
microorganisms

Article

Inhibition of Primary Photosynthesis in Desiccating Antarctic
Lichens Differing in Their Photobionts, Thallus Morphology,
and Spectral Properties

Miloš Barták 1, Josef Hájek 1, Alla Orekhova 1, Johana Villagra 2, Catalina Marín 3, Götz Palfner 3 and
Angélica Casanova-Katny 2,*

����������
�������

Citation: Barták, M.; Hájek, J.;

Orekhova, A.; Villagra, J.; Marín, C.;

Palfner, G.; Casanova-Katny, A.

Inhibition of Primary Photosynthesis

in Desiccating Antarctic Lichens

Differing in Their Photobionts,

Thallus Morphology, and Spectral

Properties. Microorganisms 2021, 9,

818. https://doi.org/10.3390/

microorganisms9040818

Academic Editors: Paolo Giordani,

Juri Nascimbene and

Renato Benesperi

Received: 1 February 2021

Accepted: 7 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119,
625 00 Brno, Czech Republic; mbartak@sci.muni.cz (M.B.); jhajek@sci.muni.cz (J.H.);
a.orechova@seznam.cz (A.O.)

2 Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto,
Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile; jovyvillagra@gmail.com

3 Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography,
Campus Concepción, Concepción University, 4030000 Concepción, Chile; catmarin@udec.cl (C.M.);
gpalfner@udec.cl (G.P.)

* Correspondence: mcasanova@uct.cl; Tel.: +56-96-209-7709

Abstract: Five macrolichens of different thallus morphology from Antarctica (King George Island)
were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic
processes was examined. We investigated the lichens’ responses to the relative water content
(RWC) in their thalli during the transition from a wet (RWC of 100%) to a dry state (RWC of 0%).
The slow Kautsky kinetics of chlorophyll fluorescence (ChlF) that was recorded during controlled
dehydration (RWC decreased from 100 to 0%) and supplemented with a quenching analysis revealed
a polyphasic species-specific response of variable fluorescence. The changes in ChlF at a steady state
(Fs), potential and effective quantum yields of photosystem II (FV/FM, ΦPSII), and nonphotochemical
quenching (NPQ) reflected a desiccation-induced inhibition of the photosynthetic processes. The
dehydration-dependent fall in FV/FM and ΦPSII was species-specific, starting at an RWC range
of 22–32%. The critical RWC for ΦPSII was below 5%. The changes indicated the involvement of
protective mechanisms in the chloroplastic apparatus of lichen photobionts at RWCs of below 20%.
In both the wet and dry states, the spectral reflectance curves (SRC) (wavelength 400–800 nm) and
indices (NDVI, PRI) of the studied lichen species were measured. Black Himantormia lugubris showed
no difference in the SRCs between wet and dry state. Other lichens showed a higher reflectance in
the dry state compared to the wet state. The lichen morphology and anatomy data, together with
the ChlF and spectral reflectance data, are discussed in relation to its potential for ecophysiological
studies in Antarctic lichens.

Keywords: maritime antarctica; King George Island; lichen dehydration; chlorophyll fluorescence;
stress tolerance

1. Introduction

The lichen biota of the Antarctic continent dominates the polar tundra with more than
350 species distributed throughout the few small ice-free areas [1,2]. Temperature and water
are the two principal factors limiting the distribution of living organisms in Antarctica [3].
Both lichens and mosses penetrate further into the discontinuous small ice-free microsites
that offer colonizable substrates, reaching almost 86 ◦S in the case of lichens [4]. Although
almost the entire distribution is modeled based on the temperatures that make life feasible,
little is known about the role of water in survival on the frozen continent. However,
for microenvironments, it has been reported that beyond 72 ◦S, the most determining
factors of diversity are the length of the active period and the available water, which is
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closely linked to temperature [5]. Various studies have shown that lichens are resistant to
low temperatures and present positive photosynthesis at temperatures close to 0 ◦C [6].
However, it has also been recorded that the optimum temperature for net photosynthesis
for several lichens is between 5–15 ◦C [7]. Furthermore, it is expected that, as global
warming progresses, these organisms will be affected by the increase in temperature [8],
which in Antarctica is as high as approximately 3 ◦C, although this varies throughout the
continent. On the other hand, the majority of Antarctic lichens are saxicolous because
rocks and stones are the most available substrate on the Antarctic continent; therefore, the
water content variations to which they are exposed are greater because the rocks do not
retain water. In this context, although their response to temperatures is well known, less
is known about the response of Antarctic lichens to a lack of water in the field. Lichens
are poikilohydric organisms that obtain water from atmospheric humidity or from rain. In
Antarctica, where it rarely rains, water is mostly available in liquid form from the water
runoff from snowbanks and glaciers or from snowfall in summer. Therefore, during the
study of the in situ response of the crustose lichen Placopsis antartica, it was found that
the dominant factor that affected the electron transport rate (ETR) was the speed with
which the thallus moistened in comparison to the controls [9]. Hence, from the ecological
perspective, it is important to investigate whether Antarctic lichens present differences in
their ability to respond to changes in humidity, as well as whether there are differences
between species displaying different morphotypes [10,11]. During the Antarctic summer,
lichens absorb water from rain, mist, and thawing snow [12]. However, in Continental
Antarctica, lichens can also absorb water from snow sublimation [13].

Lichens are desiccation-tolerant organisms that undergo a large number of dehydra-
tion/rehydration cycles during their lifetime [5]. When lichens undergo desiccation from
a wet to a dry state, they lose their photosynthetic activity and gradually become physio-
logically and photosynthetically inactive. For severely desiccated thalli, CO2 exchange is
ceased in lichen photobionts until they become hydrated again [7]. Desiccation in lichens
correlates with a decline in primary photosynthetic activity, a loss of variable chlorophyll
fluorescence (ChlF), and a decrease in their overall fluorescence yield. These changes
are accompanied by a decoupling of photosystems I and II in the algal/cyanobacterial
photobiont during thallus desiccation. Lichens activate several protective mechanisms
during desiccation, which decrease ChlF. The mechanisms quench ChlF and protect the
chloroplastic apparatus from over-energization during desiccation. The changes enable
photobiont cells and their chloroplasts to keep functioning, even under severe desiccation.
The underlying mechanisms have been studied over the last few decades, and several
quenching mechanisms have been identified in lichens [14]. Among relevant studies,
energy dissipation from desiccating mosses and lichens was described by [15–18]. The
mechanism comprises effective quenching centers that appear during desiccation and act
as thermal dissipation units.

This study focuses on the effects of lichen desiccation on the shape of slow Kautsky
kinetics (KKs) of ChlF measured in dark-adapted samples exposed to continuous light. The
KKs show a rise from the O (background ChlF) to the P peak, followed by a polyphasic
SMT phase. The OPSMT transient reflects important points on KKs, where O stands for
the origin, P for peak, S for a semi-steady-state ChlF level, M for local maximum, and T
for a terminal steady-state ChlF level. The OPSMT shapes have been analyzed in detail
by Riznichenko et al. (1996) [19], Govindjee (see [20,21]). The authors described the ChlF
signal change within the PSMT part of the KKs and attributed it to the photochemical and
nonphotochemical processes that take place in a photosynthetic apparatus. Regarding the
photochemical processes, the reoxidation of reduced QA due to the photosynthetic electron
transport chain causes the decrease in the PSMT phase. However, other processes, such as
those involved in nonphotochemical quenching, could also be involved (see below). Gener-
ally, the SMT phase of the ChlF signal forming the induction curve and the appearance of
additional maxima are caused by stimulating the dark reactions of the Calvin-Benson cycle
of the CO2 fixation (see [22]). The SMT part is polyphasic due to several co-acting processes.
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Nonphotochemical fluorescence quenching (NPQ) results from these processes as the for-
mation of the transthylakoidal proton gradient [23], phosphorylation of the light-harvesting
complex (see [24]), oxidation of the plastoquinone pool, and photoinhibition [25]. The
P-S-M transition is denoted to the components of nonphotochemical quenching (qN), i.e.,
energy-dependent quenching (qE), state transition quenching (qT), and photoinhibitory
treatment (qI) [26]. For qE, several underlying mechanisms have been proposed, such as
quenching in light-harvesting complexes [27]. For qT, the “spillover” of excitation energy
from PSII to PSI has been considered; however, the involvement of excitation spillover
during the P-S phase is improbable [28]. For the S-M phase, the involvement of the state
transition was reported previously [29]. Although qI’s involvement in the SMT phase is
minor, photoinhibition-induced changes and the activation of photoprotective mechanisms
must be taken into consideration. Because a proportion of the qN components are species-
and treatment-specific, it may be suggested that the entire PSMT chlorophyll fluorescence
transient reflects a superimposition of several processes.

Compared to the numerous studies that exploit KKs to analyze stress on PS II func-
tioning, KKs has only been used sporadically in lichens. It was used to characterize their
sensitivity to photoinhibition [30] and freezing stress [31]. Nabe et al. (2007) [32] studied
the sorbitol effect on the KKs shape in liverwort (Marchantia polymorpha) and moss (Bryum
argenteum). In this study, we focused on the PSMT phase of the KKs shape. We hypothe-
sized that the KKs would be species-specific and sensitive to the desiccation of selected
Antarctic lichens. Therefore, we measured the KKs of selected lichen species and analyzed
the parameters derived from the O, P, S, M, and T ChlF signals (e.g., the ratios related to
peak ChlF [P]), such as P/M, P/T, and others. We hypothesized that they would be related
to the relevant water content (RWC) in thalli.

A dehydration-induced decrease in variable chlorophyll fluorescence that results in a
decrease in slow ChlF transient has been shown several times for lichens. The decrease
in O, P, S, and T ChlF signals is accompanied by the inhibition of primary photosynthetic
processes, which is demonstrated by a decrease in potential yield of photochemical pro-
cesses in photosystem II (FV/FM), and effective quantum yield of photosystem II (ΦPSII).
Such response has been found in cyano- and chlorolichens (see [33]). However, the decline
is species-specific and bi- or triphasic if the supersaturation effect takes place. The latter
is true for some cyanolichens and Nostoc commune colonies [34]. Therefore, in our study,
we expected species-specific responses to the ChlF parameters when evaluating the photo-
system II activity of lichen photobiont, such as FV/FM, ΦPSII, and steady-state chlorophyll
fluorescence (Fs) in gradually desiccating lichen samples. Additionally, we were interested
in the RWC at which the first signs of inhibition of the photosynthetic processes in PSII
appear and the RWC at which half of the maximum ChlF parameters are found. Emphasis
was also given to the critical RWC, i.e., the RWC at which the individual species show a
full limitation of the primary photochemical processes of photosynthesis. Furthermore, we
expected species-specific involvement of NPQ, which is considered a protective mechanism
that is activated during desiccation in lichens [35]. We evaluated species-specific sensitivity
of primary photosynthetic processes in several chlorolichens at low desiccation. This
study is a follow-up study of a previous one [33], which focused on desiccation-induced
limitation of primary photosynthetic processes in lichens monitored by ChlF parameters
(ΦPSII and nonphotochemical quenching of absorbed light energy—qN) and changes in
spectral reflectance indices during thallus desiccation. In this study, we supplemented the
approach by using a more detailed analysis of the shape of slow Kautsky kinetics during
desiccation. We hypothesized that Antarctic lichens from King George Island, specifically
their primary processes of photosynthesis, will be highly resistant to desiccation.

2. Material and Methods
2.1. Site Description, Lichen Species Collection, and Handling

The lichen material was collected during the Chilean Antarctic Expedition (ECA56)
on the Fildes Peninsula (62◦12′25′′ S, 58◦58′26′′ O), King George Island (KGI), South
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Shetland Island Archipelago (Figure 1), which is located close to the northern Antarctic
Peninsula. For terrestrial vegetation, the greatest diversity, cover and growth rates are
contributed by cryptogam species in the northern part of the peninsula up to 72◦ S, where
the factor that best correlates with the exuberance of the polar tundra would be the annual
temperature [4]. Therefore, the South Shetland Archipelago in the maritime Antarctic is
considered a diversity hotspot. Fildes Peninsula is the second largest ice-free area within the
Archipelago, with a mean annual air temperature at sea level of −2.3 ◦C at Bellinghausen
Station, and the annual decadal air temperature trend between 1969–2010 being about
0.259 K/decade [36]. The tundra vegetation consists of expanding, well-developed lichen
and moss communities. A total of 61 moss species have been documented on King George
Island, of which 40 are present on Fildes Peninsula [37], with also about 109 lichen species
being distributed along the ice-free areas [38]. The lichen samples were transferred to
Professor Julio at Escudero Station from Instituto Antártico Chileno (INACH) in January
2019, and the voucher specimens were stored at the Fungarium of the Universidad de
Concepción, CONC-F.
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50-4f44-b7eb-c48e1999086b (accessed on 1 February 2021).

2.2. Species Characteristics

For the study, we selected the following five Antarctic lichens (Figures 2 and 3) that
differ in their thallus morphology, photobiont, and morphotype: foliose (Parmelia saxatilis),
crustose (Placopsis antarctica), and fruticose species (Himantormia lugubris, Ramalina terebrata,
and Lecania brialmontii), as shown in Table 1.
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(bar = 100 µm). Photo credit: A. Casanova-Katny.
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terebrata (bar = 100 µm). Photo credit: A. Casanova-Katny and A. Beck (R. terebrata).
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Table 1. Antarctic lichen species used in the study from Fildes Peninsula, King George Island. The species’ details were
obtained from field observation and using [1,2,39].

Lichen Family Lichen Species Photobiont Thallus Morphotype Ecology and Distribution

Parmeliacea Parmelia saxatilis (L.) Ach Trebouxioid Foliose

Cosmopolitan species with southern limit
in Antarctica, on rocks, boulders, stones,

and mosses, and on dry to moist rock faces.
Apothecia not observed in Antarctica.

Himantormia lugubris
(Hue) I.M. Lamb Trebouxioid Fruticose

Endemic in Antarctica. Preferentially
saxicolous on acidic rocks and abundant on
the southern part of Fildes Peninsula and

Ardley Island, where it forms several
patches on soil or moss. In nitrophobic
communities, growing above 70 m.a.s.l.

Ramalinacea Lecania brialmontii (Vain.)
Zahlbr. Trebouxioid Fruticose

Endemic in Antarctica. Preferentially
saxicolous, grows on rocks and moist and

shaded sites, typical for
ornithocoprophilous lichen communities.

Ramalina terebrata Hook. F.
& Taylor Trebouxioid Fruticose

Cosmopolitan species with southern limit
in Antarctica. Saxicolous, grows on costal

cliffs and large boulders, typical for
ornithocoprophilous lichen communities.

Apothecia not observed in Antarctica.

Trapeliaceae
Placopsis antarctica, D.J.
Galloway, R.I.L. Sm. &

Quilhot

Stichococcus antarcticus;
or S. allas Crustose

Endemic in Antarctica. Grows in
nitrophobic communities. Cyanobacteria in

cephalodia, with species of Nostoc.

To study the anatomy of the lichen thalli, freehand cross-sections were made using a
razor blade; thickness of the upper and lower cortex, medulla, and algae layer were mea-
sured in only two species, Himantormia lugubris and Parmelia saxatilis, due to the restrictions
imposed by the quarantine. Lichen samples were put on glass slides before being observed
under a Leitz Dialux microscope (Leitz, Wetzlar, Germany) at 100× magnification and
documented using a Nikon Coolpix 950 digital camera (Nikon, Tokyo, Japan) attached to
the microscope.

2.3. RWC during Dehydration

After collection in the field, the thalli of the lichen species chosen for the experiments
were fully hydrated at 15 ◦C for 24 h in closed Petri dishes until the maximum weight was
reached (this was tested by weighing the lichen on a laboratory analytical scale [Brand,
Adam Equipment, Oxford, MS, USA]). The fully hydrated thalli were then dried at room
temperature (18 ◦C, 40% RH) in the laboratory at the Escudero Station (Fildes Peninsula).
During desiccation, the thalli were regularly (typically in around ten-minute intervals)
weighed to evaluate the RWC which was calculated using the following equation: RWC
(%) = [(Fw − Dw)/(Ww − Dw)] × 100, where Fw is the actual fresh weight of a sample,
Dw is the weight of the fully dry sample (oven-dried sample at 35 ◦C for 24 h), and Ww is
the weight of the fully hydrated sample. The weighing of the thalli and RWC evaluation
lasted until a constant weight of dry thalli was reached.

2.4. Chlorophyll Fluorescence Measurements

The samples were collected and immediately remoistened for 24 h under the natural
outside temperature. Before the dehydration measurements, the samples were tested
for FV/FM after 24 h, 25 h, and 26 h of rehydration. When FV/FM reached a maximum
and constant value, the sample was considered vigorous and the primary photosynthetic
processes fully activated. From the fully wet (RWC = 100%) to dry (RWC = 0–10%)
states of the studied species, the ChlF parameters were measured repeatedly, typically in
40-min intervals.

Laboratory measurements using the slow Kautsky kinetics (KKs) method supple-
mented with saturation pulses in dark- and light-adapted states were used. The chlorophyll
fluorescence parameters were recorded using a FluorCam HFC 1000-H (Photon Systems
Instruments, Drásov, Czech Republic) and the FluorCam v. 7.0 software. Additionally,
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Kautsky kinetics supplemented with a quenching analysis was used. The method starts
with a saturation pulse applied in a dark-adapted state (ten minutes) to induce the max-
imum ChlF (FM) followed by ten seconds of dark. Then, the samples were exposed to
actinic light (100 µmol (photons) m−2 s−1) for 300 s, and a polyphasic time course of the
ChlF emission was recorded. When a steady-state ChlF was reached (after 300 s), another
saturation pulse was applied to induce FM’ levels of ChlF, i.e., the maximum ChlF value
in light-adapted material. After switching off the actinic light, background ChlF (F0′ ) was
recorded for 20 s. Standard ChlF parameters (FV/FM, ΦPSII, NPQ, Fs) were calculated
using FluorCam software. Their dependence on RWC is presented in this study. For a
more detailed analysis, the dehydration response curves of the effective quantum yield of
the photosynthetic processes in PSII (ΦPSII) and the steady-state chlorophyll fluorescence
(Fs) were selected. The critical points were distinguished for the ΦPSII and Fs dehydration
response curves, which denoted the RWC at which the ChlF parameter was limited to 0.

The dehydration response curves of ΦPSII, NPQ, and FS were plotted and analyzed.
Species-specific responses in the dehydration-induced decline in photosynthetic parameters
were noted, and the RWC at which the functional changes occurred were evaluated.

The records of ChlF transients for particular lichen species and RWC were analyzed.
On the slow Kautsky kinetics of ChlF, the levels O, P, S, M, and T were identified, along
with the times at which they were reached. This was done using FluorCam software after
100× magnification of the curve (y axis: ChlF as dependent variable), which distinguished
the particular ChlF levels, even on seemingly flat curves. Particular species-specific levels
(P, S, M, T) were found by the software, as the ChlF signals reached at the times of 2.0 s (for
P) 4.8–5.2 s (for S), 16.0–28.6 s (for M), and 300 s (for T) after the continuous light inducing
KKs was switched on. The exception was P. antarctica (algal part) where S and M ChlF
levels were found in 16.2 and 50.0 s. The effects of RWC on the above-specified ChlF levels
and ratio parameters (P/S, P/M, S/M, M/T) were then evaluated according to [40].

2.5. Spectral Properties in the Wet and Dry States of Thallus

Reflectance spectra within the range of 380–800 nm were measured using non-imaging
spectro-reflectometers, PolyPen RP 400 (UV-VIS, Photon Systems Instruments, Brno, Czech
Republic). The measurements were conducted in the wet and dry states of the thallus
to evaluate the hydration-dependent changes in spectral reflectance curves and derived
from spectral indices (see Table 2). Lichen thalli were placed into a clip in the PolyPen’s
measuring head, which allowed a constant distance between the detector and the lichen.
In the clip, a short darkening period (approx. one minute) was allowed before single
measurements of the spectral reflectance were taken. After downloading the files from the
spectro-reflectometer, the mean ’wet’ and ’dry’ spectrums were calculated. The means of
particular spectral reflectance indices were evaluated, and the change between the dry and
wet states was discussed.

Table 2. List of used spectral reflectance indices with equations and referenced sources.

Spectral Reflectance Indices Equation References

Normalized Difference Vegetation Index (NDVI) NDVI = (R780 − R670)/(R780 + R670) [41] Rouse et al. (1974)
Photochemical Reflectance Index (PRI) PRI = (R531 − R570)/(R531 + R570) [42] Gamon et al. (1992)

2.6. Statistical Analysis

Unless stated otherwise, the statistical analysis was done by an ANOVA test (RWC
effect on ChlF parameters) and Student t-test (spectral reflectance curves), with statistically
significant differences of p ≤ 0.05.
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3. Results
3.1. Anatomy of the Species

A microscopy study revealed species-specific differences in the heteromerous thallus
morphology and anatomy of the five different Antarctic lichens. Qualitative differences
were found in the four thalline layers, upper cortex, green-algae layer (Trebouxioid),
medulla, and lower cortex. In P. saxatilis, the algal layer is very thin and continuous,
and the thallus thickness ranges between 152–159 µm (Figure 2a,b). For the fruticolose
Himantormia lugubris, a very thin algal layer (compared to the thallus thickness) is located
beneath the cortex (Figure 2c,d). However, the algal cells do not form an evenly thick layer
but small clusters with some substantial spaces (up to 15 µm) between them (not shown).
The upper cortex averages 15 µm, and thallus thickness fluctuates between 168–372.0 µm.
Lecania brialmontii is a microfruticolose lichen that forms a pulvinate cushion. The thallus
shows terete ramification below the upper cortex with a continuous algal layer, which
can form between 25–30% of the thallus (Figure 2e,f). Placopsis antarctica has two types of
photobionts—the green algal layer below the upper cortex (Figure 3a,b) and the cephalodia
in the center of the thallus with cyanobacteria (Figure 3a,c). For R. terebrata, the old
thallus parts exhibit an algal layer of varying thickness that is located beneath the cortex
(Figure 3d,e). Young tips show an irregular distribution of the algal photobiont within a
thallus cross-section. The algae form a series of cell clusters with a patchy distribution.

3.2. Dehydration Response Curves of the Potential and Effective Quantum Yield of PSII

Most species showed no limitations of FV/FM (Figure 4) and ΦPSII (Figure 5) in the
thalli desiccating from a wet state (RWC: 100%) to a semi-dry state (RWC: approx. 35%).
The cephalodium of P. antarctica and L. brialmontii had a different dehydration response
curve with a slight but constant increase in FV/FM and ΦPSII when the RWC decreased
from 100% to 20% (for FV/FM) and 100% to 30% (for ΦPSII), see the inset in Figures 4 and 5.
Then, with further desiccation below the RWC of 30%, a significant decline in the FV/FM
and ΦPSII was found with further thallus desiccation at RWCs below 25%. Species-specific
dehydration-dependent fall in FV/FM and ΦPSII started at an RWC range of 22–32%.
With further desiccation, species-specific differences were more distinguishable. This
was particularly true for the RWC1/2 values, in which FV/FM and ΦPSII reached their half
maximum values. For FV/FM, RWC1/2 was found below 15% and declined in the following
order: Ramalina terebrata (11.80%), Himantormia lugubris (9.72%), Lecania brialmontii (9.70%),
Parmelia saxatilis (8.90%), algal part of Placopsis antarctica (8.62%), and cephalodium of
P. antarctica (2.01%). For ΦPSII, although the species order of RWC1/2 differed, it generally
had higher RWC1/2 values than FV/FM, as follows: algal part of P. antarctica (19.4%),
P. saxatilis (16.7%), R. terebrata and cephalodium of P. antarctica (11.80%), L. brialmontii
(11.4%), and H. lugubris (10.2%). Generally, low values were found for the critical RWC
(RWCcrit), at which FV/FM and ΦPSII reached zero. In all species, the RWCcrit was below 5%.
For FV/FM, the values reached 0.85 % (P. saxatilis), 0.25 % (H. lugubris), 1.20% (L. brialmontii),
0.95% (P. antarctica—algal part), 0.20% (P. antarctica—cephalodium), 1.05 % (R. terebrata). For
ΦPSII, the RWCcrit values reached 8.2% (P. saxatilis), 3.3% (H. lugubris), 4.4% (L. brialmontii),
5.0% (P. antarctica—algal part), 4.3% (P. antarctica—cephalodium), and 2.9% (R. terebrata).
For the dehydration response curve of P. antarctica, a significantly higher ΦPSII was found
for the algal part of the thallus than for the cephalodia with the RWC declining from
100 to 15 %. In final phase of desiccation (RWC below 10%), however, ΦPSII values are
almost identical in algal and cyanobacterial parts of the thallus, contrasting with FV/FM,
where higher values are found for cephalodia than for the algal part. With the exception
of cephalodium of P. antarctica (FV/FM) and H. lugubris (ΦPSII,), the values of FV/FM and
ΦPSII were highly related to steady state ChlF (Fs), see Table 3.
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Steady-state chlorophyll fluorescence (Fs) declined in a polyphasic manner with
ongoing thalli dehydration in all species (Figure 6). It showed a slight decline in the RWC
range, as it decreased from 100% to 30%. Then, like FV/FM and ΦPSII, Fs started to decline
more significantly at a RWC of about 30%. Except for H. lugubris and cephalodium of
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P. antarctica, ΦPSII correlated with Fs (R2 over 0.97), which indicates a high potential for
the Fs signal to monitor vigor and photosynthetic activity in P. saxatilis, L. brialmontii,
R. terebrata, and P. antarctica (algal part).

Table 3. Regression coefficient (R2) for the nonlinear relationships between Fs (steady-state chloro-
phyll fluorescence and potential (FV/FM) and effective quantum yields of PSII (ΦPSII) for lichen
species. The regression model was a fourth order polynomial.

Lichen Species R2 for Fs Versus

FV/FM ΦPSII

Parmelia saxatilis 0.9777 0.9804
Himantormia lugubris 0.5265 0.3106

Lecania brialmontii 0.9768 0.9752
Placopsis antarctica—algal part 0.9966 0.9954

Placopsis antarctica—cephalodium 0.4766 0.8825
Ramalina terebrata 0.9098 0.9211
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Figure 6. Desiccation response curve of steady-state chlorophyll fluorescence (FS—(left) panel) and nonphotochemical
quenching (NPQ—(right) panel) in Antarctic lichens desiccating from a wet (RWC = 100%) to a dry state (RWC = 0%).

NPQ increased with desiccation, more apparently at the RWCs below 20%. The
dehydration curves were of similar shape with the exception of L. brialmontii and H. lugubris.
The two species showed smaller NPQ increase in the RWC declining from 20 to 0% RWC
than the other ones.

3.3. Slow Kautsky Kinetics Recorded for the Lichens at Different RWCs during Desiccation from
Fully a Wet to a Dry State

The chlorophyll fluorescence signal decreased with thallus desiccation in all species
except for H. lugubris, in which the ChlF signal showed an increase in RWC, followed by
a decrease from 100% to 60%. In L. brialmontii, the KKs was almost identical in the RWC
range during desiccation from 100% to 20%. However, in all species, a significant ChlF
decrease in the KKs was apparent at RWCs below 20%. The desiccation-induced decrease
was demonstrated by a “flattening” of the slow KKs and a decrease in the P, S, M, and
T ChlF values (Figure 7). Similarly, a decrease was found for the ChlF values that were
reached after the application of saturation pulses (FM data not shown in Figure 7). These
changes were attributed to the generally increased nonphotochemical quenching and the
changes in the optical properties of lichen thalli during desiccation (for more details see
Discussion). Additionally, some species-specific changes were observed in the KKs shape,
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specifically for the ChlF fluorescence signals reached at particular O, P, S, M, and T levels
(Figure 7, see the upper left and lower left panels): (1) FP < FM with the S point becoming
less distinguishable with pronounced desiccation (in this case, FM does not denote to
maximum ChlF reached after saturation pulse applied to a dark adapted sample but ChlF
level reached at M in Figure 7), (2) time at which the M point was reached (e.g., 36 s in
R. terebrata, 66 s in P. saxatilis). Therefore, desiccation induced some minor changes in the
index parameters (P/S, P/M, S/M, M/T). These were small but apparent in all species
except for L. brialmontii (see Table 4), which showed the KK’s “plateau type,” which is
typical for most cyanobacteria [43]. The other species showed the typical OPSMT shape
for chlorolichens.

Microorganisms 2021, 9, x  13 of 22 
 

 

 
Figure 7. Slow Kautsky kinetics recorded for desiccating lichens at five different RWCs, which varied according to the 
lichen species. Ramalina terebrata (RWC = 100%, 65%, 16%, 5%, 0.1%), Himantormia lugubris (RWC = 100%, 65%, 16%, 6%, 
3%), Parmelia saxatilis (RWC = 100%, 72%, 22%, 9%, 3%), Lecania brialmontii (RWC = 100%, 67%, 19%, 9%, 4%), Placopsis 
antarctica (RWC = 100%, 62%, 19%, 5%, 1%), and P. antarctica cephalodium (RWC = 100%, 62%, 19%, 5%, 1%). The RWC 
values are provided in the following different colors: 100% = soft green; 62–72% = deep green; 16–22% = orange; 5–9% = 
violet; 0.1–4% = red. The time axis (x) is given in a log scale. The O, P, S, M, and T points are indicated for R. terebrata and 
Placopsis antarctica (algal part of the thallus). The chlorophyll fluorescence signal is shown with different scales according 
to the species-specific values. 

3.4. Analysis of Reflectance Spectra in Dry and Wet States 
The spectral reflectance curves, PRI, and NDVI showed species-specific sensitivity to 

dehydration (see Table 5, Figure 8). H. lugubris did not show any change between the 
spectrum recorded in dry and wet states, while the Lecania brialmontii spectra showed a 
lowering of reflectance from a dry to a wet state throughout the whole wavelength inter-
val. The reflectance spectrum of dry L. brialmontii increased almost linearly between 300 
nm to 680 nm. However, a local peak was apparent at 640 nm, followed by a red-edge 
increase starting at 680 nm. In both the wet and dry states, the red-edge increase was bi-
phasic with a faster increase in the wavelength range of 680–720 nm, followed by a slower 
increase within the range of 720–780 nm. 

Figure 7. Slow Kautsky kinetics recorded for desiccating lichens at five different RWCs, which varied according to the lichen
species. Ramalina terebrata (RWC = 100%, 65%, 16%, 5%, 0.1%), Himantormia lugubris (RWC = 100%, 65%, 16%, 6%, 3%),
Parmelia saxatilis (RWC = 100%, 72%, 22%, 9%, 3%), Lecania brialmontii (RWC = 100%, 67%, 19%, 9%, 4%), Placopsis antarctica
(RWC = 100%, 62%, 19%, 5%, 1%), and P. antarctica cephalodium (RWC = 100%, 62%, 19%, 5%, 1%). The RWC values
are provided in the following different colors: 100% = soft green; 62–72% = deep green; 16–22% = orange; 5–9% = violet;
0.1–4% = red. The time axis (x) is given in a log scale. The O, P, S, M, and T points are indicated for R. terebrata and Placopsis
antarctica (algal part of the thallus). The chlorophyll fluorescence signal is shown with different scales according to the
species-specific values.
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Table 4. Parameters derived from the O, P, S, M, T curves (means of five replicates per species and particular RWC). The
values were distinguished on the slow Kautsky kinetics recorded for the experimental lichen species during their desiccation
from a wet (RWC = 100%) to a dry state (RWC below 5%).

Lichen Species RWC (%) Parameters

P/S P/M S/M M/T O/P O/T

Lecania brialmontii 100 0.990 0.991 1.000 1.058 0.905 0.949
67 0.987 0.984 0.997 1.032 0.910 0.925
19 0.996 1.006 1.010 1.011 0.902 0.918
9 1.000 0.998 0.998 1.037 0.907 0.939
4 1.004 1.003 0.999 1.051 0.962 1.014

Himantormia lugubris 100 0.973 0.911 0.936 1.081 0.942 0.927
65 0.984 0.930 0.945 1.071 0.937 0.933
16 1.009 0.982 0.974 1.045 0.942 0.968
6 1.015 1.006 0.992 1.078 0.966 1.047
3 1.004 1.007 1.003 1.002 0.995 1.004

P. antarctica algal part 100 1.060 1.042 0.983 1.101 0.822 0.943
62 1.000 0.993 0.993 1.018 0.957 0.968
19 1.015 1.022 1.007 1.105 0.931 1.051
5 1.017 1.012 0.995 1.110 0.910 1.022
1 1.003 0.999 0.996 1.024 0.987 1.009

P. antarctica cephalodium 100 1.008 0.991 0.983 1.005 0.950 0.947
62 1.001 0.995 0.995 1.017 0.958 0.969
19 1.009 1.004 0.996 1.085 0.938 1.022
5 1.016 1.031 1.015 1.087 0.915 1.025
1 1.027 1.010 0.984 1.001 0.932 0.943

Ramalina terebrata 100 0.973 0.953 0.979 1.092 0.855 0.890
65 0.982 0.963 0.981 1.074 0.879 0.909
16 0.970 0.956 0.986 1.097 0.899 0.944
5 0.987 0.989 1.002 1.090 0.930 1.002

0.5 0.999 0.998 0.999 1.000 0.995 0.993
Parmelia saxatilis 100 0.963 0.898 0.932 1.136 0.871 0.888

72 0.963 0.943 0.979 1.096 0.870 0.899
22 0.970 0.953 0.983 1.075 0.878 0.900
9 1.007 0.981 0.974 1.058 0.941 0.976
3 1.010 1.043 1.033 1.029 0.972 1.043

3.4. Analysis of Reflectance Spectra in Dry and Wet States

The spectral reflectance curves, PRI, and NDVI showed species-specific sensitivity
to dehydration (see Table 5, Figure 8). H. lugubris did not show any change between the
spectrum recorded in dry and wet states, while the Lecania brialmontii spectra showed a
lowering of reflectance from a dry to a wet state throughout the whole wavelength interval.
The reflectance spectrum of dry L. brialmontii increased almost linearly between 300 nm to
680 nm. However, a local peak was apparent at 640 nm, followed by a red-edge increase
starting at 680 nm. In both the wet and dry states, the red-edge increase was biphasic with
a faster increase in the wavelength range of 680–720 nm, followed by a slower increase
within the range of 720–780 nm.

NDVI and PRI differed for dry and fully hydrated thalli of the experimental lichen
species. However, the response was species-specific. NDVI decreased in the hydrated state
for H. lugubris and P. saxatilis but increased in L. brialmontii, R. terebrata and P. antarctica.
However, in wet states, the values of PRI either increased (H. lugubris), decreased (P. saxatilis,
P. antarctica), or showed no change (L. brialmontii, R. terebrata).
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Table 5. Means of spectral indices (NDVI, PRI) recorded for dry and wet thalli of the five Antarctic lichen species (means of
five replicates per species in wet and dry state). Different upper index letters indicate statistically significant differences at
p ≤ 0.05.

Spectral
Index

State of the
Thallus Lichens Species

Himantormia
lugubris

Lecania
brialmontii

Ramalina
terebrata

Parmelia
saxatilis

Placopsis antarctica
(green algae)

Placopsis antarctica
cephalodium

NDVI
Dry 0.329 a 0.213 a 0.212 0.152 a 0.033 a 0.190 a

Wet 0.23 b 0.39 b 0.300 b 0.060 b 0.143 b 0.211 a

PRI
Dry −0.059 a −0.038 a −0.058 a −0.061 a 0.003 a −0.056 a

Wet −0.029 b −0.039 a −0.054 a −0.075 a −0.082 b −0.077 b
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4. Discussion
4.1. Chlorophyll Fluorescence Parameters during Desiccation

The results show that Antarctic lichens have a high desiccation tolerance because
all species showed a decline in FV/FM and ΦPSII at RWCs below 20% to 30%, as has
been reported previously for Cladonia borealis [44]. Recent studies support the idea that
liquid water availability is the main limiting factor for lichen photosynthesis (see [45]).
For all experimental species, the values of FV/FM and ΦPSII were fairly constant in the
thalli, desiccating from 100% to 30% RWC (Figures 4 and 5). Except for L. bialmontii and
Nostoc-containing cephalodium of P. antarctica (see the insets in Figures 4 and 5), the FV/FM
and ΦPSII values showed either no change or a decrease when the RWC declined from
100% to 30%. The slight increase of FV/FM and ΦPSII in L. brialmontii and cephalodium of
P. antarctica that was found with desiccation from 100% to 30% of RWC can be attributed
to the limited CO2 diffusion into the thallus in the wet state. This phenomenon is caused
by exopolysaccharidic envelopes of cyanobacteria cells, which in the wet state represent
a physical barrier for CO2 transfer. Therefore, photosynthetic processes are limited in
fully hydrated thalli and increase with partial dehydration, as shown by Nostoc commune
colonies [34].

Considering the microsite conditions at King George Island and thallus morphol-
ogy, the crustose Placopsis antarctica, which grows on stones on the ground in a humid
environment, passes faster desiccation during the summer season (shown by [9]) than
Lecania brialmontii, which grows on coastal rocks with water runoff and high humidity.
L. brialmontii is a microfruticulose lichen with a pulvinate cushion form where water can
be retained for a long time. This has been found in similar morphological arrangements
in Antarctic cushion mosses [46], where individual specimens lose water faster than the
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cushion form. A minor decrease in FV/FM and ΦPSII was found in R. terebrata, which grows
on higher rocks that are exposed to the wind. On the other hand, H. lugubris is the species
that showed the highest tolerance to drought, as indicated by higher values of ΦPSII data
points at RWCs below 10% than for the rest of species (Figure 5) and generally low NPQ
values at the same RWC interval (Figure 6). The species grows on stones in drier areas to
form extensive communities with other fruticose lichens [47]. The behavior of H. lugubris is
interesting because the KKs analysis showed that the ChlF signal is most effective at a lower
RWC (see below). The maximum value of ΦPSII found for H. lugubris was comparable to
the value reported by [47] for grey thallus branches.

A significant S-curve decrease of FV/FM and ΦPSII at RWCs of below 20–30% was
found for the five experimental species (Figures 4 and 5) and has been well documented
for a variety of lichens [48,49]. Similarly, an earlier study [50] reported a rapid decline in
FV/FM in lichens when the RWC decreased below 20%. These changes indicate a severe
limitation of PS II in lichen thalli in the final stage of desiccation. FV/FM reached 10% of
their maximum value at the RWC values below 10%. Such values are comparable to the
data reported previously [51] for three lichen species from Norway. This suggests that
lichens are capable of performing primary photochemical processes of photosynthesis at
low thallus hydration.

During the desiccation of the lichen thallus, excess ROS formation occurs in PS II
and other chloroplastic/cellular compartments of a photobiont. Desiccation-induced ROS
formation in PS II results in high PS II pressure and, consequently, in photooxidative injury
of pigment-protein complexes of PSII. These changes lead to a reduction of photosynthetic
efficiency (FV/FM and ΦPSII decline, see Figures 4 and 5). High levels of ROS are harmful
not only to PS II but also to essential biomolecules, including nucleic acids, proteins, and
lipids [52]. Moreover, the lack of water molecules in desiccating lichens combined with
sunlight may overexcite the RCs of PS II, regardless of low lighting [53]. These changes
are accompanied by an NPQ increase in RWCs below 20% (see Figure 6), which comprises
several protective mechanisms that enhance desiccation tolerance. The reason behind the
lower NPQ in L. brialmontii at the RWC below 20% than in other species is unknown. Such
low activation of NPQ, however, suggests yet unidentified photosynthetic peculiarities
of the L. brialmontii photobiont. NPQ has at least the following three components: (1)
pH-dependent energy dissipation in the antenna system of PSII (qE); (2) a state transition
between PSII and PSI (qT); and (3) a photo inhibitory quenching (qI) (see [54]). Our ChlF
measurements could not determine which of the three components played a major role
in the response of the experimental species to thallus dehydration. However, similarly
to [44]—Cho et al. (2020), we suggest that qE could contribute to a rapid reduction in PS
II excitation pressure. It is known that qE quenching involves converting violaxanthin to
zeaxanthin, which is generally associated with desiccation tolerance in lichen [55,56]. Other
processes protecting the photosynthetic apparatus during desiccation are the increase in
antioxidant content (see [57]), conformational changes of pigment–protein complexes, and
thermal dissipation of absorbed light energy [17], dehydration-induced PSII deactivation
(see [35]), xanthophyll cycle-independent mechanisms [14], and efficient spillover, i.e.,
energy transfer from PSII to PSI and consequent quenching due to the formation of a
long-lived P700+ state [58]. The PSII to PSI energy transfer is attributed to chlorophyll
molecules aggregation in the LHCs of PSII or a new type of quenching in the PSII core
antenna [59]. Generally, the protective nonphotochemical dissipation of absorbed light
energy happens fast in lichens and other desiccation-tolerant organisms [18,60].

Because nonphotochemical quenching increases with desiccation, the overall ChlF
signal decreases. This has been demonstrated for the decline rate of F0 and Fs during
desiccation at RWCs of 30–40% (see Figures 6 and 7). The desiccation-induced decrease
in F0 in lichen is attributed to changes in the optical properties of the upper cortex [61]
and increased nonradiative dissipation of absorbed excitation energy from light-harvesting
complexes [59,62].
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4.2. Kautsky Curve Changes during Desiccation

Our data on the OPSM shape of KKs is in agreement with a previous study [63],
which reviewed the main differences between “algal” and “cyanobacterial” curves. Except
for L. brialmontii and cephalodia of P. antarctica (flat KK), the lichen species exhibited
distinguished O, P, S, M, and T points in the wet state (RWC = 100 %), with the ChlF level at
P point lower than that at M point on the KK. For higher plants and algae, however, higher
ChlF levels reached in the P-S than the M-T part of KKs are reported [20,63] similarly to
findings for the P. antarctica algal part (fully hydrated, Figure 7). In chlorolichens, such
KKs having higher ChlF levels in the P-S than the M-T part of KKs have been observed
(e.g., [30]—Conti et al. 2014—Usnea antarctica). For some other Antarctic lichens, however,
lower P-S than M-T ChlF levels are reported [40,64]. The latter study reports also the light
effects on the ChlF levels at P and M points, and, consequently ChlF P/M ratio (see Table 4).

When lower values of ChlF are reached in the P-S than in the M-T part of KKs in
cyanobacteria, this is attributed to State 2→State 1 transition taking place during the S to M
rise (see e.g., [65,66]). For unicellular green algae, it is attributed to the migration of LHCII
from PS I to PS II after LHC dephosphorylation (e.g., [67] for Chlamydomonas reinhardtii). In
chlorolichens and their symbiotic alga Trebouxia sp., however, the mechanism has not been
experimentally proven.

In R. terebrata, H. lugubris, P. saxatilis, and P. antarctica (algal part), the M peak (see
Figure 7) tended to decrease with decreasing RWC, which can be attributed to the in-
volvement of state transitions [63]. As shown in an earlier study [68], the M peak tends
to decrease with higher light intensity. The study reported a decrease corresponding to
the light increase from 40 to 160 µmol m−2 s−1 in Umbilicaria antarctica. The same study
reported a higher ChlF at P than at M point for Dermatocarpon polyphyllizum (c.f. P. antarctica
in Figure 7). Moreover, the P/M ratio of ChlF is temperature-dependent because the KKs
shape differs at different temperatures when measured in an optimally hydrated state.
The time at which the M point occurs is also temperature-dependent; however, the M
point is typically found 60–140 s after the actinic light starts to induce the KKs. In our
experiment, the M point was found at varying intervals, ranging from 30 s to 60 s. Except
for L. brialmontii, the experimental species exhibited similar responses (trends) in O, P,
S, M, T, and ratios (Table 4) with thallus desiccation. In general, numeric values of the
ratios P/S, P/M, S/M and M/T increased with desiccation, which is consistent with [60]
reporting an increase in the parameters with severity of temperature stress and flattening
of the KKs curve. Therefore, the differences between ChlF values at the P, S, M, T decreases,
and numeric value of the above-specified ratios increases. In some species, however, the
parameters did not show any change with desiccation, which can be explained by generally
small differences between P, S, M, and T ChlF levels in “flat” KKs recorded during desic-
cation (e.g., R. terebrata, P. antarctica—algal part). This contrasts with an earlier study [40]
reporting a wide range of numeric values of P/S and P/M in wet Antarctic lichen exposed
to a decreasing thallus temperature. In L. brialmontii, where the ratios (Table 4) were close
to 1, the phenomenon can be explained by flat KKs with small differences between the
P, S, M, and T points, which were hardly distinguishable. A flat KKs is more typical for
cyanolichens [9] than chlorolichens. However, chlorococcoid photobiont has been reported
for Lecania species [69]. Therefore, we recommend that follow-up studies should conduct a
detailed analysis of the KKs shape and quenching mechanisms.

The KKs provide more details about the species-specific responses because the fru-
ticolose Himantormia lugubris in maritime Antarctica grows in a different microenviron-
ment than the crustose Placopsis antarctica. While both species grow on rocks and stones,
P.antarctica presents a higher ChlF signal than H. lugubris at 100% RWC (Figure 7), which
suggests that P. antarctica is photosynthetically more active at water saturation than the
latter. In this context, it is important to mention that H. lugubris is a species that is rather
tolerant to drought and does not tolerate water saturation like other Antarctic lichens
which show carbon assimilation decrease with water saturation [13]. On the other side,
P. antartica is a pioneer species on glacier retreat areas, which are prone to high humidity.



Microorganisms 2021, 9, 818 17 of 21

Another species that is not as active at high RWC is L. brialmontii, as its fluorescence signal
in the KKs study shows that ChlF changes insignificantly from 19–100%, with its activity
being slightly lower at 100% (Figure 7).

4.3. Lichen Spectral Properties

Species-specific spectral curves could be correlated with the color of thalli. No change
in the spectral reflectance spectrum in wet and dry thalli of H. lugubris can be attributed
to the generally black thallus that reflects similarly in wet as well as dry conditions. A
similar pattern was found for the blackish cyanolichen Leptogium puberulum (reflectance
below 0.1) [33,70].

For L. brialmontii, the wet-state spectral reflectance curve had lower reflectance values
than the dry one. However, for both, a biphasic increase in the red-edge region was found
as follows: there was a higher rate within the ranges of 680 nm to 710 nm and 710 nm
to 800 nm, respectively. The presence of a red-edge increase in spectral reflectance is a
characteristic of chlorolichens that has been reported and documented for many species
that exhibit a large variety of thallus colors (see [71,72]). In general, hydrated chlorolichen
samples, except for the black H. lugubris, showed lower reflectance values than in the
dry state. This is mainly true for the spectral range of 400–670 nm, where the difference
between the wet and dry spectra is most remarkable (Figure 8), as shown earlier by [64] for
Antarctic lichen Dermatocarpon polyphyllizum. Hydration-induced reflectance changes in
the visible region are due to the high absorption by photosynthetic pigments, while high
reflectance in the near-infrared region is due to high scattering from the internal tissues of
the lichens [73,74].

The shape of the spectral reflectance curve of R. terebrata is typical for lichens with
green thalli, with several local maxima in the wavelength range of 520–660 nm followed
by the red-edge increase. Similar features of the respective curves were found for the
thalli of two Antarctic species which are green when moist but not in dry state: Physconia
muscigena [33], and Dermatocarpon polyphyllizum [75]. The spectral range of 520–660 is
affected mainly by the composition and number of photosynthetic pigments which are
sensed as the above-mentioned maxima in wet thalli but not in dry thalli which appear
grey (P. muscigena, D. polyphillizum) due to the chromatic change in the dehydrated upper
cortex. The role of the upper cortex optical properties can be seen in the spectral curves of
the algae-containing part of Placopsis antarctica which, due to generally white color in both
dry and wet states, shows almost identical spectral curves (see Figure 8) and does not have
any local maxima in the 520–660 nm band.

Our data suggest that apart from species-specific effects, NDVI and PRI indices differ
in dry and wet lichens. An increase in NDVI in dry vs. wet thalli in black H. lugubris
can be compared to a similar response in the following polar lichens that have a black
thallus in a wet state: Umbilicaria hirsuta [76], U. cylindrica, and U. decussata ([77]). However,
other representatives of Umbilicariaceae that have a deep green color in wet state show a
decrease of NDVI with thallus desiccation, as well as lower NDVI values in dry than in
wet condition (U. arctica, U. hyperborea: see [49]).

Our result shows that reflectance curves and/or NDVI offer great potential for remote
sensing studies, at least for the detection of Antarctic lichen, according to differential
physiological conditions. In many lichen species, NDVI differs in wet and dry states.
Typically, lower NDVI values are found in a wet than a dry state [33]. Therefore, NDVI
values would be used as proxies of hydration status of thalli and physiological activity of
lichens. With technological progress and more frequent use of unmanned aerial vehicles
for follow-up studies in Antarctic terrestrial ecosystems, an improvement in the application
of NDVI in lichen ecophysiological studies might be expected.

5. Conclusions

• Dehydration response curves of potential yield of PSII (FV/FM) revealed that primary
photosynthetic processes of PSII remained active in P. antarctica cephalodia, even
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after severe desiccation (RWC below 10%) compared to the chlorolichens that exhibit
a high degree of FV/FM limitation. This might be explained by the effect of the
exopolysaccaridic envelope of symbiotic Nostoc commune that helps the cephalodium
to maintain higher RWC than average values for the whole thallus including the algal
part of the thallus.

• For effective yield of PSII (ΦPSII), the dehydration response curves indicated that
H. lugubris showed somewhat higher ΦPSII values at the RWC < 10% than the rest
of the investigated species. Together with gradual activation of nonphotochemical
quenching (NPQ) during thallus desiccation, this suggests an advantage for the
species in terms of efficient primary photosynthetic processes during the final phase
of desiccation. This might be a useful mechanism because in the field, the species
desiccates rapidly due to the black thallus color. Generally, lichens with dark thalli
absorb more light energy and therefore warm up and desiccate more rapidly than
species with brighter-colored thalli.

• All species showed a decrease in the ChlF signal with ongoing desiccation and general
flattening of the slow Kautsky kinetics curve. As a result of this phenomenon the
index parameters derived from the ChlF levels P, S, M, S, such as P/S, P/M S/M
generally increased, but the response and indicative value of such parameters for
ecophysiological studies must be verified in follow-up studies.

• Spectral reflectance curves recorded in wet and dry states of thalli showed more
evident differences in green than black or blackish lichens, with typically lower
reflectance in the wet than in the dry state.

• In addition to being used to separate rock-dwelling lichens from those growing on
bare soil, species-specific spectral signatures, spectral reflectance methods, and NDVI
in particular have the potential to determine lichen physiological activity and water
content [78].
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Abbreviations

ChlF—chlorophyll fluorescence; Fs—steady state chlorophyll fluorescence; FV/FM—potential yield
of photochemical processes in photosystem II; ΦPSII—effective quantum yield of photosystem II; HA—
Himantormia lugubris; KKs—Kautsky kinetics of chlorophyll fluorescence; LB—Lecania brialmontii;
NDVI—normalized difference vegetation index; NPQ—nonphotochemical quenching; OPMST—
shape of slow Kautsky kinetics with remarkable points O (origin) to T (steady state); PA—Placopsis
antarctica; PAR—photosynthetically-active radiation; PS II—photosystem II; PRI—photochemical
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reflectance index; PS—Parmelia saxatilis; SRC—spectral reflectance curve; RA—Ramalina terebrata;
RC—reaction centre; RWC—relative water content; RWC1/2—relative water content at which a
chlorophyll fluorescence parameter reaches half of its maximum value; RWCcrit—relative water
content at which the chlorophyll fluorescence parameter reaches zero.
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66. Kaňa, R.; Kotabová, E.; Komárek, O.; Šedivá, B.; Papageorgiou, G.C.; Govindjee; Prášil, O. The slow S to M fluorescence rise in
cyanobacteria is due to a state 2 to state 1 transition. Biochim. Biophys. Acta 2012, 1817, 1237–1247. [CrossRef]

67. Finazzi, G.; Barbagalo, R.P.; Bergo, E.; Barbato, R.; Forti, G. Photoinhibition of Chlamydomonas reinhardtii in State 1 and State 2.
Damages to the photosynthetic apparatus under linear and cyclic electron flow. J. Biol. Chem. 2001, 276, 22251–22257. [CrossRef]

68. Mishra, K.B.; Vítek, P.; Mishra, A.; Hájek, J.; Barták, M. Chlorophyll a fluorescence and Raman spectroscopy can monitor
activation/deactivation of photosynthesis and carotenoids in Antarctic lichens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2020, 239, 118458. [CrossRef]

69. Ekman, S. The corticolous and lignicolous species of Bacidia and Bacidina in North America. Opera Bot. 1996, 127, 1–139.
70. Barták, M.; Hájek, J.; Amarillo, A.M.; Hazdrová, J.; Carreras, H. Changes in spectral reflectance of selected Antarctic and South

American lichens caused by dehydration and artificially-induced absence of secondary compounds. Czech. Polar Rep. 2016, 6,
221–230. [CrossRef]

71. Bechtel, R.; Rivard, B.; Sánchez-Azofeifa, A. Spectral properties of foliose and crustose lichens based on laboratory experiments.
Remote Sens. Environ. 2002, 82, 389–396. [CrossRef]

72. Van Der Veen, C.J.; Csatho, B.M. Spectral characteristics of Greenland Lichens. Géogr. Phys. Quat. 2005, 59, 63–73. [CrossRef]
73. Kiang, N.Y.; Siefert, J.; Govindjee; Blankenship, R.E. Spectral signatures of photosynthesis. I. Review of earth organisms.

Astrobiology 2007, 7, 222–251. [CrossRef]
74. Kiang, N.Y.; Segura, A.; Tinetti, G.; Govindjee; Blankenship, R.E.; Cohen, M.; Siefert, J.; Crisp, D.; Meadows, V.S. Spectral

signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 2007, 7,
252–274. [CrossRef] [PubMed]
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