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Abstract: Large areas in Northern Russia are covered by extensive mires, which represent a complex
mosaic of ombrotrophic raised bogs, minerotrophic and eutrophic fens, all in a close proximity to
each other. In this paper, we compared microbial diversity patterns in the surface peat layers of
the neighbouring raised bogs and eutrophic fens that are located within two geographically remote
mire sites in Vologda region using 16S rRNA gene sequencing. Regardless of location, the microbial
communities in raised bogs were highly similar to each other but were clearly distinct from those
in eutrophic fens. Bogs were dominated by the Acidobacteria (30%–40% of total 16S rRNA gene
reads), which belong to the orders Acidobacteriales and Bryobacterales. Other bog-specific bacteria
included the Phycisphaera-like group WD2101 and the families Isosphaeraceae and Gemmataceae of the
Planctomycetes, orders Opitutales and Pedosphaerales of the Verrucomicrobia and a particular group of
alphaproteobacteria within the Rhizobiales. In contrast, fens hosted Anaerolineae-affiliated Chloroflexi,
Vicinamibacteria- and Blastocatellia-affiliated Acidobacteria, Rokubacteria, uncultivated group OM190 of
the Planctomycetes and several groups of betaproteobacteria. The Patescibacteria were detected in both
types of wetlands but their relative abundance was higher in fens. A number of key parameters that
define the distribution of particular bacterial groups in mires were identified.

Keywords: northern mires; raised bogs; eutrophic fens; high-throughput 16S rRNA gene sequencing;
microbial diversity; Acidobacteria; Verrucomicrobia; Chloroflexi; Planctomycetes

1. Introduction

Wetlands are one of the most biologically productive ecosystems and provide a wide range of
essential ecosystem services, which are critical to human livelihoods and sustainable development [1].
They play a major role in the global water balance by receiving, storing and releasing water, regulating
flows and supporting life. They are also recognized for their high nutrient recycling capacities and
their prominent contribution to global greenhouse gas emissions. The global area of natural wetlands
is about 5.3–5.7 × 106 km2 [2,3]. Peat accumulating wetlands (peatlands) cover about 4.16 × 106

km2 worldwide, with 80% of the peatland area situated in temperate-cold climates in the northern
hemisphere, particularly in Russia, Canada and the USA [4]. These ecosystems serve as a persistent sink
for atmospheric CO2 and a global terrestrial carbon store [5]. Peatlands are classified into various types
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based on vegetation and trophic status. Among those, raised bogs, which are fed solely by precipitation,
and eutrophic fens, which are fed mainly by ground water, represent two most contrasting types
of mires.

Bogs are peat forming wetlands with a high accumulation of organic material. They are highly
acidic (pH values typically around 4.0), nutrient-poor by nature and are dominated by Sphagnum
mosses. Microbial diversity in these peatlands was assessed in numerous cultivation-independent
studies, which involved the use of fluorescence in situ hybridization, 16S rRNA gene sequence
analysis, metagenomics and metatranscriptomics [6–15]. These habitats are usually dominated by
members of the phyla Acidobacteria and Proteobacteria; other commonly present bacteria are affiliated
with the Verrucomicrobia, Actinobacteria and Planctomycetes. A large proportion of the indigenous
bacteria populations in acidic peat bogs is represented by as-yet-uncultivated organisms with unknown
physiologies and metabolic potentials [16].

Fens are also peat forming wetlands but are less acidic and more nutrient-rich than bogs. The
typical vegetation for this type of wetland is sedges and grasses. The microbial diversity in fens has
received less research attention. Most studies have addressed microbial groups involved in methane
cycling [6,17,18]. The comparative analysis of the microbial community structure at bog and fen sites
in the Glacial Lake Agassiz Peatland of northwestern Minnesota revealed much higher microbial
abundance and diversity in the fen than in the bog, as well as distinct diversity patterns [9]. The bog
site was dominated by the Acidobacteria, while the Firmicutes dominated in the fen. Clear differences
were observed also with regard to the archaeal community composition.

Russia is among the countries with the largest area of mires. The most recent estimates of the
total mire area in European Russia indicate up to 15 million hectares [19]. Many large mire massifs in
European North Russia represent a complex mosaic of ombrotrophic raised bogs, minerotrophic mires
and eutrophic fens, all in a close proximity to each other.

This study aimed at comparing microbial diversity patterns in the surface peat layers of the
neighboring raised bogs and eutrophic fens that are located within two geographically remote mire
sites in the Vologda region. As revealed by our analysis, the microbial communities in raised bogs
were highly similar to each other but were clearly distinct from those in eutrophic fens. We also
defined a number of environmental variables that determine distribution of several specific groups of
peat-inhabiting microorganisms.

2. Materials and Methods

2.1. Study Sites and Sampling Procedure

This study was performed in the Vologda region of European North Russia, within the zone of
the middle taiga. Two large mire massifs, the Shichengskoe and Piyavochnoe mires, each displaying a
high degree of spatial variability and comprising peatlands of different trophic status, were selected.
The distance between these study sites was about 260 km (Figure 1).

The Shichengskoe mire is a large (15.9 km2) mire system, which was formed in the large glacial lake
basin [20] (Figure 1). The central part of the mire is occupied by a shallow distrophic lake Shichengskoe
(1060 ha). The distribution of ombrotrophic and minerotrophic areas in the mire system reflects the flows
of gravitational and ground water. Significant area of the mire is occupied by the hummock–carpet raised
bog, dominated by Pinus–shrublets–Sphagnum and Eriophorum–shrublets–Sphagnum associations. The
eutrophic edges of the mire are forested with Betula pubescens, Salix pentandra, and Alnus glutinosa [20,21].
Two sampling sites, one located within the raised bog (59◦56′56.9” N, 41◦16′59.4” E) and another
one within the eutrophic edge of the mire (59◦56′31.6” N, 41◦15′53.5” E), were chosen for the study
(Figure 1, and in more details in Supplementary Figure S1).
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Figure 1. Location of the two study sites, the Shichengskoe (1) and Piyavochnoe (2) mires, on a map of
European North Russia (upper panel). Sampling sites within the Shichengskoe (1) and Piyavochnoe (2)
mires (bottom panel). Raised bogs and fens are indicated by red and yellow dots, respectively.

The Piyavochnoe mire is a large (80 km2) mire complex composed of several raised bogs,
aapa-mires and fen massifs, and a series of intra-mire primary lakes and mineral islands [22] (Figure 1).
The hummock–carpet peat bog site selected for sampling purposes represented an unforested part
of the mire with the uniform cover of Sphagnum angustifolium and Eriophorum vaginatum (60◦46′29.8”
N, 36◦49′35.4” E). The eutrophic fen site was located on the forested edge of the mire (60◦46′08.9”
N, 36◦49′30.9” E); the vegetation cover was composed of Comarum palustre, Menyanthes trifoliate and
Sphagnum warnstorfii (Supplementary Figure S2). Detailed descriptions of plant communities in all
sampling sites are given in Supplementary Table S1.

The sampling was performed on July 19 and 21, 2019. Three individual plots, on a distance of
approximately 30–50 m from each other, were chosen within each study site for sampling purposes.
The peat cores (30 × 30 × 30 cm; each sample of approximately 5 kg) were collected from the surface
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layer of the sampling plots and were transported to the laboratory in boxes containing ice packs. Each
of the collected 12 peat cores was processed separately. The samples used for the analysis were taken
from the upper, underlying vegetation cover peat layer, at a depth of 0–10 cm. The peat material from
this layer was separated, homogenized and cut into small fragments (5–10 mm) with sterile scissors to
prepare one composite sample for each of the cores. Three replicate samples were taken from each core
and frozen at −20 ◦C for DNA extraction.

2.2. Chemical Analyses

Field measurements of pH, total dissolved solids and electrical conductivity were made using
Combo HI 98129 analyzer (Hanna Instruments, Germany). The total organic carbon and total nitrogen
contents were determined for the average sample from each plot using Vario MACRO Cube CN-analyser
(Elementar Analysensysteme GmbH, Germany). Concentrations of Fe, Ca, Mg and P were determined
by means of inductively coupled plasma mass spectrometry (ICP-MS Agilent 7500a, Agilent, Santa
Clara, CA, USA), while the concentration of sulfates was determined using the Dionex ICS-2000 Ion
Chromatography System (Dionex, Sunnyvale, CA, USA).

2.3. DNA Extraction and Sequencing Procedure

Soil samples were frozen in liquid nitrogen and ground using a porcelain mortar and pestle.
Total DNA was isolated from 0.25 g of soil samples using DNeasy PowerSoil Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The V3–V4 variable region of the prokaryotic
16S rRNA genes was obtained by PCR with primers 341F (5’- CCTAYGGGDBGCWSCAG) and 806R
(5’- GGACTACNVGGGTHTCTAAT) [23]. PCR fragments were barcoded using Nextera XT Index
Kit v2 (Illumina, USA). The PCR fragments were purified using Agencourt AMPure Beads (Beckman
Coulter, Brea, CA, USA) and quantitated using Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA,
USA). Then all the amplicons were pooled together in equal moral amounts and sequenced on the
Illumina MiSeq instrument (2 × 300 nt reads). One of the sequencing reactions from the triplicate set of
preparations for plot II of the fen Piyavochnoe failed and, therefore, only 2 replicates were obtained for
this sample. Paired overlapping reads were merged using FLASH [24].

2.4. Bioinformatic Analyses

The pool of 16S rRNA gene sequences was analyzed with QIIME 2 v.2019.10 (https://qiime2.org) [25].
DADA2 plugin was used for sequence quality control, denoising and chimera filtering [26]. Operational
Taxonomic Units (OTUs) were clustered applying VSEARCH plugin [27] with open-reference function
using Silva v. 132 database [28,29] with 97% identity. Taxonomy assignment was performed using
BLAST against Silva v. 132 database with 97% identity. The alpha-diversity indices were calculated
using the core-metrics-phylogenetic method implemented in QIIME v. 2.2019.10. UniFrac and Principle
Coordinate Analysis (PCoA) were also carried out in QIIME2 via q2-diversity function [30–32]. The
significance of weighted and unweighted UniFrac matrices were calculated with Permanova test [33].
Microbial community composition and abundance were visualized using GraPhlAn via Galaxy
platform (http://huttenhower.sph.harvard.edu/galaxy/) [34].

MicrobiomeSeq v. 0.1 (https://github.com/umerijaz/microbiomeSeq) R package was used
to calculate Pearson correlation coefficients between abundances of the taxonomic groups and
environmental factors. The significance of the correlation was tested by calculating the p-values,
adjusted for multiple comparisons using Benjamin and Hochberg method in MicrobiomeSeq v.0.1.

2.5. Nucleotide Sequence Accession Number

The raw data generated from 16S rRNA gene sequencing were deposited in Sequence Read Archive
(SRA) under the accession numbers SRR11280489 -SRR11280524, available via BioProject PRJNA610704.

https://qiime2.org
http://huttenhower.sph.harvard.edu/galaxy/
https://github.com/umerijaz/microbiomeSeq
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3. Results

3.1. Peat Chemistry in Bogs and Fens

The peat samples collected from bog and fen sites displayed a number of key differences with
regard to their chemical composition (Table 1). The bog waters were more acidic (pH 3.7–4.3)
than those in fen sites (pH 6.4–6.9). The values of peat water conductivity in fens (394–408 and
130–225 µS cm−1 in Shichengskoe and Piyavochnoe fens, respectively) were far above those in bogs
(58–72 and 63–64 µS cm−1). While the total organic carbon contents in peat collected from these two
types of peatlands were similar, the fens contained twice as much total nitrogen as the raised bogs. The
concentrations of Ca, Mg, Fe and P in peat from fens by far exceeded those in peat from bogs (Table 1).

Table 1. Characteristics of the sampling sites

Characteristics Shichengskoe Mire Piyavochnoe Mire

Sampling Site Raised Bog Fen Raised Bog Fen

Coordinates 59◦56′56” N,
41◦16′59” E

59◦56′31” N,
41◦15′53” E

60◦46′29” N,
36◦49′35” E

60◦46′08” N,
36◦49′30” E

Sampling date 19.08.2019 19.08.2019 21.08.2019 21.08.2019

Water characteristics

water level depth, cm 4–7 8–13 5–8 11–13

pH 4.3 7.4 3.7 6.9

T, ◦C 12.2–13.3 11.1–11.5 12.8–13.6 12.9–13.3

Total dissolved
solids, ppm 29–36 197–204 31–32 65–113

Electrical
conductivity, µS/cm 58–72 394–408 63–64 130–225

Peat characteristics:

Total organic
carbon (%) 88.5 73.6 85.1 71.6

N total (%) 0.605 2.31 0.923 1.65

Sulfate (mg/L) 172 202 220 222

Fe (ppm) 343 9387 1347 16344

Ca (ppm) 3522 29834 4190 27373

Mg (ppm) 634 2575 682 1078

P (ppm) 614 1179 791 1305

Plant community

Eriophorum
vaginatum

–Sphagnum
angustifolium

Equisetum palustre
–Sphagnum
warnstorfii

Eriophorum
vaginatum

–Sphagnum
angustifolium

Comarum palustre
–Menyanthes

trifoliata–Sphagnum
warnstorfii

Vegetation
coverage, % 97–98 95–97 98–99 97–98

3.2. Sequencing Statistics and Alpha-Diversity Metrics

A total of 850,783 partial (average length, ~440 bp) 16S rRNA gene sequences were obtained
from the peat samples collected from Shichengskoe and Piyavochnoe mire massifs (Table 2). Of these,
420,342 reads were retained after quality filtering, denoising and removing chimeras. Overall, the
microbial community composition was more diverse in the two fens (average Shannon index 8.14 ± 0.11
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and Pielou evenness 0.85 ± 0.01, mean ± SE) then in the corresponding raised bogs (average Shannon
index 6.92 ± 0.10 and Pielou evenness 0.89 ± 0.00) (Table 2).

Table 2. Sequencing statistics and alpha-diversity metrics.

Sampling
Site

Sample
ID

Technical
Replicates

Input
Reads

Filtered
Reads

Denoised
Reads

Non-Chimeric
Reads

Input/Non-
Chimeric (%)

Diversity Indices

Shannon Observed
OTUs

Pielou
Evenness

Sh
ic

he
ns

ko
e

ra
is

ed
bo

g

I
1 16,569 13,986 11,328 7911 47.75 6.26 234 0.79
2 13,368 11,311 8653 7871 58.88 7.06 263 0.88
3 9981 8448 6162 5837 58.48 6.78 219 0.87

II
1 36,199 30,577 24,854 19,354 53.47 7.23 343 0.86
2 26,855 22,556 18,200 15,028 55.96 6.88 293 0.84
3 21,574 18,317 14,728 12,698 58.86 7.24 299 0.88

III
1 25,592 21,468 17,926 14,643 57.22 6.70 269 0.83
2 15,806 13,431 11,061 9140 57.83 6.60 218 0.85
3 22,249 18,550 15,202 12,560 56.45 6.77 246 0.85

Sh
ic

he
ns

ko
e

fe
n I

1 66,173 55,426 34,436 33,475 50.59 9.25 965 0.93
2 41,081 34,587 19,400 18,869 45.93 8.72 757 0.91
3 22,977 19,098 10,130 9904 43.10 8.16 538 0.90

II
1 13,255 10,914 4391 4391 33.13 7.67 384 0.89
2 18,070 15,079 7765 7744 42.86 8.12 530 0.90
3 11,726 9796 3941 3855 32.88 7.58 379 0.89

III
1 17,321 14,565 7189 7114 41.07 7.88 460 0.89
2 14,215 11,974 5838 5795 40.77 7.73 428 0.88
3 19,799 16,609 8456 8332 42.08 7.84 457 0.89

Pi
ya

vo
ch

no
e

fe
n I

1 59,217 49,585 30,626 29,298 49.48 8.80 865 0.90
2 29,471 24,831 14,240 13,779 46.75 8.33 651 0.89
3 30,310 25,511 14,449 14,029 46.29 8.17 569 0.89

II
1 15,285 12,807 5039 5030 32.91 7.64 440 0.87
2 27,096 22,699 11,467 11,253 41.53 8.22 632 0.88

III
1 21,514 17,694 8561 8548 39.73 7.97 484 0.89
2 22,856 19,147 9301 9132 39.95 8.06 542 0.89
3 26,518 22,124 11,157 10,862 40.96 8.16 558 0.89

Pi
ya

vo
ch

no
e

ra
is

ed
bo

g

I
1 23,968 20,170 15,768 13,598 56.73 7.21 329 0.86
2 13,966 11,754 8665 7783 55.73 6.77 251 0.85
3 30,399 24,950 19,350 16,556 54.46 7.31 343 0.87

II
1 28,820 24,120 17,711 15,710 54.51 7.39 355 0.87
2 29,935 25,098 18,802 16,641 55.59 7.57 374 0.89
3 33,092 27,498 20,233 18,084 54.65 7.58 391 0.88

III
1 19,036 16,003 12,938 11,136 58.50 6.69 252 0.84
2 11,608 9639 7182 6435 55.44 6.27 186 0.83
3 14,882 12,387 9439 7947 53.40 6.32 219 0.81

The number of species-level OTUs determined at 97% sequence identity ranged between 186 and
391 in the bogs and between 384 and 965 in the fens.

As revealed by the UniFrac analysis and a further Permanova test, the microbial assemblages in
the two geographically remote raised bogs were highly similar to each other but were significantly
(p ≤ 0.001) different to those in eutrophic fens (Figure 2).
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3.3. Microbial Diversity Patterns at the Phylum Level

The pools of reads retrieved from the examined peat samples were dominated by 16S rRNA gene
sequences of bacterial origin (Figure 3). The relative abundance of archaeal 16S rRNA gene reads
ranged from 0.2% to 14.4% of all sequences.

Archaeal populations in both raised bogs were represented by members of the Euryarchaeota and
Taumarchaeota. The fen Shichengskoe was characterized by a very low relative abundance of archaea,
which were nearly exclusively represented by members of the Nanoarchaeota. The latter group of
archaea was also present in the fen Piyavochnoe (mean ± SE, 4.9 ± 0.6% of total reads) along with
Euryarchaeota (5.5 ± 0.8%) and Diapherotrites (0.4 ± 0.2%) (Figure 3).

Bacterial communities in the two raised bogs were dominated by the Acidobacteria (37.6 ± 1.1%
and 33.5 ± 1.4% of total reads retrieved from the Shichengskoe and Piyavochnoe bogs, respectively).
Other major groups were the Proteobacteria (13.2 ± 0.7% and 15.6 ± 1.5%), Planctomycetes (18.3 ± 1.4%
and 10.9 ± 1.6%), and Verrucomicrobia (12.8 ± 1.0% and 14.6 ± 0.6%) (Figure 3). Less abundant groups of
bacteria, which were detected in both raised bogs included the Patescibacteria (2.9± 0.6% and 5.6± 1.1%),
Chloroflexi (0.2 ± 0.1% and 2.7 ± 0.9 %), Actinobacteria (1.9 ± 0.4% and 2.2 ± 0.6%), Bacteroidetes (1.1 ± 0.2%
and 2.1 ± 0.3%), Chlamydiae (1.1 ± 0.1% and 1.1 ± 0.1%), Cyanobacteria (1.2 ± 0.1% and 0.6 ± 0.1%),
Spirochaetes (0.2 ± 0.0% and 0.7 ± 0.2%), Firmicutes (0.6 ± 0.2% and 0.2 ± 0.0%) and WPS-2 (0.5 ± 0.1%
and 0.7 ± 0.1%). At the phylum level, the microbial community compositions in the two studied raised
bogs were highly similar to each other (Figure 3).

In contrast to raised bogs, the microbial assemblages in both fens were dominated by members
of the Proteobacteria (24.8 ± 2.1% and 20.9 ± 1.4% of total reads retrieved from the Shichengskoe and
Piyavochnoe bogs, respectively) and Chloroflexi (15.8 ± 1.3% and 17.9 ± 1.9%). The third numerically
abundant group of reads in the fens Shichengskoe and Piyavochnoe were the Acidobacteria (22.6 ± 0.8%
and 9.6 ± 0.5%) and Patescibacteria (6.4 ± 0.6% and 18.9 ± 1.3%). The 16S rRNA gene sequences affiliated
with the Planctomycetes (11.4 ± 0.7% and 7.0 ± 0.8%) and Bacteroidetes (4.4 ± 0.4% and 4.1 ± 0.2%) were
retrieved from both fens. Several minor groups of bacteria that were detected in fens but were absent
from raised bogs included the Rokubacteria (3.5 ± 0.3% and 0.5 ± 0.1%), Latescibacteria (1.5 ± 0.1% and
0.7 ± 0.1%), and Nitrospirae (0.9 ± 0.3% and 0.5 ± 0.1%).
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3.4. Bacterial Groups Characteristic for Specific Types of Mires

The difference between the microbial community compositions in raised bogs and fens became
even more pronounced when the analysis was performed at the sub-phylum level. Thus, a high relative
abundance of the Acidobacteria was detected both in the bog and the fen of the mire Shichengskoe
(Figure 3). In the bog, however, this phylum was represented by members of the class Acidobacteriia,
i.e., the orders Acidobacteriales, Bryobacterales and as-yet-uncultivated Subdivision 2 (SD2) (Figure 4).
In contrast, most acidobacterial 16S rRNA gene sequences retrieved from the fen Shichengskoe were
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affiliated with the class Vicinamibacteria, although members of the Blastocatellia as well as SDs 7 and
17 were also present. A highly similar pattern in the Acidobacteria distribution was observed in peat
samples collected from the Piyavochnoe mire (Supplementary Figure S3).
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The pools of proteobacterial reads retrieved from the two raised bogs were dominated by
Alphaproteobacteria- affiliated 16S rRNA gene sequences, with the most abundant group of sequences
from as-yet-uncultivated members of the order Rhizobiales. The latter, by contrast, were only poorly
represented in the two fens, where members of the Betaproteobacteria became one of the most abundant
proteobacterial groups (Figure 4; Supplementary Figure S3).
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Some habitat-specific diversity patterns were also observed for the Planctomycetes. Thus,
Isosphaeraceae-like planctomycetes were found exclusively in raised bogs, while members of the
as-yet-uncultivated group OM190 were present only in eutrophic fens (Figure 4; Supplementary
Figure S3). The most abundant group of planctomycetes in the bogs, i.e., the Phycisphaera-like group
WD2101, however, was present at low abundances in eutrophic fens as well. A similar distribution
patterns was also characteristic of several groups within the Verrucomicrobia, i.e., the Pedosphaerales,
Chtoniobacteriales and Opitutales. Methylacidophilales-like verrucomicrobia were detected exclusively in
raised bogs.

Members of the candidate division “Patescibacteria” were most abundant in the fens, with the
highest relative abundance and diversity detected in the Piyavochnoe fen (Supplementary Figure S3).
Representatives of another candidate division, the “Rokubacteria”, were found exclusively in the fens
(Figures 3 and 4), with the highest relative abundance (3.4% of all reads) detected in the Shichengskoe fen.

3.5. Most Abundant Habitat-Specific OTUs

The pools of OTUs shared between the two geographically remote bog sites and between the two
fen sites included 338 and 578 OTUs, respectively (Figure 5). By contrast, the neighboring bog and fen
sites in Shichengskoe mire had only 33 common OTUs, while 77 common OTUs were identified for the
bog and fen sites in the mire Piyavochnoe. Only nine OTUs were shared between all four peatlands
examined in this study.
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Figure 5. The Venn diagram showing the number of Operational Taxonomic Units (OTUs) shared by
different peatland sites: Shichengskoe bog (SB), Shichengskoe fen (SF), Piyavochnoe bog (PB), and
Piyavochnoe fen (PF).

The list of most abundant OTUs (≥ 0.7% of all reads retrieved from the corresponding peatland
type), which were specific for either bogs or fens, is given in Table 3. One half of bog-specific OTUs
was represented by members of the class Acidobacteriia, orders Acidobacteriales and Bryobacterales as
well as SD2. Only some of these OTUs could be classified at the genus level, as representing the
genera Bryobacter, Occallatibacter, and Candidatus Solibacter. Another group of abundant bog-specific
OTUs was affiliated with the Planctomycetes and belonged exclusively to Phycisphaera-like WD2101
soil group. Verrucomicrobia-affiliated OTUs in bogs were represented by members of the Opitutales
and Pedosphaerales. Interestingly, one of the most abundant bog-specific OTUs affiliated with the
Patescibacteria and belonged to the Parcubacteria.
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Table 3. Most abundant OTUs common for microbial communities of either peat bogs or fens.

OTU % Closest Silva
Match

Sequence
Identity (%) Taxonomy

Raised Bogs

1 2.0 FR720610 97.8 Acidobacteria; Acidobacteriia;
Acidobacteriales

2 1.9 HQ598818 96.5 Acidobacteria; Acidobacteriia;
Acidobacteriales; Acidobacteriaceae (SD 1)

3 1.5 FJ625320 99.7
Acidobacteria; Acidobacteriia;

Bryobacterales; Bryobacteraceae
(SD 3); Bryobacter

4 1.5 HM445984 90.2 Patescibacteria; Parcubacteria

5 1.5 EF516015 98.3 Acidobacteria; Acidobacteriia;
Acidobacteriales6 1.5 HQ598778 99.3

7 1.4 GU127746 93.8 Planctomycetes; Phycisphaerae;
Tepidisphaerales; WD2101 soil group

8 1.4 EF173346 98.5
Acidobacteria; Acidobacteriia;

Acidobacteriales; Acidobacteriaceae (SD 1);
Occallatibacter

9 1.3 AY792285 99.0 Proteobacteria; Alphaproteobacteria;
Rhizobiales; Beijerinckiaceae

10 1.2 CZKI01000047 95.0 Verrucomicrobia; Verrucomicrobiae;
Opitutales; Opitutaceae

11 1.0 GU983329 97.0
Acidobacteria; Acidobacteriia;

Bryobacterales; Bryobacteraceae (SD 3);
Candidatus Solibacter

12 1.0 AY792311 96.0 Verrucomicrobia; Verrucomicrobiae;
Pedosphaerales; Pedosphaeraceae

13 1.0 GU727715 97.5
Acidobacteria; Acidobacteriia;

Bryobacterales; Bryobacteraceae (SD 3);
Bryobacter

14 0.9 GQ402663 95.5 Planctomycetes; Phycisphaerae;
Tepidisphaerales; WD2101 soil group15 0.8 AY963300 94.8

16 0.8 AM162437 97.8 Proteobacteria; Alphaproteobacteria;
Rhizobiales; Beijerinckiaceae; Roseiarcus

17 0.8 GU127795 97.5 Acidobacteria; Acidobacteriia;
Acidobacteriales

18 0.8 HM445277 98.0 Proteobacteria; Gammaproteobacteria;
WD260

19 0.7 EU150204 97.5 Acidobacteria; Acidobacteriia; SD 2

20 0.7 HQ597923 96.3 Acidobacteria; Acidobacteriia;
Bryobacterales; Bryobacteraceae (SD 3);

Candidatus Solibacter21 0.7 JN023510 96.8

Fens

22 1.3 AB630565 99.5 Chloroflexi; Anaerolineae; Anaerolineales;
Anaerolineaceae

23 1.1 JQ311867 92.8 Planctomycetes; Phycisphaerae;
Tepidisphaerales; WD2101 soil group

24 0.9 LN570440 94.5 Proteobacteria; Alphaproteobacteria;
Caulbacterales; Hyphomonadaceae

25 0.8 HM062099 97.5 Vicinamibacteria

26 0.8 FQ659415 86.2 Patescibacteria; Parcubacteria; Ca.
Nomurabacteria

27 0.7 EF019369 96.8 Chloroflexi; KD4-96

Since the microbial communities in the two fens were more distinct than those in the bogs
(Figure 2), the list of fen-specific OTUs with the relative abundance ≥ 0.7% of all reads included six
records only (Table 3). These included Anaerolineaceae- and KD4-96 group-related Chloroflexi, WD2101
group-related Planctomycetes, alphaproteobacteria of the family Hyphomonadaceae, acidobacteria of the
class Vicinamibacteria and Candidatus Nomurabacteria of the Patescibacteria.
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3.6. Correlation between Peat Properties and Abundance of Microbial Groups

Correlation analysis performed for the number of key bacterial groups in peatlands showed
that many of those were highly related with the variation of peat properties (Figure 6). Relative
abundances of the Acidobacteriia, several groups within the Verrucomicrobia (Pedosphaerales, Opitutales,
Methylacidophilales) and Planctomycetes (Isosphaeraceae, WD2101) were positively correlated with total
organic carbon content (TOC) but negatively correlated with pH and total nitrogen content (TN). The
opposite correlation pattern (negative correlation with TOC but positive correlation with pH and TN)
was characteristic of the Vicinamibacteria, uncultivated group of planctomycetes OM190, Anaerolineales,
Caulobacterales and uncultivated group within the Rhizobiales. Notably, a strong positive correlation
with Fe availability was observed in members of the Parcubacteria, Anaerolineales and SD18 of the
Acidobacteria. The relative abundances of Rokubacteria were positively correlated with TN as well as Ca
and Mg availability.
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4. Discussion

As shown in our study, the microbial assemblages in two raised bogs located at a distance of
260 km were highly similar to each other but were clearly distinct from those in two eutrophic fens,
which are located in a close proximity (at a distance of several hundred meters) to the bogs. From our
research, the trophic status and geochemical characteristics of these two different types of peatlands
were the major factors that shaped the microbial community composition in these ecosystems.

Independently of the geographic location, the diversity patterns obtained in different studies for
acidic and nutrient-poor Sphagnum-dominated peat bogs are highly reproducible [6–11,14,17,35].
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Surface peat layers in these peatlands are commonly dominated with Acidobacteria, although
Alphaproteobacteria, Planctomycetes and Verrucomicrobia are also present in a high abundance. Diversity
analysis at the phylum level, however, is clearly insufficient for identifying a spectrum of bog-specific
microorganisms. Thus, most acidobacteria that are commonly detected in bogs are affiliated
with one particular class of this phylum, i.e., the Acidobacteriia [36]. The latter accommodates
aerobic and facultatively anaerobic, acidophilic or acidotolerant, mesophilic and psychrotolerant,
chemoheterotrophic bacteria, which utilize various sugars and polysaccharides, and possess a number
of hydrolytic capabilities including the abilities to degrade cellulose and chitin [37,38]. The most
abundant bog-specific OTU determined in our study belonged to the as-yet-uncultivated group
within the order Acidobacteriales and displayed highest similarity to the environmental clone sequence
(GenBank accession No. FR720610) retrieved from a Sphagnum peat bog in Yaroslavl region, European
North Russia [10]. Several other abundant bog-specific OTUs listed in Table 3 are affiliated with
the genus Bryobacter [39]. Acidobacteria of this genus were isolated from boreal peat bogs and are
capable of utilizing galacturonic and glucuronic acids, which are released during decomposition of
Sphagnum moss. One particular gap in our knowledge of bog-inhabiting acidobacteria is represented
by Subdivision 2 (SD2) of this phylum, which also falls within the taxonomic range of the class
Acidobacteriia but does not include characterized representatives. SD2 acidobacteria are often detected
in Sphagnum-dominated wetlands [11,40] but, so far, have resisted all cultivation efforts. According
to the results of our correlation analysis (Figure 6), SD2 acidobacteria are most likely phenotypically
similar to members of the Acidobacteriales and Bryobacterales. The reasons behind our failure to culture
these bacteria remain unknown.

Among the bog-specific populations of Planctomycetes, Phycisphaera-like WD2101 soil group
deserves particular attention. This group was named after the environmental 16S rRNA gene
sequence WD2101 (GenBank accession No. AJ292687) retrieved by Nogales et al. [41] from an acidic
polychlorinated biphenyl-polluted soil near Wittenberg, Germany. Members of this group have been
detected by cultivation-independent approaches in a wide variety of peatlands [42]. At present, WD2101
soil group is classified within the order Tepidisphaerales of the class Phycisphaerae. The only characterized
representative of this order is the moderately thermophilic, polysaccharide-degrading planctomycete
from terrestrial hot springs, Tepidisphaera mucosa [43]. Tepidisphaera mucosa grows between 20 and 56 ◦C
and in the pH range 4.5–8.5. The 16S rRNA gene sequence similarity between Tepidisphaera mucosa and
the corresponding gene fragments retrieved from peat is low (~90%), suggesting that bog-inhabiting
members of this order belong to as-yet-undescribed family and may possess different temperature
and pH adaptations. As indicated by our correlation analysis (Figure 6), these planctomycetes are
acidophilic, oligotrophic heterotrophs, which do not depend on availability of mineral nutrients.

Another bog-specific bacterial group of interest is represented by Verrucomicrobia-affiliated 16S
rRNA gene reads which, according to the classification system implemented in Silva v.132 database,
are classified as belonging to the order “Methylacidophilales”. These sequences were detected in several
molecular diversity studies of acidic peat bogs [11,44]. The “Methylacidophilaceae” is a candidate
family that accommodates extremely acidophilic methanotrophic bacteria, which grow at pH < 5 [45].
These extremophilic methanotrophs were found in several environments over a wide temperature
range but seem to be restricted to geothermally influenced habitats [46]. The sequences retrieved
from peatlands display only a low similarity (84–87%) to 16S rRNA gene sequences of currently
described verrucomicrobial methanotrophs. The occurrence of verrucomicrobial methanotrophs in
acidic peatlands, therefore, remains an open question.

In comparison to the results of diversity analyses in peat bogs, the reports on microbial community
compositions in fens show more variability. The latter, apparently, is largely dependent on pH
value and concentrations of individual nutrients, such as mineral nitrogen, sulfate, Fe and others.
In addition to the Proteobacteria, which are always present as a major bacterial group, different fens may
contain Firmicutes [9], Chloroflexi [8], Actinobacteria [17] or Acidobacteria ([17]; this study) as the second
numerically abundant group. Members of the Bacteroidetes are also common members of the microbial
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community in fens. The relative abundance of these bacteria in peatlands is largely determined by the
availability of mineral nitrogen [10].

The two fens examined in our study also hosted a large diversity of bacteria from several candidate
phyla, such as Patescibacteria, Latescibacteria, Rokubacteria and WOR-1. Thus, a surprisingly high relative
abundance of Patescibacteria (15–30% of total 16S rRNA gene reads) was detected in the fen Piyavochnoe
(Figure 3). Since an ectosymbiotic lifestyle has been suggested for this group of as-yet-uncultivated
bacteria with small streamlined genomes [47], their potential host(s) should also have been present in
this fen as one of the major bacterial groups. High relative abundances of several understudied phyla
with no cultured representatives make eutrophic fens an attractive object of further metagenome-based
insights into the metabolic capabilities of these elusive bacteria, which are expected to uncover their
functional potential and to explain their wide distribution in peatlands.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/4/484/s1.
Figure S1: The mire Shichengskoe; Figure S2: The mire Piyavochnoe; Figure S3: The most representative
microbial groups in the bog and fen sites of the Piyavochnoe mire; Table S1: Plant community composition of the
sampling sites.
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