT

c4ÂT
4 (Â3AT

3 pc − p̂c) (31c)

x′(Ŝd1)
d = ÂT

d1ÂT
1 (Â4AT

4 pd − p̂d) (31d)

The angular deformation φ f is obtained as

φa = θ2 − θ1 − θ̂2 + θ̂1 (32a)

φb = θ3 − θ2 − θ̂3 + θ̂2 (32b)

φc = θ4 − θ3 − θ̂4 + θ̂3 (32c)

φd = θ1 − θ4 − θ̂1 + θ̂4 (32d)

The expressions (31) and (32) allows for determining the flexure generalized deformations

ψ
(Ŝa2)
a , ψ

(Ŝb3)
b , ψ

(Ŝc4)
c , and ψ

(Ŝd1)
d .

The transformation matrices T′f of Equation (17) are defined as

T′a = −
[

Aa 0

−(AT
a d(Ŝ1a)

a + x′(Ŝa2)
a )T 1̃ 0

]
(33a)

T′b = −
[

Ab 0

−(AT
b d(Ŝ2b)

b + x′(Ŝb3)
b )T 1̃ 0

]
(33b)

T′c = −
[

Ac 0

−(AT
c d(Ŝ3c)

c + x′(Ŝc4)
c )T 1̃ 0

]
(33c)

T′d = −
[

Ad 0

−(AT
d d(Ŝ4d)

d + x′(Ŝd1)
d )T 1̃ 0

]
(33d)

where A f and d f can be found for each curved beam using Equation (16). Expressions
similar to T′f , not reported for brevity, can be written to determine T f of Equation (15).

Then, the matrices N of Equation (22) are

Nd1 =

[
A1Âd1 0
−ŝT

1d1̃Âd1 1

]
, N1a =

[
A1Â1a 0
−ŝT

1a1̃Â1a 1

]
(34a)

Na2 =

[
A2Âa2 0
−ŝT

2a1̃Âa2 1

]
, N2b =

[
A2Â2b 0
−ŝT

2b1̃Â2b 1

]
(34b)

Nb3 =

[
A3Âb3 0
−ŝT

3b1̃Âb3 1

]
, N3c =

[
A3Â3c 0
−ŝT

3c1̃Â3c 1

]
(34c)

Nc4 =

[
A4Âc4 0
−ŝT

4c1̃Âc4 1

]
, N4d =

[
A4Â4d 0
−ŝT

4d1̃Â4d 1

]
(34d)
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Setting the external wrenches wi applied at the mass centers Gi of the rigid bodies, the
four residual vectors Ri, i = 1, . . . , 4, are

R1 ≡ −w1 + Nd1K(Ŝd1)
d ψ

(Ŝd1)
d + N1aT′aK(Ŝa2)

a ψ
(Ŝa2)
a (35a)

R2 ≡ −w2 + Na2K(Ŝa2)
a ψ

(Ŝa2)
a + N2bT′bK(Ŝb3)

b ψ
(Ŝb3)
b (35b)

R3 ≡ −w3 + Nb3K(Ŝb3)
b ψ

(Ŝb3)
b + N3cT′cK(Ŝc4)

c ψ
(Ŝc4)
c (35c)

R4 ≡ −w4 + Nc4K(Ŝc4)
c ψ

(Ŝc4)
c + N4dT′dK(Ŝd1)

d ψ
(Ŝd1)
d (35d)

The residuals are employed to form a system of 12 non-linear kinetostatic equations, i.e.,

R ≡ [RT
1 , RT

2 , RT
3 , RT

4 ]
T = 0 (36)

that must be solved using an iterative procedure. To calculate the tangent stiffness matrix

necessary to apply the Newton–Raphson algorithm, let us define the Jacobians J̆
(Ŝ f j)

f , i.e.,

J̆(Ŝa2)
a ≡

[
J̆1(Ŝa2)

a J̆2(Ŝa2)
a

]
=

[
ÂT

a2ÂT
2 0

0T 1

]
J̆a (37a)

J̆(Ŝb3)
b ≡

[
J̆2(Ŝb3)

b J̆3(Ŝb3)
b

]
=

[
ÂT

b3ÂT
3 0

0T 1

]
J̆b (37b)

J̆(Ŝc4)
c ≡

[
J̆3(Ŝc4)

c J̆4(Ŝc4)
c

]
=

[
ÂT

c4ÂT
4 0

0T 1

]
J̆c (37c)

J̆(Ŝd1)
d ≡

[
J̆4(Ŝd1)

d J̆1(Ŝd1)
d

]
=

[
ÂT

d1ÂT
1 0

0T 1

]
J̆d (37d)

where

J̆a =

[
−Â1AT

1 Â1(ĀT
1 pa − 1̃s̄1a) Â1AT

1 Â1AT
1 Ā2s̄2a

0T −1 0T 1

]
(38a)

J̆b =

[
−Â2AT

2 Â2(ĀT
2 pb − 1̃s̄2b) Â2AT

2 Â2AT
2 Ā3s̄3b

0T −1 0T 1

]
(38b)

J̆c =

[
−Â3AT

3 Â3(ĀT
3 pc − 1̃s̄3c) Â3AT

3 Â3AT
3 Ā4s̄4c

0T −1 0T 1

]
(38c)

J̆d =

[
−Â4AT

4 Â4(ĀT
4 pd − 1̃s̄4d) Â4AT

4 Â4AT
4 Ā1s̄1d

0T −1 0T 1

]
(38d)

The Jacobians J̆
(Ŝ f j)

f can be mapped using Boolean matrices to the final dimension of the
system, i.e.,

J(Ŝa2)
a =

[
J̆1(Ŝa2)

a J̆2(Ŝa2)
a O O

]
(39a)

J(Ŝb3)
b =

[
O J̆2(Ŝb3)

b J̆3(Ŝb3)
b O

]
(39b)

J(Ŝc4)
c =

[
O O J̆3(Ŝc4)

c J̆4(Ŝc4)
c

]
(39c)

J(Ŝd1)
d =

[
J̆1(Ŝd1)

d O O J̆4(Ŝd1)
d

]
(39d)

Then, following the expression (A2) of KI
Ti reported in the Appendix, it yields
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KI
T1 = Nd1K(Ŝd1)

d J(Ŝd1)
d + N1aT′aK(Ŝa2)

a J(Ŝa2)
a (40a)

KI
T2 = Na2K(Ŝa2)

a J(Ŝa2)
a + N2bT′bK(Ŝb3)

b J(Ŝb3)
b (40b)

KI
T3 = Nb3K(Ŝb3)

b J(Ŝb3)
b + N3cT′cK(Ŝc4)

c J(Ŝc4)
c (40c)

KI
T4 = Nc4K(Ŝc4)

c J(Ŝc4)
c + N4dT′dK(Ŝd1)

d J(Ŝd1)
d (40d)

The final expression for the first part of the tangent stiffness matrix is

KI
T =


KT1
KI

T2
KI

T3
KI

T4

 (41)

The expressions for KI I
Ti can be obtained starting from zi in Equation (A7), i.e.,

z1 = Gd1K(Ŝd1)
d ψ

(Ŝd1)
d + G1aT′aK(Ŝa2)

a ψ
(Ŝa2)
a (42a)

z2 = Ga2K(Ŝa2)
a ψ

(Ŝa2)
a + G2bT′bK(Ŝb3)

b ψ
(Ŝb3)
b (42b)

z3 = Gb3K(Ŝb3)
b ψ

(Ŝb3)
b + G3cT′cK(Ŝc3)

c ψ
(Ŝc4)
c (42c)

z4 = Gc4K(Ŝc4)
c ψ

(Ŝc4)
c + G2bT′dK(Ŝd4)

d ψ
(Ŝd4)
d (42d)

where the matrices G of Equation (A4) are defined as

Gd1 =

[
Ā1Âd1 0

0T 1

]
, G1a =

[
Ā1Â1a 0

0T 1

]
(43a)

Ga2 =

[
Ā2Âa2 0

0T 1

]
, G2b =

[
Ā2Â2b 0

0T 1

]
(43b)

Gb3 =

[
Ā3Âb3 0

0T 1

]
, G3c =

[
Ā3Â3c 0

0T 1

]
(43c)

Gc4 =

[
Ā4Âc4 0

0T 1

]
, G4d =

[
Ā4Â4d 0

0T 1

]
(43d)

Therefore, KI I
T becomes

KI I
T =


0 0 z1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 z2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 z3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 z4

 (44)

Finally, the third part of the tangent stiffness matrix KI I I
T is derived through the

6-dimensional vectors v f of Equation (A11), i.e.,

va = J̆T
axÂ2Âa21̃F(Ŝa2)

a ≡ J(Ŝa2)T
ax 1̃F(Ŝa2)

a (45a)

vb = J̆T
bxÂ3Âb31̃F(Ŝb3)

b ≡ J(Ŝb3)T
bx 1̃F(Ŝb3)

b (45b)

vc = J̆T
cxÂ4Âc41̃F(Ŝc4)

c ≡ J(Ŝc4)T
cx 1̃F(Ŝc4)

c (45c)

vd = J̆T
dxÂ1Âd11̃F(Ŝd1)

d ≡ J(Ŝd1)T
dx 1̃F(Ŝd1)

d (45d)

where F
(Ŝ f j)

f is obtained taking the force vector from the flexure wrench w
(Ŝ f j)

f = K
(Ŝ f j)

f ψ
(Ŝ f j)

f .

The block-matrices J̆ f x, or J
(Ŝ f j)

f x , are derived taking only the first two rows, i.e., the block of
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x′f , from the corresponding Jacobian matrices. Using the equations of (A12), the matrices

V f =
[

V f i V f j
]

can be obtained and therefore, the matrix KI I I
T becomes

KI I I
T =


N1aVa1 N1aVa2 O O

O N2bVb2 N2bVb3 O
O O N3cVc3 N3cVc4

N4dVd1 O O N4dVd4

 (46)

The final expression for the tangent stiffness matrix is KT = KI
T + KI I

T + KI I I
T . If the DOFs

of the first body, i.e., the fixed frame, are removed by imposing fixed boundary conditions,
the final form of KT will be a (9× 9) matrix with the following pattern

KT =


• •
• •
•

 (47)

5. Numerical Application

Referring to Figure 6, body 1 is fixed while body 2 is actuated through a vertical force
applied at its center of mass. Finally, the end-effector is attached to body 3. Following the
layout of Figure 6, all geometric and structural parameters necessary for direct kinetostatic
analysis of the case study are reported in Table 1.

Table 1. Geometric and structural parameters of the case study.

Four-Bar Mechanism

mass center G2 [1.5000, 0.2000] (mm)
mass center G3 [1.8000, 1.5000] (mm)
mass center G4 [1.0000, 1.5000] (mm)
hinge center Oa [0.5000, 0.0000] (mm)
hinge center Ob [1.8478, 0.7654] (mm)
hinge center Oc [1.1928, 1.9000] (mm)
hinge center Od [0.5000, 1.5000] (mm)

local base vector s̄1a [0.6848, 0.0765] (mm)
local base vector s̄2a [−0.8413, −0.3218] (mm)
local base vector s̄2b [0.2139, 0.7140] (mm)
local base vector s̄3b [0.0408, −0.5348] (mm)
local base vector s̄3c [−0.4140, 0.3482] (mm)

local base vector s̄3EE [−1.3571, 1.6991] (mm)
local base vector s̄4c [0.3342, 0.2586] (mm)
local base vector s̄4d [−0.6000, −0.1732] (mm)
local base vector s̄1d [0.3714, 1.6532] (mm)

curved beam

beam radius r f , ( f ∈ [a, b, c, d]) 0.2 (mm)
beam characteristic angle [θa, θb, θc, θd] [300, 320, 330, 250] (◦)

Young modulus Ey 100 (GPa)
cross-section base b 25 (µm)

cross-section height h 5 (µm)

5.1. Comparison and Validation

First, let us consider the linear flexure model expressed through Equation (24) of
Section 3. Considering an initial actuation force F2y = −60 (µN), the latter is increased
until the x-coordinate of the end-effector becomes zero, i.e., the gripper clamp is completely
closed. The gripper deforms as displayed on the left side of Figure 7, wherein the limit
cases and the undeformed configuration are reported. Then, let us consider the partial
non-linear flexure model expressed through the Equation (23) of Section 3. Performing the



Micromachines 2022, 13, 2172 15 of 26

same simulations, the workspace becomes that of the right side of Figure 7. The values of
F2y for which the clamp is closed, respectively, are F2y = 63 (µN) for the linear model and
F2y = 77 (µN) for the partial non-linear model.

Figure 7. Workspace of the gripper and end-effector trajectory for the linear and partial non-linear
models during the opening/closing maneuver: (red) deformed configuration, (blue) undeformed
configuration, (black) end-effector trajectory. Units in millimeters.

The two models have been compared to a model implemented using the commercial
multibody software MSC Adams©. The model includes rigid links and flexible circular
beams. The latter are combined to the links’ endpoints through fixed connections. The
model has been developed to be comparable with the Matlab model. The only difference
pertains to the flexures since the curved beams have been modeled using a two-dimensional
geometrical non-linear representation for beam-like structures. Compared to the previous
Matlab models, this representation is fully non-linear, as the stiffness matrix of each flex-
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ure is updated during deformation. The actuation force has been applied through step
functions, and two simulations have been carried out to achieve convergency; one for
the forward movement of closing and the other for the backward movement of opening.
Figure 8 shows the two simulations and the trajectories accomplished by the end-effector
point. As for Figure 7, the deformed configuration has also been plotted to understand the
deformation process better.

Figure 8. Adams results: (left) forward movement; (right) backward movement. The deformed
gripper is in red, while the undeformed configuration is represented in blue color. The trajectory of
the end-effector for the two movements is displayed in black color.

The three models have been compared in Figure 9 in terms of the end-effector tra-
jectory, also referred to as the mechanism’s workspace (left subplot) and actuation forces
(right subplot).

Two materials have been modeled for the curved beams: silicon with Young modulus
Ey = 100 (GPa) and nylon with Young modulus Ey = 3.84 (GPa). Considering the same
rectangular cross-section, whose dimensions are reported in Table 1, the silicon bending
stiffness is EI = 26.0417 (µNµm2) while the nylon bending stiffness is EI = 1 (µNµm2).
The two materials have different properties in terms of elasticity. Silicon has a brittle
behavior, while nylon has an anisotropic hyperelastic or visco-hyperelastic behavior. The
two bending stiffness values should be seen as extreme cases to test the proposed method.
With this premise in mind, the two materials will be assumed to have both isotropic linear
behavior, while the different degrees of non-linearity of the models will only concern the
geometric stiffness.

The first row of plots in Figure 9 pertains to the silicon while the second one is the
nylon. First, let us consider silicon. Observing the top-left subplot, the three arc-shaped
trajectories of the end-effector reveal relevant differences only in the final part of the
path. The influence of the fully non-linear flexures becomes more evident in the opening
movement, where the trajectories become more distant. Compared to the linear model, the
top-right subplot reveals that the flexure non-linearities introduce a stiffening effect, and
the actuation force required to produce the same displacement grows. It can be observed
that the partial non-linear model is stiffer than the fully non-linear model in the forward
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closing movement and softer in the opening movement. The three models have equal
stiffness only at the undeformed configuration where the actuation force is zero.
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Figure 9. Model comparison in terms of workspace and actuation forces. Left subplot: end-effector
trajectory in an opening–closing movement; right subplot: actuation force vs. x-coordinate of the
end-effector during the opening–closing movement.

Then, let us consider nylon. Observing the bottom-left subplot, the end-effector
trajectory follows a trend similar to the previous case. The bottom-right plot reveals
differences in force range, as could be expected considering the lower bending stiffness
of the nylon. Now, the non-linearities are more pronounced, and three inflection points
appear for the fully non-linear flexures, which are totally absent in the remaining cases.
Despite this, the plot is similar to the simplified cases.

Excluding the limit points of the workspace during the opening movement, the
simplified models provide excellent results. Added to this is that the proper workspace is
usually limited by other constraints such as the electrical interfaces or the maximum stress
in the material, thus making the three models closer than they might appear in Figure 9.

For example, the Conjugate Surfaces Flexure Hinges (CSFH) employed in MEMS
micro-grippers have a rotation range limited to ±20◦ to prevent the silicon from break-
ing [39,40]. This range is displayed in the opening–closing movement of Figure 9. However,
this range is further limited to about±2◦ by other phenomena coming from the electrostatic
actuation such as sticking-friction anomalies, the pull-in or the impossibility to generating
high actuation forces [41].

5.2. Shape Optimization

The simplified models have been employed to perform the cross-section optimization
of the curved beams, as shown in Figure 10. These plots can be used in various ways;
for example, knowing the maximum actuation force the electrical interface can produce,
the section parameters can be chosen to cope with this value. Another example could be
related to the choice of the section parameters based on the maximum allowable stress of
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the material or its fatigue limit. Likewise, the optimization could affect other structural
parameters or mechanism lengths.
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Figure 10. Cross-section optimization of the flexures.

5.3. Tangent Stiffness Matrix

Since the tangent stiffness matrix is the key element of the direct kinetostatic analysis,
in the following, a detailed analysis of the tangent stiffness matrix and its role in the
Newton–Raphson algorithm convergence is detailed. As already described in Section 4,
after imposing fixed boundary conditions on body 1, the tangent stiffness matrix turns into
a 9× 9 symmetric matrix. Referring to the partial non-linear model, KT has the expression
reported in Table 2 in the undeformed configuration.

Table 2. Tangent stiffness matrix of the partial non-linear model in the undeformed configuration.

2.40 × 103 1.84 × 102 −5.42 × 102 −1.32 × 103 −1.11 × 102 −1.01 × 103

1.84 × 102 2.71 × 103 −1.34 × 103 −1.11 × 102 −1.09 × 103 −1.46 × 102

−5.42 × 102 −1.34 × 103 2.29 × 103 6.76 × 102 −3.29 × 102 4.70 × 102

−1.32 × 103 −1.11 × 102 6.76 × 102 2.41 × 103 2.06 × 102 4.98 × 102 −1.10 × 103 −9.53 × 101 4.31 × 102

−1.11 × 102 −1.09 × 103 −3.29 × 102 2.06 × 102 2.30 × 103 −6.44 × 102 −9.53 × 101 −1.21 × 103 −1.75 × 102

−1.01 × 103 −1.46 × 102 4.70 × 102 4.98 × 102 −6.44 × 102 1.51 × 103 5.07 × 102 7.89 × 102 −9.01 × 101

−1.10 × 103 −9.53 × 101 5.07 × 102 2.34 × 103 −5.58 × 101 −3.75 × 102

−9.53 × 101 −1.21 × 103 7.89 × 102 −5.58 × 101 4.16 × 103 −1.08 × 103

4.31 × 102 −1.75 × 102 −9.01 × 101 −3.75 × 102 −1.08 × 103 7.93 × 102

Let us consider the mechanism in the final deformed configuration obtained by ap-
plying F2y = 50 (µN). In this case, the expression of KT is reported in Table 3, while the
percentage difference between the deformed and undeformed case is provided in Table 4. It
can be observed that relevant differences appear during the deformation process, especially
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in the off-diagonal components. Furthermore, the matrix KT is no longer symmetrical in
the deformed configuration.

Table 3. Tangent stiffness matrix of the partial non-linear model in the final deformed configuration
obtained applying F2y = 50 (µN).

2.31 × 103 −9.15 × 101 −1.66 × 102 −1.27 × 103 −1.45 × 102 −9.67 × 102

4.22 × 102 2.75 × 103 −1.20 × 103 −1.45 × 102 −1.14 × 103 −2.65 × 102

−5.90 × 102 −1.45 × 103 2.20 × 103 7.24 × 102 −2.25 × 102 4.81 × 102

−1.28 × 103 −2.79 × 102 6.74 × 102 2.36 × 103 3.65 × 102 5.15 × 102 −1.08 × 103 −8.63 × 101 5.32 × 102

6.01 × 100 −1.11 × 103 −3.28 × 102 8.03 × 101 2.33 × 103 −6.07 × 102 −8.63 × 101 −1.22 × 103 −2.72 × 101

−9.59 × 102 −3.34 × 102 4.46 × 102 4.64 × 102 −4.42 × 102 1.46 × 103 4.95 × 102 7.76 × 102 −2.18 × 102

−1.02 × 103 2.52 × 102 2.50 × 102 2.23 × 103 −1.41 × 103 −1.90 × 102

−3.80 × 102 −1.20 × 103 8.58 × 102 6.65 × 102 3.92 × 103 −1.12 × 103

4.43 × 102 −1.43 × 102 −1.12 × 102 −4.97 × 102 −9.28 × 102 6.76 × 102

Table 4. Percentage difference of the tangent stiffness matrices of the partial non-linear model between
the final deformed configuration of Table 3 and the undeformed configuration of Table 2.

−3.5 −149.8 −69.4 −3.8 31.4 −3.8
129.6 1.2 −10.4 31.4 4.5 82.0
8.8 7.8 −4.1 7.1 −31.6 2.3
−3.1 152.5 −0.4 −2.3 77.6 3.5 −1.2 −9.4 23.4
−105.4 2.2 −0.2 −61.0 1.6 −5.6 −9.4 1.1 −84.4
−4.6 129.3 −5.1 −6.7 −31.4 −3.9 −2.5 −1.7 141.6

−7.2 −364.2 −50.7 −4.4 2424.5 −49.4
299.1 −0.8 8.7 −1290.9 −5.8 3.7
2.7 −18.2 23.9 32.7 −14.1 −14.7

Since KT is composed of three terms, it is legitimate to ask what the contribution of
each term is. As reported in Table 5, the first term KI

T is the closest to the final expression
of KT .

Table 5. The first term KI
T in the deformed configuration obtained applying F2y = 50 (µN).

2.31 × 103 −9.15 × 101 −1.16 × 102 −1.27 × 103 −1.45 × 102 −9.67 × 102

4.22 × 102 2.75 × 103 −1.20 × 103 −1.45 × 102 −1.14 × 103 −2.65 × 102

−5.74 × 102 −1.42 × 103 2.19 × 103 7.08 × 102 −2.46 × 102 4.71 × 102

−1.28 × 103 −2.79 × 102 6.74 × 102 2.36 × 103 3.65 × 102 5.15 × 102 −1.08 × 103 −8.63 × 101 5.32 × 102

6.01 × 100 −1.11 × 103 −3.28 × 102 8.03 × 101 2.33 × 103 −6.07 × 102 −8.63 × 101 −1.22 × 103 −2.72 × 101

−9.59 × 102 −3.34 × 102 4.46 × 102 4.83 × 102 −4.22 × 102 1.44 × 103 4.76 × 102 7.56 × 102 −2.15 × 102

−1.02 × 103 2.52 × 102 2.50 × 102 2.23 × 103 −1.41 × 103 −1.90 × 102

−3.80 × 102 −1.20 × 103 8.58 × 102 6.65 × 102 3.92 × 103 −1.12 × 103

4.43 × 102 −1.43 × 102 −1.12 × 102 −4.77 × 102 −9.10 × 102 6.62 × 102

The second term KI I
T is reported in Table 6. Remembering the expression for zi in

Equation (A7) and the form of KI I
T in Equation (A8), observing Table 6, it can be found that

at the equilibrium, i.e., if and only if the residuals are zero, the following expression stands

zi =

[
1̃ 0

0T 0

]
, wi ≡

 −Fiy
+Fix

0

 (48)

For the case study, only body 2, and therefore z2, has components different from zero.
Finally, the third term KI I I

T is reported in Table 7. It can be noticed that only the
components of the inner moments, i.e., due to the flexures, are different from zero. This
feature comes from the particular form of V f i, or V f j, in Equation (A12).
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Table 6. Second term KI I
T in the deformed configuration obtained applying F2y = 50 (µN).

0 0 −5.00 × 101 0 0 0
0 0 −6.25 × 10−12 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −6.75 × 10−13 0 0 0
0 0 0 0 0 4.73 × 10−13 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1.95 × 10−11

0 0 0 0 0 7.21 × 10−11

0 0 0 0 0 0

Table 7. Third term KI I I
T in the deformed configuration obtained applying F2y = 50 (µN).

0 0 0 0 0 0
0 0 0 0 0 0

−1.62 × 101 −2.14 × 101 8.03 × 100 1.62 × 101 −2.14 × 101 −1.03 × 101

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1.86 × 101 −1.94 × 101 1.30 × 101 1.86 × 101 1.94 × 101 −2.29 × 100

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1.99 × 101 −1.80 × 101 1.45 × 101

To better focus on the importance of the tangent stiffness matrix in achieving solution
convergence, let us keep the tangent stiffness matrix constant and equal to that obtained
in the undeformed configuration for the entire simulation, i.e., KT = KT(q̂). The results
of Figure 11 reveal that the number of iterations necessary to achieve convergence grows
exponentially as the input load increases and no longer converges beyond F2y = 76 (µN).
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Figure 11. Number of iterations to achieve convergence of the direct kinetostatic analysis varying
the input force. The simulation employs the constant tangent stiffness matrix obtained in the
undeformed configuration.
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The same simulation has been repeated by updating the tangent stiffness matrix
following four strategies based on:

• The complete matrix KT starting each simulation from the undeformed solution;
• The first term KI

T starting each simulation from the undeformed solution;
• The complete matrix KT starting each simulation from the previous converged solution;
• The first term KI

T starting each simulation from the previous converged solution.

It can be seen that the approaches using the previous converged solution reduce
the number of iterations. Similarly, using the complete matrix instead of the first-term
approximated matrix results in fewer iterations. The results are displayed in Figure 12.

It is interesting to observe how these trends translate into a computational burden. The
reduced number of iterations provided by the strategies based on the previous converged
solution translates directly into savings in computation time. The two strategies based
on the first term of the tangent stiffness matrix lead to a higher number of iterations
but, simultaneously, require a smaller number of variables to be determined and save on
calculation times, as shown in Figure 13. The peaks observed in Figure 13 come from
memory allocation and other inner processes of Matlab during the first computation. On
the other hand, it can be observed from Figure 12 that a higher number of iterations do not
correspond to these CPU times. The results have been obtained using an HP workstation
equipped with an Intel Xeon CPU @3.20GHz with 32 GB of RAM.
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Figure 12. Number of iterations to achieve convergency of the direct kinetostatic analysis varying
the input force. The simulation compares four strategies to upload the tangent stiffness matrix:
considering the complete matrix KT or only the first term KI

T starting each simulation from the
undeformed solution, considering the complete matrix KT or only the first term KI

T starting each
simulation from the previous converged solution.
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Figure 13. Computation time of the four strategies of Figure 12.

This section is concluded by giving some insights into the computational time obtained
using Adams. In Table 8, the CPU times obtained in the opening–closing movement for
the Adams fully non-linear model, the Matlab linear model, and the Matlab partial non-
linear model are compared. Adams simulations have been performed by disabling the
graphic display. The comparison has been carried out for both silicon and nylon. As can
be observed, the CPU time of the simplified methods is from 30 to 500 times faster than
Adams. It is noteworthy that the simulation time for nylon is ten times faster than silicon
for the Adams fully non-linear model.

Table 8. CPU-time comparison in seconds for the opening–closing movement.

Silicon

opening closing
Adams fully non-linear model 41.00 50.00

Matlab linear model 0.150 0.100
Matlab partial non-linear model 0.150 0.150

Nylon

opening closing
Adams Fully non-linear model 4.500 4.500

Matlab linear model 0.135 0.100
Matlab partial non-linear model 0.145 0.135

6. Conclusions and Discussion

The tangent stiffness matrix has been used as a conceptual base to solve the direct
kinetostatic problem of planar grippers with curved beams. Two models have been pre-
sented to cope with flexure deformations. The first linear model considers the flexure
equilibrium in the initial undeformed configuration, while the second partial non-linear
model considers the equilibrium in the deformed configuration. Both methods do not
include a fully non-linear geometric description of the curved beam flexure whose stiffness
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matrix is kept constant and equal to that obtained in the undeformed state. The tangent
stiffness matrix has been divided into sub-parts to facilitate both the theoretical treatment
and the numerical implementation. The linear model led to two sub-parts, while the partial
non-linear model introduced a further third sub-part. Both models were tested and com-
pared with a fully non-linear model obtained using the commercial software MSC Adams.
The results proved to be in good agreement on most of the mechanism’s workspace, except
for the extreme areas wherein the geometric non-linear effects become relevant. The same
case study was used to show the method’s potential; for example, in conducting a shape
optimization of the flexure cross-section. Finally, the importance of each term of the tangent
stiffness matrix in the convergence process was detailed in terms of the number of iterations
required to achieve convergence and computational load.

From what has been outlined, the proposed method offers various advantages:

1. The results of Figure 13 suggest a possible extension to real-time applications of micro
and nano-grippers. It is known that the control often requires simplified models to be
executed quickly by the control unit. Often these models are obtained by linearizing
the equilibrium equations around one or more operating points. Using models with
reduced complexity would allow more efficient control strategies such as control in the
operating space, inverse dynamics control, pre-calculated torque control. Furthermore,
the closed form helps creating more efficient reduced order models [42–44].

2. The tangent stiffness matrix is obtained in closed form. This feature prevents the use
of numeric differentiation, making the convergence process of the direct kinetostatic
solution more robust. Furthermore, splitting the expression of KT allowed for iden-
tifying its most basic terms and calibrating the compromise between the number of
iterations and calculation time. The calculation times are considerably reduced by
using only the first term of the tangent stiffness matrix and recalculating it at each
iteration of the Newton–Raphson algorithm described in Algorithm 1.

3. The tangent stiffness matrix can be employed to develop a dynamics model to study
vibrations. The tangent stiffness matrix is the core of implicit time integration methods
primarily employed in flexible multibody dynamics [45]. Shape optimization takes
further advantage of the closed form of KT opening scenarios to gradient-based
constrained optimization problems based on the kinetostatic analysis.

4. Both the two simplified models employ curved beams modeled by a constant stiffness
matrix. Despite this, the curved beams guarantee finite displacements/rotations
in the mechanism, allowing for the expansion of the reachable workspace. The
model remains reliable for most of the mechanism’s workspace. The results are
accurate in the functional area except for the limit zones of the workspace in which
physical constraints usually prevent motion. When the maximum rotations of the
curved beams exceed ±20◦ the constant stiffness hypothesis can no longer capture
the geometric nonlinearities, and the results deviate from the actual case.

5. Although the proposed method is valid only for planar cases, it can be extended to
other compliant mechanisms with constant stiffness flexures without changing the
mathematical background.
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Appendix A

The first term KI
Ti of the tangent stiffness matrix in Equation (26) can be derived by

mapping the Jacobian of Equation (13) to the whole n-dimensional vector of generalized
coordinates q, therefore obtaining the new (3× n) extended Jacobian J f

J f =
[

O · · · J̆i
f · · · J̆j

f · · ·O
]

(A1)

where O is the 3× 3 zero matrix. By substituting Equation (A1) into Equation (27a), the
(3× n) matrix KI

Ti becomes

KI
Ti = N1iK

(Ŝ1i)
1 J(Ŝ1i)

1 + Ni2T′2K
(Ŝ2j)

2 J
(Ŝ2j)

2 (A2)

with J1 and J2 referred to the curved beams connected to body i.
To find the second term KI I

Ti, let us consider the variation of matrices N1i and Ni2 of
Equation (22), i.e.,

δN1i = δθiG1i, δNi2 = δθiGi2 (A3)

where

G1i =

[
ĀiÂ1i 0

0T 0

]
, Gi2 =

[
ĀiÂi2 0

0T 0

]
(A4)

From this expression, it follows that

δN1iK
(Ŝ1i)
1 ψ

(Ŝ1i)
1 + δNi2T′2K

(Ŝ2j)

2 ψ
(Ŝ2j)

2 ≡ δθizi (A5)

where zi is a 3-dimensional vector defined as

zi =
∂N1i
∂θi

K(Ŝ1i)
1 ψ

(Ŝ1i)
1 +

∂Ni2
∂θi

T′2K
(Ŝ2j)

2 ψ
(Ŝ2j)

2 (A6)

Using Equation (A3), zi becomes

zi = G1iK
(Ŝ1i)
1 ψ

(Ŝ1i)
1 + Gi2T′2K

(Ŝ2j)

2 ψ
(Ŝ2j)

2 (A7)

Comparing Equation (A5) with (27b), the (3× n) matrix KI I
Ti reads

KI I
Ti =

[
O · · · 0 0 zi · · · O

]
(A8)

where zi is mapped in the column corresponding to the angle θi while all the other entries
are zero.

Finally, starting from the expression of T′f in Equation (17) and calculating its
variation provides

δT′f =

[
O 0

(δx
′(Ŝ f 2)

f )T 1̃ 0

]
≡
[

O 0
−(ÂT

f jÂ
T
j J̆ f xδqij)

T 1̃ 0

]
(A9)

where Equation (10) has been employed to pass from the global to the local system, and
J̆ f x is the block matrix obtained considering the first two rows of J̆ f pertaining x′f only.

Multiplying δT′f by the wrench w
Ŝ f j
f j = K

Ŝ f j
f ψ

Ŝ f j
f at section Ŝ f j, the following expression

is obtained

δT′f w
(Ŝ f j)

f j =

[
0

vT
f δqij

]
=

[
O2,6
vT

f

]
δqij = V f δqij (A10)
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where V f is a (3×6) matrix while the 6-dimensional vector v f = [vT
f i, vT

f j]
T is defined as

v f = J̆T
f xÂjÂ f j1̃F

Ŝ f j
f (A11)

being F
(Ŝ f j)

f the force composing the wrench w
(Ŝ f j)

f = [F
(Ŝ f j)

f

T
, M f ]

T . The matrix V f can
also be written as

V f =
[

V f i V f j
]
, V f i =

 0T

0T

vT
f i

, V f j =

 0T

0T

vT
f j

 (A12)

Using these expressions, the (3× n) matrix KI I I
Ti becomes

KI I I
Ti =

[
O · · · Ni2V2i · · · Ni2V2j · · · O

]
(A13)

in which the matrices are mapped in correspondence with the dofs of the body i
and j, respectively.
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